Evaluated Utilization of Middle–Heavy REE Resources in Bayan Obo Deposit: Insight from Geochemical Composition and Process Mineralogy
Abstract
:1. Introduction
2. Geology Background
3. Sampling and Analytical Methods
3.1. Sampling
3.2. Integrated Mineral Analyzer
3.3. Whole-Rock Geochemical Composition
3.4. Multivariate Statistics Analysis
3.5. Process Mineralogy Analysis
4. Results
4.1. Mineral Composition and Distribution
4.1.1. Dolomite-Type
4.1.2. Aegirine-Type
4.1.3. Fluorite-Type
4.1.4. Riebeckite-Type
4.1.5. Mica-Type
4.1.6. Massive-Type
4.2. Geochemical Composition
4.3. Statistics Analysis
4.4. Process Mineralogy
4.4.1. Component of Ore Sample
4.4.2. Distribution of Target Minerals
5. Discussion
5.1. Resources Potential of M+HREE
5.2. Influence Factors for M+HREE Enrichment
5.3. Targeted M+HREE-Rich Minerals
5.4. M-HREE Utilizability
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Simas, M.; Rocha Aponte, F.; Wiebe, K.S. The Future Is Circular-Circular Economy and Critical Minerals for the Green Transition; SINTEF Akademisk Forlag: Oslo, Norway, 2022. [Google Scholar]
- Czerwinski, F. Critical minerals for zero-emission transportation. Materials 2022, 15, 5539. [Google Scholar] [CrossRef] [PubMed]
- Chakhmouradian, A.R.; Wall, F. Rare earth elements: Minerals, mines, magnets (and more). Elements 2012, 8, 333–340. [Google Scholar] [CrossRef]
- Hatch, G.P. Dynamics in the Global Market for Rare Earths. Elements 2012, 8, 341–346. [Google Scholar] [CrossRef]
- Simandl, G.J.; Paradis, S. Carbonatites: Related ore deposits, resources, footprint, and exploration methods. Appl. Earth Sci. 2018, 127, 123–152. [Google Scholar] [CrossRef]
- Yang, Z.F.; Ma, Y.; Wang, Y. Mining, Beneficiation and Environmental Protection of Rare Earths; Metallurgical Industry Press: Beijing, China, 2018; (In Chinese with English abstract). [Google Scholar]
- Zhang, Z.Y.; Sun, N.J.; He, Z.Y.; Chi, R.A. Local concentration of middle and heavy rare earth elements in the col on the weathered crust elution-deposited rare earthores. J. Rare Earths 2018, 36, 552–558. [Google Scholar] [CrossRef]
- Castor, S.B. Rare earth deposits of North America. Resour. Geol. 2008, 58, 337–347. [Google Scholar] [CrossRef]
- Verplanck, P.L.; Mariano, A.N.; Mariano, A. Rare Earth Element ore geology of carbonatites. Rev. Econ. Geol. 2016, 18, 33–54. [Google Scholar]
- Doroshkevich, A.G.; Viladkar, S.G.; Ripp, G.S.; Burtseva, M.V. Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India. Can. Mineral. 2009, 47, 1105–1116. [Google Scholar] [CrossRef]
- Liu, Y.; Chakhmouradian, A.R.; Hou, Z.Q.; Song, W.L.; Kynický, J. Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): Insights from mineralogy, fluid inclusions, and trace-element geochemistry. Miner. Depos. 2018, 54, 701–718. [Google Scholar] [CrossRef]
- Ngwenya, B.T. Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: Processes at the fluid/rock interface. Geochim. Cosmochim. Acta 1994, 58, 2061–2072. [Google Scholar] [CrossRef]
- Moore, M.; Chakhmouradian, A.R.; Mariano, A.N.; Sidhu, R. Evolution of rare-earth mineralization in the Bear Lodge carbonatite, Wyoming: Mineralogical and isotopic evidence. Ore Geol. Rev. 2015, 64, 499–521. [Google Scholar] [CrossRef]
- Wall, F.; Mariano, A. Rare earth minerals in carbonatites: A discussion centered on the Kangankunde carbonatite, Malawi. Rare Earth Miner. Chem. Orig. Ore Depos. 1996, 193–225. [Google Scholar]
- Broom-Fendley, S.; Styles, M.T.; Appleton, J.D.; Gunn, G.; Wall, F. Evidence for dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes. Am. Mineral. 2016, 101, 596–611. [Google Scholar] [CrossRef]
