Petrogenesis of the Large-Scale Serpentinites in the Kumishi Ophiolitic Mélange, Southwestern Tianshan, China
Abstract
:1. Introduction
2. Geological Setting
3. Analytical Methods
3.1. Major and Trace Elements
3.2. Zircon U-Pb Dating
4. Results
4.1. Bulk-Rock Geochemistry
4.2. Zircon U-Pb Geochronology
5. Discussion
6. Conclusions
- (1)
- The Kumishi serpentinites outcrop in the Yushugou, Tonghuashan, and Liuhuangshan areas. Composed of granulites and serpentinized peridotite, the lens-shape Yushugou ophiolitic mélange is proposed to be related to the process of intra-oceanic subduction initiation in the STO [32], while the Tonghuashan and Liuhuangshan serpentinites experienced relatively strong alteration, mylonitization, and/or cataclasis.
- (2)
- The Kumishi serpentinites have LOI values of 8.3–16.5 wt%, with relatively consistent SiO2/(sum oxides) ratios of 0.81. Based on our multi-trace element diagrams, protoliths of the Kumishi serpentinites have experienced variable degrees of refertilization. Their REE patterns may imply distinct natures between the Yushugou, Tonghuashan, and Liuhuangshan serpentinites.
- (3)
- Zircon U-Pb dating results show that the Tonghuashan serpentinites have a mean age of 355.8 ± 7.3 Ma (MSWD = 1.0, N = 26). Detrital zircons from the host sediment have a maximum depositional age of 375 ± 10 Ma (MSWD = 0.4, N = 3), with a peak at ca.419 Ma. Regional subduction-related volcanic rocks yield ages of ca.437 Ma.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LOI | Loss on ignition |
NTF | North Tarim Fault |
REE | Rare earth element |
SCTF | South Central Tianshan Fault |
STAC | South Tianshan Accretionary Complex |
STO | South Tianshan Ocean |
References
- Albers, E.; Kahl, W.-A.; Beyer, L.; Bach, W. Variant Across-Forearc Compositions of Slab-Fluids Recorded by Serpentinites: Implications on the Mobilization of FMEs from an Active Subduction Zone (Mariana Forearc). Lithos 2020, 364–365, 105525. [Google Scholar] [CrossRef]
- Lamadrid, H.M.; Rimstidt, J.D.; Schwarzenbach, E.M.; Klein, F.; Ulrich, S.; Dolocan, A.; Bodnar, R.J. Effect of Water Activity on Rates of Serpentinization of Olivine. Nat. Commun. 2017, 8, 16107. [Google Scholar] [CrossRef]
- Alt, J.C.; Garrido, C.J.; Shanks, W.C.; Turchyn, A.; Padrón-Navarta, J.A.; López Sánchez-Vizcaíno, V.; Gómez Pugnaire, M.T.; Marchesi, C. Recycling of Water, Carbon, and Sulfur during Subduction of Serpentinites: A Stable Isotope Study of Cerro Del Almirez, Spain. Earth Planet. Sci. Lett. 2012, 327–328, 50–60. [Google Scholar] [CrossRef]
- Menzel, M.D.; Garrido, C.J.; López Sánchez-Vizcaíno, V. Fluid-Mediated Carbon Release from Serpentinite-Hosted Carbonates during Dehydration of Antigorite-Serpentinite in Subduction Zones. Earth Planet. Sci. Lett. 2020, 531, 115964. [Google Scholar] [CrossRef]
- Scambelluri, M.; Bebout, G.E.; Belmonte, D.; Gilio, M.; Campomenosi, N.; Collins, N.; Crispini, L. Carbonation of Subduction-Zone Serpentinite (High-Pressure Ophicarbonate; Ligurian Western Alps) and Implications for the Deep Carbon Cycling. Earth Planet. Sci. Lett. 2016, 441, 155–166. [Google Scholar] [CrossRef]
