The Segmentation of Tunnel Faces in Underground Mines Based on the Optimized YOLOv5
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.1.1. Data Collection
2.1.2. Image Preprocessing Methods
2.2. Segmentation Model
2.2.1. YOLOv5-Seg and U-Net
2.2.2. SimAM
2.3. Model Evaluation and Interpretation
2.3.1. Model Evaluation
2.3.2. Network Interpretation Ability and Visualization
3. Results and Discussion
3.1. Model Performance
3.1.1. Selection of Preprocessing Method
3.1.2. Comparison of Segmentation Models
3.1.3. Network Structure Optimization
3.2. Model Interpretation and Application
3.2.1. Model Interpretation Visualization
3.2.2. Tunnel Face Quality Evaluation
3.2.3. Future Work and Limitations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Liu, Y.; Niu, J. Role of mineral-based industrialization in promoting economic growth: Implications for achieving environmental sustainability and social equity. Resour. Policy 2024, 88, 104396. [Google Scholar] [CrossRef]
- Worlanyo, A.S.; Jiangfeng, L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 2021, 279, 111623. [Google Scholar] [CrossRef] [PubMed]
- Saadatmand Hashemi, A.; Katsabanis, P. Tunnel face preconditioning using destress blasting in deep underground excavations. Tunn. Undergr. Space Technol. 2021, 117, 104126. [Google Scholar] [CrossRef]
- Odeyar, P.; Apel, D.B.; Hall, R.; Zon, B.; Skrzypkowski, K. A Review of Reliability and Fault Analysis Methods for Heavy Equipment and Their Components Used in Mining. Energies 2022, 15, 6263. [Google Scholar] [CrossRef]
- Skrzypkowski, K.; Zagórski, K.; Zagórska, A.; Apel, D.B.; Wang, J.; Xu, H.; Guo, L. Choice of the Arch Yielding Support for the Preparatory Roadway Located near the Fault. Energies 2022, 15, 3774. [Google Scholar] [CrossRef]
- Zhou, N.; Dong, C.; Zhang, J.; Meng, G.; Cheng, Q. Influences of mine water on the properties of construction and demolition waste-based cemented paste backfill. Constr. Build. Mater. 2021, 313, 125492. [Google Scholar] [CrossRef]
- Seguel, F.; Palacios-Játiva, P.; Azurdia-Meza, C.A.; Krommenacker, N.; Charpentier, P.; Soto, I. Underground Mine Positioning: A Review. IEEE Sens. J. 2022, 22, 4755–4771. [Google Scholar] [CrossRef]
- Cheng, Y.; Tian, Z.; Ning, D.; Feng, K.; Li, Z.; Chauhan, S.; Vashishtha, G. Computer vision-based non-contact structural vibration measurement: Methods, challenges and opportunities. Measurement 2025, 243, 116426. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Sun, P.; Yan, H.; Zhao, X.; Zhang, L. IFCNN: A general image fusion framework based on convolutional neural network. Inf. Fusion 2020, 54, 99–118. [Google Scholar] [CrossRef]
- Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric. 2020, 7, 1–19. [Google Scholar] [CrossRef]
- Pedota, M. Big data and dynamic capabilities in the digital revolution: The hidden role of source variety. Res. Policy 2023, 52, 104812. [Google Scholar] [CrossRef]
- Zhao, L.; Hao, S.; Song, Z. Context-aware semantic segmentation network for tunnel face feature identification. Autom. Constr. 2024, 165, 105560. [Google Scholar] [CrossRef]
- Qiao, H.; Yang, X.; Liang, Z.; Liu, Y.; Ge, Z.; Zhou, J. A Method for Extracting Joints on Mountain Tunnel Faces Based on Mask R-CNN Image Segmentation Algorithm. Appl. Sci. 2024, 14, 6403. [Google Scholar] [CrossRef]
- Luo, Y.; Huang, Y.; Wang, Q.; Yuan, K.; Zhao, Z.; Li, Y. An improved YOLOv5 model: Application to leaky eggs detection. LWT 2023, 187, 115313. [Google Scholar] [CrossRef]
- Shahriar, M.T.; Li, H. A Study of Image Pre-processing for Faster Object Recognition. arXiv 2020, arXiv:2011.06928. [Google Scholar]
- Khan, M.F.; Khan, E.; Abbasi, Z.A. Image contrast enhancement using normalized histogram equalization. Optik 2015, 126, 4868–4875. [Google Scholar] [CrossRef]
- Kuran, U.; Kuran, E.C. Parameter selection for CLAHE using multi-objective cuckoo search algorithm for image contrast enhancement. Intell. Syst. Appl. 2021, 12, 200051. [Google Scholar] [CrossRef]
- Jana, S.; Parekh, R.; Sarkar, B. Chapter 3—A semi-supervised approach for automatic detection and segmentation of optic disc from retinal fundus image. In Handbook of Computational Intelligence in Biomedical Engineering and Healthcare; Nayak, J., Naik, B., Pelusi, D., Das, A.K., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 65–91. [Google Scholar]
- Mlsna, P.A.; Rodríguez, J.J. 4.13—Gradient and Laplacian Edge Detection. In Handbook of Image and Video Processing, 2nd ed.; Bovik, A.L., Ed.; Academic Press: Burlington, NJ, USA, 2005; pp. 535–553. [Google Scholar]
- Deng, G.; Cahill, L.W. An adaptive Gaussian filter for noise reduction and edge detection. In Proceedings of the 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference, San Francisco, CA, USA, 31 October–6 November 1993; Volume 1613, pp. 1615–1619. [Google Scholar]