- Broom-Fendley, S.; Heaton, T.; Wall, F.; Gunn, G. Tracing the fluid source of heavy REE mineralisation in carbonatites using a novel method of oxygen-isotope analysis in apatite: The example of Songwe Hill, Malawi. Chem. Geol. 2016, 440, 275–287. [Google Scholar] [CrossRef]
- Broom-Fendley, S.; Brady, A.E.; Wall, F.; Gunn, G.; Dawes, W. REE minerals at the Songwe Hill carbonatite, Malawi: HREE-enrichment in late-stage apatite. Ore Geol. Rev. 2017, 81, 23–41. [Google Scholar] [CrossRef]
- Broom-Fendley, S.; Brady, A.E.; Horstwood, M.S.; Woolley, A.R.; Mtegha, J.; Wall, F.; Dawes, W.; Gunn, G. Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi. J. Afr. Earth Sci. 2017, 134, 10–23. [Google Scholar] [CrossRef]
- Broom-Fendley, S.; Wall, F.; Spiro, B.; Ullmann, C.V. Deducing the source and composition of rare earth mineralising fluids in carbonatites: Insights from isotopic (C, O, 87Sr/86Sr) data from Kangankunde, Malawi. Contrib. Mineral. Petrol. 2017, 172, 1–18. [Google Scholar] [CrossRef]
- Dowman, E.; Wall, F.; Treloar, P.J.; Rankin, A.H. Rare-earth mobility as a result of multiple phases of fluid activity in fenite around the Chilwa Island Carbonatite, Malawi. Mineral. Mag. 2017, 81, 1367–1395. [Google Scholar] [CrossRef]
- Verwoerd, W.J.; Viljoen, E.A.; Chevallier, L. Rare metal mineralization at the Salpeterkop carbonatite complex, Western Cape Province, South Africa. J. Afr. Earth Sci. 1995, 21, 171–186. [Google Scholar] [CrossRef]
- Wall, F.; Niku-Paavola, V.N.; Storey, C.; Müller, A.; Jeffries, T. Xenotime-(Y) from carbonatite dykes at Lofdal, Namibia: Unusually low LREE:HREE ratio in carbonatite, and the first dating of xenotime overgrowths on zircon. Can. Mineral. 2008, 46, 861–877. [Google Scholar] [CrossRef]
- Benaouda, R.; Devey, C.W.; Badra, L.; Ennaciri, A. Light rare-earth element mineralization in hydrothermal veins related to the Jbel Boho alkaline igneous complex, AntiAtlas/Morocco: The role of fluid-carbonate interactions in the deposition of synchysite-(Ce). J. Geochem. Explor. 2017, 177, 28–44. [Google Scholar] [CrossRef]
- Xu, C.; Campbell, I.H.; Allen, C.M.; Huang, Z.; Qi, L.; Zhang, H.; Zhang, G. Flat rare earth element patterns as an indicator of cumulate processes in the Lesser Qinling carbonatites, China. Lithos 2007, 95, 267–278. [Google Scholar] [CrossRef]
- Xu, C.; Kynicky, J.; Chakhmouradian, A.R.; Campbell, I.H.; Allen, C.M. Trace-element modeling of the magmatic evolution of rare-earthrich carbonatite from the Miaoya deposit, Central China. Lithos 2010, 118, 145–155. [Google Scholar] [CrossRef]
- Song, W.L.; Xu, C.; Smith, M.P.; Kynicky, J.; Huang, K.J.; Wei, C.W.; Zhou, L.; Shu, Q.H. Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China. Sci. Rep. 2016, 6, 37377. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Kynicky, J.; Xu, C.; Song, W.; Spratt, J.; Jeffries, T.; Brtnicky, M.; Kopriva, A.; Cangelosi, D. The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu district, China. Lithos 2018, 308, 65–82. [Google Scholar] [CrossRef]
- Cangelosi, D.; Smith, M.; Banks, D.; Yardley, B. The role of sulfate-rich fluids in heavy rare earth enrichment at the Dashigou carbonatite deposit, Huanglongpu, China. Mineral. Mag. 2020, 84, 65–80. [Google Scholar] [CrossRef]
- Cooper, A.F.; Collins, A.K.; Palin, J.M.; Spratt, J. Mineralogical evolution and REE mobility during crystallisation of ancylite-bearing ferrocarbonatite, Haast River, New Zealand. Lithos 2015, 216, 324–337. [Google Scholar] [CrossRef]
- Andersen, A.K.; Clark, J.G.; Larson, P.B.; Neill, O.K. Mineral chemistry and petrogenesis of a HFSE (+HREE) occurrence, peripheral to carbonatites of the Bear Lodge alkaline complex, Wyoming. Am. Mineral. 2016, 101, 1604–1623. [Google Scholar] [CrossRef]