- Schwarzenbach, E.M.; Früh-Green, G.L.; Bernasconi, S.M.; Alt, J.C.; Plas, A. Serpentinization and Carbon Sequestration: A Study of Two Ancient Peridotite-Hosted Hydrothermal Systems. Chem. Geol. 2013, 351, 115–133. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, L.; Yuan, H.; Sun, W.; Deng, J.; Zartman, R.E.; Guo, J.; Bao, Z.; Zong, C. Boron, Arsenic and Antimony Recycling in Subduction Zones: New Insights from Interactions between Forearc Serpentinites and CO2-Rich Fluids at the Slab-Mantle Interface. Geochim. Cosmochim. Acta 2021, 298, 21–42. [Google Scholar] [CrossRef]
- Schwarzenbach, E.M.; Vogel, M.; Früh-Green, G.L.; Boschi, C. Serpentinization, Carbonation, and Metasomatism of Ultramafic Sequences in the Northern Apennine Ophiolite (NW Italy). J. Geophys. Res. Solid Earth 2021, 126, e2020JB020619. [Google Scholar] [CrossRef]
- Beaudoin, G.M.; Barnes, J.D.; John, T.; Hoffmann, J.E.; Chatterjee, R.; Stockli, D.F. Global Halogen Flux of Subducting Oceanic Crust. Earth Planet. Sci. Lett. 2022, 594, 117750. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Barnes, J.D. Sediments, Serpentinites, and Subduction: Halogen Recycling from the Surface to the Deep Earth. Elements 2022, 18, 21–26. [Google Scholar] [CrossRef]
- Kendrick, M.A.; Marks, M.A.W.; Godard, M. Halogens in Serpentinised-Troctolites from the Atlantis Massif: Implications for Alteration and Global Volatile Cycling. Contrib. Mineral. Petrol. 2022, 177, 110. [Google Scholar] [CrossRef]
- Jensen, O.; Waldman, R.; Yogodzinski, G.; Bizimis, M.; Ryan, J.; Leeman, W.; Scher, H.; Hoernle, K. Boron Isotopes Identify Deep-Slab Serpentinite in the Source of Aleutian Arc Magma. Geology 2025, 53, 114–118. [Google Scholar] [CrossRef]
- Pettke, T.; Bretscher, A. Fluid-Mediated Element Cycling in Subducted Oceanic Lithosphere: The Orogenic Serpentinite Perspective. Earth-Sci. Rev. 2022, 225, 103896. [Google Scholar] [CrossRef]
- Ressico, F.; Cannaò, E.; Olivieri, O.S.; Pastore, Z.; Peverelli, V.; Malaspina, N.; Vitale Brovarone, A. Behaviour of Fluid-Mobile Elements across a High-Pressure Serpentinization Front (Monte Maggiore Unit, Alpine Corsica). Chem. Geol. 2024, 662, 122228. [Google Scholar] [CrossRef]
- Cannaò, E.; Agostini, S.; Scambelluri, M.; Tonarini, S.; Godard, M. B, Sr and Pb Isotope Geochemistry of High-Pressure Alpine Metaperidotites Monitors Fluid-Mediated Element Recycling during Serpentinite Dehydration in Subduction Mélange (Cima Di Gagnone, Swiss Central Alps). Geochim. Cosmochim. Acta 2015, 163, 80–100. [Google Scholar] [CrossRef]
- Deschamps, F.; Godard, M.; Guillot, S.; Hattori, K. Geochemistry of Subduction Zone Serpentinites: A Review. Lithos 2013, 178, 96–127. [Google Scholar] [CrossRef]
- Guillot, S.; Schwartz, S.; Reynard, B.; Agard, P.; Prigent, C. Tectonic Significance of Serpentinites. Tectonophysics 2015, 646, 1–19. [Google Scholar] [CrossRef]
- Scambelluri, M.; Cannaò, E.; Gilio, M. The Water and Fluid-Mobile Element Cycles during Serpentinite Subduction. A Review. Eur. J. Mineral. 2019, 31, 405–428. [Google Scholar] [CrossRef]
- Agard, P.; Plunder, A.; Angiboust, S.; Bonnet, G.; Ruh, J. The Subduction Plate Interface: Rock Record and Mechanical Coupling (from Long to Short Timescales). Lithos 2018, 320–321, 537–566. [Google Scholar] [CrossRef]