- Andersen, A.K.; Clark, J.G.; Larson, P.B.; Donovan, J.J. REE fractionation, mineral speciation, and supergene enrichment of the Bear Lodge carbonatites, Wyoming, USA. Ore Geol. Rev. 2017, 89, 780–807. [Google Scholar] [CrossRef]
- Sanematsu, K.; Watanabe, Y.; Verplanck, P.L.; Hitzman, M.W. Characteristics and genesis of ion adsorption-type rare earth element deposits, Rare earth and critical elements in ore deposits. Soc. Econ. Geol. 2016, 18, 55–79. [Google Scholar]
- Li, Y.H.M.; Zhao, W.W.; Zhou, M.F. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model. J. Asian Earth Sci. 2017, 148, 65–95. [Google Scholar] [CrossRef]
- Hou, X.Z.; Yang, Z.F.; Wang, Z.J. The occurrence characteristics and recovery potential of middle-heavy rare earth elements in the Bayan Obo deposit, Northern China. Ore Geol. Rev. 2020, 126, 103737. [Google Scholar] [CrossRef]
- Zhan, Y.X.; Li, X.C.; Wu, B.; Yang, K.F.; Fan, H.R.; Li, X.H. The occurrence and genesis of HREE-rich minerals from the giant Bayan Obo deposit, China. Ore Geol. Rev. 2023, 157, 105438. [Google Scholar] [CrossRef]
- Zhao, G.C.; Wilde, S.A.; Cawood, P.A.; Li, L.Z. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics 1999, 310, 37–53. [Google Scholar] [CrossRef]
- Zhai, M.G.; Santosh, M.; Zhang, L. Precambrian geology and tectonic evolution of the North China Craton. Gondwana Res. 2011, 20, 1–5. [Google Scholar] [CrossRef]
- Zhai, M.G.; Santosh, M. GR focus revier metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Res. 2013, 24, 275–297. [Google Scholar] [CrossRef]
- Zhai, M.G.; Hu, B.; Zhao, T.P.; Peng, P.; Meng, Q.R. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance: A study advance and review. Tectonophysics 2015, 662, 153–166. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Yuan, Z.X.; Tang, S.H.; Wang, J.H.; Bai, G. New data for ore-forming age of the Bayan Obo REE deposit, Inner Mongolia. Acta Geosci. Sin. 1994, 29, 85–94, (In Chinese with English abstract). [Google Scholar]
- Liu, Y.L.; Yang, G.; Chen, J.F.; Du, A.D.; Xie, Z. Re-Os dating of pyrite from giant Bayan Obo REE-Nb-Fe deposit. Chin. Sci. Bull. 2004, 48, 2627–2631. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Tang, S.H.; Wang, J.H.; Yuan, Z.X.; Bai, G. Information about ore deposit formation in different epochs: Age of the west orebodies of the Bayan Obo deposit with a discussion. Geol. China 2003, 30, 130–137, (In Chinese with English abstract). [Google Scholar]
- Smith, M.P.; Campbell, L.S.; Kynicky, J. A review of the genesis of the world class Bayan Obo Fe-REE-Nb deposits, Inner Mongolia, China: Multistage processes and outstanding questions. Ore Geol. Rev. 2015, 64, 459–476. [Google Scholar] [CrossRef]
- Yang, X.Y.; Lai, X.D.; Pirajno, F.; Liu, Y.L.; Ling, M.X.; Sun, W.D. Genesis of the Bayan Obo Fe-REE-Nb formation in Inner Mongolia, north China craton: A perspective review. Precambrian Res. 2017, 288, 39–71. [Google Scholar] [CrossRef]
- Liu, S.; Fan, H.R.; Groves, D.I.; Yang, K.F.; Yang, Z.F.; Wang, Q.W. Multiphase carbonatite-related magmatic and metasomatic processes in the genesis of the ore-hosting dolomite in the giant Bayan Obo REE-Nb-Fe deposit. Lithos 2020, 354–355, 105359. [Google Scholar] [CrossRef]
- Drew, L.J.; Qingrun, M.; Weijun, S. The Bayan Obo iron-rare-earth-niobium deposits, Inner Mongolia, China. Lithos 1990, 26, 43–65. [Google Scholar] [CrossRef]
- Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Tatsumoto, M.; Wang, J.W.; Conrad, J.E.; MaKee, E.H.; Hou, Z.L.; Meng, Q.R.; Huang, S.G. The Sedimentary Carbonate-Hosted Giant Bay an Obo REE-Fe-Nb Ore Deposit of Inner Mongolia, China A Cornerstone Example for Giant Polymetallic Ore Deposits of Hydrotherm. US Geol. Surv. Bull. 1997, 2143, 1–65. [Google Scholar]
- Hao, Z.G.; Wang, X.B.; Li, Z.; Xiao, G.W.; Zhang, T.R. Bayan Obo carbonatite REE–Nb–Fe deposit: A rare example of Neoproterozoic lithogeny and metallogeny of a damaged volcanic edifice. Acta Geol. Sin. 2002, 76, 525–540, (In Chinese with English abstract). [Google Scholar]
- Li, Y.K.; Ke, C.H.; She, H.Q.; Wang, D.H.; Xu, C.; Wang, A.J.; Li, R.P.; Peng, Z.D.; Zhu, Z.Y.; Yang, K.F.; et al. Geology and mineralization of the Bayan Obo supergiant carbonatite-type REE-Nb-Fe deposit in Inner Mongolia, China: A review. China Geol. 2023, 6, 716–750. [Google Scholar]
- Huang, X.W.; Zhou, M.F.; Qiu, Y.Z.; Qi, L. In-situ LA-ICP-MS trace elemental analyses of magnetite: The Bayan Obo Fe-REE-Nb deposit, North China. Ore Geol. Rev. 2015, 65, 884–899. [Google Scholar] [CrossRef]
- Tang, H.Y.; Liu, Y.; Song, W.L. Igneous genesis of the Bayan Obo REE-Nb-Fe deposit: New petrographical and structural evidence from the H1-H9 cross-section and deep-drilling exploration. Ore Geol. Rev. 2021, 138, 104397. [Google Scholar] [CrossRef]
- Chao, E.C.T.; Tatsumoto, M.; Minkin, J.A.; Back, J.M.; Mckee, E.H.; Ren, Y.C. Multiple lines of evidence for establishing the mineral paragenetic sequence of the Bayan Obo rare earth ore deposit of Inner Mongolia, China. Contrib. Geol. Miner. Resour. Res. 1991, 6, 1–17, (In Chinese with English abstract). [Google Scholar]
- Fan, H.R.; Yang, K.F.; Hu, F.F.; Liu, S.; Wang, K.Y. The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis. Geosci. Front. 2016, 7, 335–344. [Google Scholar] [CrossRef]
- Liu, S.; Fan, H.R.; Yang, K.F.; Hu, F.F.; Rusk, B.; Liu, X.; Li, X.C.; Yang, Z.F.; Wang, Q.W.; Wang, K.Y. Fenitization in the giant Bayan Obo REE-Nb-Fe deposit: Implication for REE mineralization. Ore Geol. Rev. 2018, 94, 290–309. [Google Scholar] [CrossRef]
- Yang, K.F.; Fan, H.R.; Pirajno, F.; Li, X.C. The Bayan Obo (China) giant REE accumulation conundrum elucidated by intense magmatic differentiation of carbonatite. Geology 2019, 47, 1198–1202. [Google Scholar] [CrossRef]
- Yang, X.M.; Yang, X.Y.; Zheng, Y.F.; Le Bas, M.J. A rare earth element-rich carbonatite dyke at Bayan Obo, Inner Mongolia, North China. Mineral. Petrol. 2003, 78, 93–110. [Google Scholar] [CrossRef]
- Ni, P.; Zhou, J.; Chi, Z.; Pan, J.Y.; Li, S.N.; Ding, J.Y.; Han, L. Carbonatite dyke and related REE mineralization in the Bayan Obo REE ore field, North China: Evidence from geochemistry, C-O isotopes and Rb Sr dating. J. Geochem. Explor. 2020, 215, 106560. [Google Scholar] [CrossRef]
- Xie, Y.L.; Qu, Y.W.; Yang, Z.F.; Liang, P.; Zhong, R.C.; Wang, Q.W.; Xia, J.M.; Li, B.C. Giant Bayan Obo Fe–Nb–REE deposit: Progresses, Controversaries and new understandings. Miner. Depos. 2019, 38, 983–1003, (In Chinese with English abstract). [Google Scholar]
- MNR (Ministry of Natural Resources); PRC (People’s Republic of China). DZ/T 0452.1-2023; Method for Chemical Analysis of Rare Earth Ores. Standards Press of China: Beijing, China, 2023; (In Chinese with English abstract).
- De Iorio, M.; Ebbels, T.M.; Stephens, D.A. Statistical techniques in metabolic profiling. Handb. Stat. Genet. 2008, 1, 347–373. [Google Scholar]
- Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikström, C. Multi-and Megavariate Data Analysis Basic Principles and Applications; Umetrics Academy: Stockholm, Sweden, 2013; Volume 1. [Google Scholar]
- Zhou, M.G. Application of Technological Mineralogy in Ore Prospecting and Comprehensive Utilization of Mineral Resources. Multipurp. Util. Miner. Resour. 2012, 3, 7–9, (In Chinese with English abstract). [Google Scholar]