- Cannaò, E.; Scambelluri, M.; Agostini, S.; Tonarini, S.; Godard, M. Linking Serpentinite Geochemistry with Tectonic Evolution at the Subduction Plate-Interface: The Voltri Massif Case Study (Ligurian Western Alps, Italy). Geochim. Cosmochim. Acta 2016, 190, 115–133. [Google Scholar] [CrossRef]
- Dai, F.-Q.; Chen, Y.-X.; Chen, R.-X.; Zhao, Z.-F.; Li, J.; Wang, Y. Subducted Serpentinite Contributes to the Formation of Arc Lavas with Heavy Mo Isotopic Compositions. Geochim. Cosmochim. Acta 2024, 369, 62–70. [Google Scholar] [CrossRef]
- Ferrand, T.P.; Hilairet, N.; Incel, S.; Deldicque, D.; Labrousse, L.; Gasc, J.; Renner, J.; Wang, Y.; Green II, H.W.; Schubnel, A. Dehydration-Driven Stress Transfer Triggers Intermediate-Depth Earthquakes. Nat. Commun. 2017, 8, 15247. [Google Scholar] [CrossRef] [PubMed]
- Hilairet, N.; Reynard, B.; Wang, Y.; Daniel, I.; Merkel, S.; Nishiyama, N.; Petitgirard, S. High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of Subduction. Science 2007, 318, 1910–1913. [Google Scholar] [CrossRef]
- Prigent, C.; Agard, P.; Guillot, S.; Godard, M.; Dubacq, B. Mantle Wedge (De)Formation During Subduction Infancy: Evidence from the Base of the Semail Ophiolitic Mantle. J. Petrol. 2018, 59, 2061–2092. [Google Scholar] [CrossRef]
- Jalil, R.; Alard, O.; Schaefer, B.; Ali, L.; Sajid, M.; Khedr, M.Z.; Shah, M.T.; Anjum, M.N. Geochemistry of Waziristan Ophiolite Complex, Pakistan: Implications for Petrogenesis and Tectonic Setting. Minerals 2023, 13, 311. [Google Scholar] [CrossRef]
- Khedr, M.Z.; Takazawa, E.; Hauzenberger, C.; Tamura, A.; Arai, S.; Stern, R.J.; Morishita, T.; El-Awady, A. Petrogenesis of Arc-Related Serpentinized Peridotites (Egypt): Insights into Neoproterozoic Mantle Evolution beneath the Arabian-Nubian Shield. J. Asian Earth Sci. 2022, 226, 105078. [Google Scholar] [CrossRef]
- Zhou, D.; Su, L.; Jian, P.; Wang, R.; Liu, X.; Lu, G.; Wang, J. Zircon U-Pb SHRIMP ages of high-pressure granulite in Yushugou ophiolitic terrane in southern Tianshan and their tectonic implications. Chin. Sci. Bull. 2004, 49, 1411–1415, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, L.; Jin, Z. High-Temperature Metamorphism of the Yushugou Ophiolitic Slice: Late Devonian Subduction of Seamount and Mid-Oceanic Ridge in the South Tianshan Orogen. J. Asian Earth Sci. 2016, 132, 75–93. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Xia, B.; Lü, Z. Metamorphic P-T Path and Zircon U-Pb Dating of HP Mafic Granulites in the Yushugou Granulite-Peridotite Complex, Chinese South Tianshan, NW China. J. Asian Earth Sci. 2018, 153, 346–364. [Google Scholar] [CrossRef]
- Yang, J.; Xu, X.; Li, T.; Chen, S.; Ren, Y.; Li, J.; Liu, Z. U-Pb ages of zircons from ophiolite and related rocks in the Kumishi region at the southern margin of Middle Tianshan, Xinjiang: Evidence of Early Paleozoic oceanic basin. Acta Petrol. Sin. 2011, 27, 77–95, (In Chinese with English Abstract). [Google Scholar]
- Jian, P.; Kröner, A.; Jahn, B.; Liu, D.; Zhang, W.; Shi, Y.; Ma, H. Zircon Ages of Metamorphic and Magmatic Rocks within Peridotite-Bearing Mélanges: Crucial Time Constraints on Early Carboniferous Extensional Tectonics in the Chinese Tianshan. Lithos 2013, 172–173, 243–266. [Google Scholar] [CrossRef]