- Xiao, Y.W.; Ye, X.L.; Feng, K.; Huang, H.W.; Wang, Z. Current situation and prospect of “Four Rare” process mineralogy research technology. Min. Metall. 2022, 31, 6–13, (In Chinese with English abstract). [Google Scholar]
- Chen, Z.Y.; Li, J.K.; Zhou, Z.H.; Gao, Y.B.; Li, P. Study on process mineralogical evaluation index system of hard rock lithium beryllium niobium tantalum mineral resources. Acta Petrol. Sin. 2023, 39, 1887–1907, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- IGCAS (Institute of Geochemistry Chinese Academy of Sciences). Geochemistry of Bayan Obo Deposit; Science Press: Beijing, China, 1988; (In Chinese with English abstract). [Google Scholar]
- Yang, K.F.; Fan, H.R.; Qiu, Z.J.; Li, X.C.; She, H.D.; Liu, S.L.; Li, H.T.; Zhang, L.F. Spatial distribution pattern of ore forming elements in the Bayan Obo deposit and exploration implications. Acta Petrol. Sin. 2023, 39, 2895–2909, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Möller, P.; Dulski, P.; Luck, J. Determination of rare earth elements in seawater by inductively coupled plasma-mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 1992, 47, 1379–1387. [Google Scholar] [CrossRef]
- Jones, A.P.; Genge, M.; Carmody, L. Carbonate Melts and Carbonatites. Rev. Mineral. Geochem. 2013, 75, 289–322. [Google Scholar] [CrossRef]
- Anenburg, M.; Mavrogenes, J.A.; Frigo, C.; Wall, F. Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Sci. Adv. 2020, 6, eabb6570. [Google Scholar] [CrossRef]
- Fan, H.R.; Xu, Y.; Yang, K.F.; Zhang, J.E.; Li, X.C.; Zhang, L.L.; She, H.D.; Liu, S.L.; Xu, X.W.; Huang, S.; et al. Intrusive style three-dimensional morphology of carbonatite and REE potential resources in the Bayan obo giant deposit, Inner Mongolia. Acta Petrol. Sin. 2022, 38, 2901–2919, (In Chinese with English abstract). [Google Scholar]
- Ke, C.H.; Sun, S.; Zhao, Y.G.; Li, Y.K.; Xu, Z.Y.; Hao, M.Z.; Li, R.P.; Zhang, L. Ore controlling structure and deep prospecting of the Bayan Obo large-sized REE-Nb-Fe ore deposit, Inner Mongolia. Geol. Bull. China 2021, 40, 95–109, (In Chinese with English abstract). [Google Scholar]
- Li, Y.K.; Ke, C.H.; Wang, D.H.; Zhao, Y.G.; She, H.Q.; Li, R.P.; Hao, M.Z.; Wang, A.J.; Deng, Z.; Gao, Y.P.; et al. Important progress in prospecting and exploration of iron ore in deep border area of Bayan Obo deposit, Inner Mongolia, China. Miner. Depos. 2022, 40, 202–206, (In Chinese with English abstract). [Google Scholar]
- Ke, C.H.; Li, Y.K.; Li, L.X.; Zhao, Y.G.; Dong, X.J.; Hao, M.Z.; Li, H.M.; Li, R.P. Petrogenesis of ore-bearing “dolostone” in Bayan Obo deposit, Inner Mongolia, China: Insights from geological features. J. Cent. South Univ. (Sci. Technol.) 2021, 52, 3047–3063, (In Chinese with English abstract). [Google Scholar]
- Chen, B.; Sun, Q.; Song, W.L.; Jin, H.L.; Li, Q.; Hou, S.C.; Wang, Q.W.; Yang, Z.F.; Jia, X.Q.; Wei, W.; et al. Thorium enrichment process and spatial distribution in the Bayan Obo deposit. Acta Geol. Sin. 2023, 97, 3535–3549, (In Chinese with English abstract). [Google Scholar]
- Broom-Fendley, S.; Elliott, H.A.; Beard, C.D.; Wall, F.; Armitage, P.E.; Brady, A.E.; Deady, E.; Dawes, W. Enrichment of heavy REE and Th in carbonatite-derived fenite breccia. Geol. Mag. 2021, 158, 2025–2041. [Google Scholar] [CrossRef]
- Song, W.L.; Xu, C.; Smith, M.P.; Kynicky, J.; Yang, J.K.; Liu, T.T. Origin of heavy rare earth element enrichment in carbonatites. Geochim. Et Cosmochim. Acta 2023, 362, 115–126. [Google Scholar] [CrossRef]
- Liu, S.; Fan, H.R.; Yang, K.F.; Hu, F.F.; Wang, K.Y.; Chen, F.K.; Yang, Y.H.; Yang, Z.F.; Wang, Q.W. Mesoproterozoic and Paleozoic hydrothermal metasomatism in the giant Bayan Obo REE-Nb-Fe deposit: Constrains from trace elements and Sr-Nd isotope of fluorite and preliminary thermodynamic calculation. Precambrian Res. 2018, 311, 228–246. [Google Scholar] [CrossRef]
- She, H.D.; Fan, H.R.; Yang, K.F.; Li, X.C.; Yang, Z.F.; Wang, Q.W.; Zhang, L.F.; Wang, Z.J. Complex, multi-stage mineralization processes in the giant Bayan Obo REE-Nb-Fe deposit, China. Ore Geol. Rev. 2021, 139, 2–21. [Google Scholar] [CrossRef]
- Li, X.C.; Yang, K.F.; Spandler, C.; Fan, H.R.; Zhou, M.F.; Hao, J.L.; Yang, Y.H. The effect of fluidaided modification on the Sm-Nd and Th-Pb geochronology of monazite and bastnäsite: Implication for resolving complex isotopic age data in REE ore systems. Geochim. Et Cosmochim. Acta 2021, 300, 1–24. [Google Scholar] [CrossRef]
- Deng, M.; Wei, C.W.; Xu, C.; Shi, A.G.; Li, Z.Q.; Fan, C.X.; Kuang, G.X. Rare earth mineralization in Bayan Obo super-large deposit: A review. Earth Sci. Front. 2022, 29, 14–28, (In Chinese with English abstract). [Google Scholar]
- Song, W.L.; Xu, C.; Smith, M.P.; Chakhmouradian, A.R.; Brenna, M.; Kynick, J.; Chen, W.; Yang, Y.H.; Deng, M.; Tang, H.Y. Genesis of the world’s largest rare earth element deposit, Bayan Obo, China: Protracted mineralization evolution over similar to 1 by. Geology 2018, 46, 323–326. [Google Scholar] [CrossRef]
- Xiao, R.G.; Fei, H.C.; Wang, A.J.; Yang, F.; Yan, K. Formation and geochemistry of the ore-bearing alkaline volcanic rocks in the Bayan Obo REE-Nb-Fe deposit, Inner Mongolia, China. Acta Geol. Sin. 2012, 86, 735–752, (In Chinese with English abstract). [Google Scholar]
- Migdisov, A.A.; Williams-Jones, A.E. An experimental study of the solubility and speciation of neodymium (III) fluoride in F bearing aqueous solutions. Geochim. Et Cosmochim. Acta 2007, 71, 3056–3069. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A.E.; Wagner, T. An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride-and chloride-bearing aqueous solutions at temperatures up to 300 °C. Geochim. Et Cosmochim. Acta 2009, 73, 7087–7109. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A.E. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Miner. Depos. 2014, 49, 987–997. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Migdisov, A.A.; Samson, I.M. Hydrothermal mobilisation of the rare earth elements -a tale of Ceria and Yttria. Elements 2012, 8, 355–360. [Google Scholar] [CrossRef]
- Li, Y.K.; Ke, C.H.; Wang, D.H.; Chen, Z.Y.; Li, G.W.; Wang, A.J.; Li, R.P.; Hu, L.; Yu, H.; Zhao, Y.G. Nioboixiolite-([]), IMA 2021-002a, in: CNMNC Newsletter 71. Eur. J. Miner. 2023, 87, 332–335. [Google Scholar] [CrossRef]
- Ge, X.K.; Fan, G.; Li, T.; Wang, T.; Deng, L.M. Niobobaotite. Treasure 2023, 5, 10–13, (In Chinese with English abstract). [Google Scholar]
- Xue, Y.; Sun, N.Y.; Li, G.W.; Hao, J.H.; Liu, P.; Song, W.L.; Li, X.H.; Shen, J.F.; Yang, L.; Wang, Z.J.; et al. Bayanoboite-(Y), IMA 2023-084, in: CNMNC Newsletter 77. Eur. J. Miner. 2024, 88. [Google Scholar] [CrossRef]
- Zhang, P.S.; Tao, K.J.; Yang, Z.M.; Yang, X.M.; Song, R.K. Genesis of Rare Earths, Niobium and Tantalum Minerals in Bayan Obo Ore Deposit of China. J. Chin. Rare Earth Soc. 2001, 19, 97–102, (In Chinese with English abstract). [Google Scholar]
- Gong, W.L. Chemistry and evolution fergusonite-group minerals, Bayan Obo, Inner Mongolia. Acta Mineral. Sin. 1991, 11, 200–207, (In Chinese with English abstract). [Google Scholar]
- Wang, W.W.; Hou, S.C.; Guo, C.L.; Li, E.D. Study on process mineralogy of aegirine type rare earth-iron ore in Bayan Obo. China Min. Mag. 2020, 29, 425–428, (In Chinese with English abstract). [Google Scholar]
- Wang, W.W.; Li, E.D.; Jin, H.L.; Li, Q.; Guo, C.L. Study on the technological mineralogy of fluorite type REE-Fe ore from Bayan Obo mine. Nonferrous Met. (Miner. Process. Sect.) 2020, 6, 14–18, (In Chinese with English abstract). [Google Scholar]