- Gao, L.; Xiao, W.; Tan, Z.; Cheng, H.; Mao, Q.; Wang, H.; Jia, X.; Sang, M.; Guo, Y.; Tan, Y. Probing Intra-oceanic Subduction Infancy in Ancient Orogenic Belts: Example from Chinese South Tianshan. J. Metamorph. Geol. 2024, 42, 1099–1130. [Google Scholar] [CrossRef]
- Wang, X.-S.; Klemd, R.; Gao, J.; Jiang, T.; Li, J.-L.; Xue, S.-C. Final Assembly of the Southwestern Central Asian Orogenic Belt as Constrained by the Evolution of the South Tianshan Orogen: Links with Gondwana and Pangea. J. Geophys. Res. Solid Earth 2018, 123, 7361–7388. [Google Scholar] [CrossRef]
- Xiao, W.; Windley, B.F.; Allen, M.B.; Han, C. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Res. 2013, 23, 1316–1341. [Google Scholar] [CrossRef]
- Hegner, E.; Alexeiev, D.V.; Willbold, M.; Kröner, A.; Topuz, G.; Mikolaichuk, A.V. Early Silurian Tholeiitic-Boninitic Mailisu Ophiolite, South Tianshan, Kyrgyzstan: A Geochemical Record of Subduction Initiation. Int. Geol. Rev. 2020, 62, 320–337. [Google Scholar] [CrossRef]
- Sang, M.; Xiao, W.; Orozbaev, R.; Bakirov, A.; Sakiev, K.; Pak, N.; Ivleva, E.; Zhou, K.; Ao, S.; Qiao, Q.; et al. Structural Styles and Zircon Ages of the South Tianshan Accretionary Complex, Atbashi Ridge, Kyrgyzstan: Insights for the Anatomy of Ocean Plate Stratigraphy and Accretionary Processes. J. Asian Earth Sci. 2018, 153, 9–41. [Google Scholar] [CrossRef]
- Tan, Z.; Agard, P.; Monié, P.; Gao, J.; John, T.; Bayet, L.; Jiang, T.; Wang, X.-S.; Hong, T.; Wan, B.; et al. Architecture and P-T-Deformation-Time Evolution of the Chinese SW-Tianshan HP/UHP Complex: Implications for Subduction Dynamics. Earth-Sci. Rev. 2019, 197, 102894. [Google Scholar] [CrossRef]
- Loury, C.; Rolland, Y.; Guillot, S.; Lanari, P.; Ganino, C.; Melis, R.; Jourdon, A.; Petit, C.; Beyssac, O.; Gallet, S.; et al. Tectonometamorphic Evolution of the Atbashi High-P Units (Kyrgyz CAOB, Tien Shan): Implications for the Closure of the Turkestan Ocean and Continental Subduction–Exhumation of the South Kazakh Continental Margin. J. Metamorph. Geol. 2018, 36, 959–985. [Google Scholar] [CrossRef]
- Wang, X.; Klemd, R.; Li, J.; Gao, J.; Jiang, T.; Zong, K.; Xue, S. Paleozoic Subduction-Accretion in the Southern Central Asian Orogenic Belt: Insights From the Wuwamen Accretionary Complex of the Chinese South Tianshan. Tectonics 2022, 41, e2021TC006965. [Google Scholar] [CrossRef]
- Yan, J.; Cui, Y.; Liu, X. Discovery of Mafic Granulites in the Muzhaerte Area, SW Tianshan, China. Minerals 2023, 13, 1214. [Google Scholar] [CrossRef]
- Zhu, M.; Pastor–Galán, D.; Smit, M.A.; Miao, L.; Dong, M.; Zhang, F.; Sanchir, D.; Ganbat, A.; Liu, C.; Luo, Y.; et al. Ophiolites in the Central Asian Orogenic Belt Record Cambrian Subduction Initiation Processes. Commun. Earth Environ. 2024, 5, 753. [Google Scholar] [CrossRef]
- Tan, Z.; Xiao, W.; Mao, Q.; Wang, H.; Sang, M.; Li, R.; Gao, L.; Guo, Y.; Gan, J.; Liu, Y.; et al. Final Closure of the Paleo Asian Ocean Basin in the Early Triassic. Commun. Earth Environ. 2022, 3, 259. [Google Scholar] [CrossRef]