- Qin, Y.F.; Li, N.; Wang, Q.W.; Ma, Y. Technological Mineralogy of Rare Earth in Bayan Obo Iron Tailings. J. Chin. Soc. Rare Earths 2021, 39, 796–804, (In Chinese with English abstract). [Google Scholar]
- Zhu, Z.H.; Yang, Z.F.; Wang, Q.W.; Wang, Z.J.; Li, N. Study on technological mineralogy of rare earth concentrate from Bayan Obo. Nonferrous Met. (Miner. Process. Sect.) 2019, 6, 1–4, (In Chinese with English abstract). [Google Scholar]
- Huang, X.B.; Yang, Z.F.; Wang, Z.J.; Wang, S.H.; Zhu, Z.H. Process mineralogy of rare earth tailings in the deep part of Bayan Obo. Nonferrous Met. (Miner. Process. Sect.) 2019, 4, 6–15, (In Chinese with English abstract). [Google Scholar]
- Chen, Q. The Genesis of Niobium Mineralization in Bayan Obo REE-Nb-Fe Deposit; Northwest University: Xi’an, China, 2022; (In Chinese with English abstract). [Google Scholar]
- Gao, Z.Y.; Liu, Y.; Jing, Y.T.; Hou, Z.Q.; Liu, H.C.; Zheng, X.; Shen, N.P. Mineralogical characteristics and Sr–Nd–Pb isotopic compositions of banded REE ores in the Bayan Obo deposit, Inner Mongolia, China: Implications for their formation and origin. Ore Geol. Rev. 2021, 139, 104492. [Google Scholar] [CrossRef]
- Li, H.T. Study on Alkali-Rich Slate and Niobium Mineralization of the Bayan Obo REE-Nb-Fe Deposit; Institute of Geology and Geophysics, Chinese Academy of Sciences: Beijing, China, 2022; (In Chinese with English abstract). [Google Scholar]
- Liu, S.; Ding, L.; Fan, H.R.; Yang, K.F.; Tang, Y.W.; She, H.D.; Hao, M.Z. Hydrothermal genesis of Nb mineralization in the giant Bayan Obo REE-Nb-Fe deposit (China): Implicated by petrography and geochemistry of Nb-bearing minerals. Precambrian Res. 2020, 348, 105864. [Google Scholar] [CrossRef]
- She, H.D.; Fan, H.R.; Yang, K.F.; Liu, X.; Li, X.H.; Dai, Z.H. Carbonatitic footprints in the Bayan Obo REEs deposit as seen from pyrite geochemistry. Precambrian Res. 2022, 379, 106801. [Google Scholar] [CrossRef]
- Tian, P.F. Application of Micro Beam Analysis and Fission Track Thermochronology for the Tectonics and Mineralization: A Case Study of the East Kunlun Orogenic Belt and the Bayan Obo Fe-REE-Nb Superlarge Deposit; China University of Geosciences: Beijing, China, 2021; (In Chinese with English abstract). [Google Scholar]
- Wang, P.Y. A Study of Iron Isotopes of Jinchuan Cu-Ni Sulfide Deposit and Rare Metals of Bayan Obo Fe-REE-Nb Deposit; University of Chinese Academy of Sciences: Beijing, China, 2021; (In Chinese with English abstract). [Google Scholar]
- Yang, L.; Yan, G.Y.; Yang, B.; Meng, W.X. Baiyun Obo Minerals; Geology Press: Beijing, China, 2024; (In Chinese with English abstract). [Google Scholar]
- Zhu, Z.; Wang, D.; Li, Y.; Ke, C.; Yu, H.; Chen, Z.; She, H.; Wang, R.; Hu, H.; Zhao, Y.; et al. Detail mineralogical study and geochronological framework of Bayan Obo (China) Nb mineralization recorded by in situ U-Pb dating of columbite. Ore Geol. Rev. 2024, 165, 105874. [Google Scholar] [CrossRef]
Mineral | Dolomite-Type Nb-REE-(Fe) Ore | Fluorite-Type Nb-REE-(Fe) Ore | Aegirine-Type Nb-REE-(Fe) Ores | Riebeckite-Type Nb-REE-(Fe) Ore | Mica-Type Nb-REE-(Fe) Ore | Massive Nb-REE-Fe Ore |
---|---|---|---|---|---|---|
Magnetite | 41.39 | 44.2 | 30.3 | 27.6 | 12.43 | 78.61 |
Hematite | 0.05 | 0.01 | - | - | 0.03 | 0.05 |
Ilmenite | - | 1.96 | - | 0.02 | 9.45 | 0.12 |
Pyrite | - | 0.52 | - | 0.01 | 1.05 | 0.01 |
Pyrrhotite | - | 0.03 | - | 8.69 | 0.01 | - |
Bastnäsite | 4.85 | 1.63 | 5.14 | 0.22 | 0.11 | 0.63 |
Ca-fluorocarbonate | 0.06 | 2.7 | 0.19 | 0.01 | - | 0.92 |
Ba-fluorocarbonate | 0.16 | 0.04 | 0.01 | - | - | 0.06 |
Monazite | 0.7 | 0.06 | 0.27 | 12.01 | 0.52 | 0.43 |
Allanite | - | 0.01 | - | - | - | - |
Aeschynite | 0.05 | 0.09 | 0.2 | 0.07 | 0.01 | 0.07 |
Pyrochlore | - | - | 0.12 | 0.1 | - | 0.19 |
Columbite | 0.03 | - | - | 0.26 | - | - |
Ilmenorutile | - | - | - | 0.03 | - | - |
Fergusonite | 0.02 | 0.01 | 0.01 | 0.01 | - | - |
Aegirine | 0.01 | 0.52 | 45.64 | 0.06 | - | 1.9 |
Fluorite | - | 36.97 | 13.48 | 0.91 | - | 5.13 |
Riebeckite | - | - | 0.15 | 45.32 | 20.66 | 2.29 |
Dolomite | 48 | 0.42 | 0.33 | 0.02 | 14.11 | 0.58 |
Calcite | - | 2.82 | 0.13 | - | - | 4.28 |
Mica | 0.1 | 0.43 | 0.05 | 1.82 | 38.59 | 0.03 |
Apatite | - | 1.32 | 2.03 | 0.02 | - | 3.04 |
Barite | 3.47 | 5.03 | 0.68 | 0.01 | 1.4 | - |
Other | 1.11 | 1.23 | 1.27 | 2.81 | 1.63 | 1.66 |
Component | Si | Ca | P | F | S | Th | Sc | Nb | Fe |
Content | 6.63 | 10.63 | 1.3 | 8.89 | 1.36 | 0.014 | 0.0059 | 0.09 | 25.51 |
Component | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy |
Content | 1.68 | 3.12 | 0.34 | 0.87 | 0.094 | 0.021 | 0.034 | 0.0033 | 0.0111 |
Component | Ho | Er | Tm | Yb | Lu | Y | M+HREE | M+HREE/REE | |
Content | 0.0015 | 0.0027 | 0.0002 | 0.0017 | 0.0002 | 0.026 | 0.196 | 3.15 |
Mineral | Magnetite | Hematite | Pyrite | Pyrrhotite | Siderite | Ilmenite | Bastnaesite | Monazite |
Content | 32.67 | 2.82 | 1.86 | 0.16 | 0.51 | 0.40 | 6.64 | 4.18 |
Mineral | Ca-fluorocarbonate | Ba-fluorocarbonate | Allanite | Aeschynite | Fergusonite | Ilmenorutile | Columbite | Pyrochlore |
Content | 0.53 | 0.45 | 0.12 | 0.06 | 0.02 | 0.10 | 0.08 | 0.03 |
Mineral | Baotite | Riebeckite | Aegirine | Mica | Dolomite | Calcite | Fluorite | Apatite |
Content | 0.01 | 5.34 | 5.71 | 3.01 | 6.38 | 1.66 | 16.75 | 3.63 |
Mineral | Barite | Quartz | Feldspar | Ophiolite | Bafertisite | Rhodochrosite | Galena | Sphalerite |
Content | 3.51 | 1.77 | 1.06 | 0.09 | 0.12 | 0.26 | 0.04 | 0.06 |
Mineral | Liberated | Association | |||||||
---|---|---|---|---|---|---|---|---|---|
Bastnaesite | Monazite | Ca-Fluorocarbonate | Ba-Fluorocarbonate | Allanite | Aeschynite | Fergusonite | Others | ||
Bastnaesite | 37.67 | 6.00 | 2.48 | 1.00 | 0.09 | 0.05 | 0.03 | 52.69 | |
Monazite | 36.60 | 7.65 | 0.56 | 0.33 | 0.23 | 0.06 | 0.03 | 54.54 | |
Ca-fluorocarbonate | 20.46 | 23.40 | 3.42 | 2.50 | 0.06 | 0.20 | 0.02 | 49.94 | |
Ba-fluorocarbonate | 33.04 | 10.21 | 2.46 | 2.85 | 0.05 | 0.10 | 0.02 | 51.28 | |
Allanite | 31.11 | 6.35 | 3.07 | 0.46 | 0.26 | 0.06 | 0.00 | 58.69 | |
Aeschynite | 34.48 | 7.51 | 3.78 | 1.19 | 0.62 | 0.04 | 1.15 | 51.23 | |
Fergusonite | 0.07 | 19.54 | 11.68 | 0.84 | 0.47 | 0.04 | 1.30 | 66.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Sun, Q.; Chen, B.; Wei, W.; Liu, Y.; Li, Q. Evaluated Utilization of Middle–Heavy REE Resources in Bayan Obo Deposit: Insight from Geochemical Composition and Process Mineralogy. Minerals 2025, 15, 212. https://doi.org/10.3390/min15030212
Jin H, Sun Q, Chen B, Wei W, Liu Y, Li Q. Evaluated Utilization of Middle–Heavy REE Resources in Bayan Obo Deposit: Insight from Geochemical Composition and Process Mineralogy. Minerals. 2025; 15(3):212. https://doi.org/10.3390/min15030212
Chicago/Turabian StyleJin, Hailong, Qing Sun, Biao Chen, Wei Wei, Yanjiang Liu, and Qiang Li. 2025. "Evaluated Utilization of Middle–Heavy REE Resources in Bayan Obo Deposit: Insight from Geochemical Composition and Process Mineralogy" Minerals 15, no. 3: 212. https://doi.org/10.3390/min15030212
APA StyleJin, H., Sun, Q., Chen, B., Wei, W., Liu, Y., & Li, Q. (2025). Evaluated Utilization of Middle–Heavy REE Resources in Bayan Obo Deposit: Insight from Geochemical Composition and Process Mineralogy. Minerals, 15(3), 212. https://doi.org/10.3390/min15030212