- Kang, W.; Weng, K.; Cao, K.; Zhao, X.; Gao, Y. Petrogenesis of Carboniferous-Permian Granitoids in the Kumishi Area of Tianshan, China: Insights into the Geodynamic Evolution Triggered by Subduction and Closure of the South Tianshan Ocean. Minerals 2024, 14, 811. [Google Scholar] [CrossRef]
- Zong, K.; Klemd, R.; Yuan, Y.; He, Z.; Guo, J.; Shi, X.; Liu, Y.; Hu, Z.; Zhang, Z. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Res. 2017, 290, 32–48. [Google Scholar] [CrossRef]
- Shen, T.; Hermann, J.; Zhang, L.; Lü, Z.; Padrón-Navarta, J.A.; Xia, B.; Bader, T. UHP Metamorphism Documented in Ti-Chondrodite- and Ti-Clinohumite-Bearing Serpentinized Ultramafic Rocks from Chinese Southwestern Tianshan. J. Petrol. 2015, 56, 1425–1458. [Google Scholar] [CrossRef]
- Pearce, J.A.; Lippard, S.J.; Roberts, S. Characteristics and Tectonic Significance of Supra-Subduction Zone Ophiolites. Geol. Soc. Lond. Spec. Publ. 1984, 16, 77–94. [Google Scholar] [CrossRef]
- Paulick, H.; Bach, W.; Godard, M.; De Hoog, J.C.M.; Suhr, G.; Harvey, J. Geochemistry of Abyssal Peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): Implications for Fluid/Rock Interaction in Slow Spreading Environments. Chem. Geol. 2006, 234, 179–210. [Google Scholar] [CrossRef]
- Peters, D.; Bretscher, A.; John, T.; Scambelluri, M.; Pettke, T. Fluid-Mobile Elements in Serpentinites: Constraints on Serpentinisation Environments and Element Cycling in Subduction Zones. Chem. Geol. 2017, 466, 654–666. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geol. Soc. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Crossley, R.J.; Evans, K.A.; Reddy, S.M.; Lester, G.W. Redistribution of Iron and Titanium in High-Pressure Ultramafic Rocks. Geochem. Geophys. Geosyst. 2017, 18, 3869–3890. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, Z.; Zhang, R.; Wang, P.; Gao, J.; Raschke, M.B. Zircon Alteration as a Proxy for Rare Earth Element Mineralization Processes in Carbonatite-Nordmarkite Complexes of the Mianning-Dechang Rare Earth Element Belt, China. Econ. Geol. 2019, 114, 719–744. [Google Scholar] [CrossRef]
- Van Lankvelt, A.; Schneider, D.A.; Biczok, J.; McFarlane, C.R.M.; Hattori, K. Decoding Zircon Geochronology of Igneous and Alteration Events Based on Chemical and Microstructural Features: A Study from the Western Superior Province, Canada. J. Petrol. 2016, 57, 1309–1334. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Xiao, W.; Tan, Z. Petrogenesis of the Large-Scale Serpentinites in the Kumishi Ophiolitic Mélange, Southwestern Tianshan, China. Minerals 2025, 15, 229. https://doi.org/10.3390/min15030229
Gao L, Xiao W, Tan Z. Petrogenesis of the Large-Scale Serpentinites in the Kumishi Ophiolitic Mélange, Southwestern Tianshan, China. Minerals. 2025; 15(3):229. https://doi.org/10.3390/min15030229
Chicago/Turabian StyleGao, Limin, Wenjiao Xiao, and Zhou Tan. 2025. "Petrogenesis of the Large-Scale Serpentinites in the Kumishi Ophiolitic Mélange, Southwestern Tianshan, China" Minerals 15, no. 3: 229. https://doi.org/10.3390/min15030229
APA StyleGao, L., Xiao, W., & Tan, Z. (2025). Petrogenesis of the Large-Scale Serpentinites in the Kumishi Ophiolitic Mélange, Southwestern Tianshan, China. Minerals, 15(3), 229. https://doi.org/10.3390/min15030229