- Khanam, R.; Hussain, M. What is YOLOv5: A deep look into the internal features of the popular object detector. arXiv 2024, arXiv:2407.20892. [Google Scholar]
- Qu, Z.; Gao, L.-y.; Wang, S.-y.; Yin, H.-n.; Yi, T.-m. An improved YOLOv5 method for large objects detection with multi-scale feature cross-layer fusion network. Image Vis. Comput. 2022, 125, 104518. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, S.; Feng, K.; Qian, K.; Wang, Y.; Qin, S. Strawberry Maturity Recognition Algorithm Combining Dark Channel Enhancement and YOLOv5. Sensors 2022, 22, 419. [Google Scholar] [CrossRef]
- Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar] [CrossRef]
- Jiang, Z.; Tahmasebi, P.; Mao, Z. Deep residual U-net convolution neural networks with autoregressive strategy for fluid flow predictions in large-scale geosystems. Adv. Water Resour. 2021, 150, 103878. [Google Scholar] [CrossRef]
- Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, R.-Y.; Li, L.; Xie, X. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021. [Google Scholar]
- Han, G.; Huang, S.; Zhao, F.; Tang, J. SIAM: A parameter-free, Spatial Intersection Attention Module. Pattern Recognit. 2024, 153, 110509. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, E.; Zhu, Y. Image segmentation evaluation: A survey of methods. Artif. Intell. Rev. 2020, 53, 5637–5674. [Google Scholar] [CrossRef]
- Kovalkiy, E.; Kongar-Syuryun, C.; Sirenko, Y.; Mironov, N. Modeling of rheological deformation processes for room and pillar mining at the Verkhnekamsk potash salt deposit. Sustain. Dev. Mt. Territ. 2024, 16, 1017–1030. [Google Scholar] [CrossRef]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; pp. 833–851. [Google Scholar]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Liu, B.; Dolz, J.; Galdran, A.; Kobbi, R.; Ben Ayed, I. Do we really need dice? The hidden region-size biases of segmentation losses. Med. Image Anal. 2024, 91, 103015. [Google Scholar] [CrossRef]
- Brar, K.K.; Goyal, B.; Dogra, A.; Mustafa, M.A.; Majumdar, R.; Alkhayyat, A.; Kukreja, V. Image segmentation review: Theoretical background and recent advances. Inf. Fusion 2025, 114, 102608. [Google Scholar] [CrossRef]
- Cho, Y.-J. Weighted Intersection over Union (wIoU) for evaluating image segmentation. Pattern Recognit. Lett. 2024, 185, 101–107. [Google Scholar] [CrossRef]
- Fernandes Junior, F.E.; Nonato, L.; Ranieri, C.; Ueyama, J. Memory-Based Pruning of Deep Neural Networks for IoT Devices Applied to Flood Detection. Sensors 2021, 21, 7506. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, K.; Liu, J.; Bi, C. Location IoU: A New Evaluation and Loss for Bounding Box Regression in Object Detection. In Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN), Yokohama, Japan, 30 June–5 July 2024; pp. 1–8. [Google Scholar]
- Padilla, R.; Netto, S.L.; Silva, E.A.B.d. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), Niteroi, Brazil, 1–3 July 2020; pp. 237–242. [Google Scholar]
- Bai, Y.; Guo, Y.; Zhang, Q.; Cao, B.; Zhang, B. Multi-network fusion algorithm with transfer learning for green cucumber segmentation and recognition under complex natural environment. Comput. Electron. Agric. 2022, 194, 106789. [Google Scholar] [CrossRef]
- Kumar, A.; Srivastava, S. Object Detection System Based on Convolution Neural Networks Using Single Shot Multi-Box Detector. Procedia Comput. Sci. 2020, 171, 2610–2617. [Google Scholar] [CrossRef]
- Peng-o, T.; Chaikan, P. High performance and energy efficient sobel edge detection. Microprocess. Microsyst. 2021, 87, 104368. [Google Scholar] [CrossRef]
- Wang, M.; Yang, W.; Wang, L.; Chen, D.; Wei, F.; KeZiErBieKe, H.; Liao, Y. FE-YOLOv5: Feature enhancement network based on YOLOv5 for small object detection. J. Vis. Commun. Image Represent. 2023, 90, 103752. [Google Scholar] [CrossRef]
- Li, N.; Ye, T.; Zhou, Z.; Gao, C.; Zhang, P. Enhanced YOLOv8 with BiFPN-SimAM for Precise Defect Detection in Miniature Capacitors. Appl. Sci. 2024, 14, 429. [Google Scholar] [CrossRef]
Preprocessing Method | Train Set | Validation Set | ||||||
---|---|---|---|---|---|---|---|---|
Dice | PA | Mask IOU | Box IOU | Dice | PA | Mask IOU | Box IOU | |
Origin | 0.9529 | 0.9848 | 0.9106 | 0.9009 | 0.8388 | 0.9286 | 0.7972 | 0.8032 |
CLAHE | 0.9641 | 0.9887 | 0.9308 | 0.9127 | 0.8746 | 0.9500 | 0.7971 | 0.8077 |
Histogram Equalization | 0.9264 | 0.9762 | 0.8652 | 0.8691 | 0.8445 | 0.9304 | 0.7374 | 0.7681 |
Sobel | 0.9676 | 0.9899 | 0.9374 | 0.9363 | 0.8922 | 0.9670 | 0.8068 | 0.8123 |
Laplacian Edge Enhancement | 0.8976 | 0.9672 | 0.8165 | 0.8211 | 0.8627 | 0.9592 | 0.7603 | 0.7801 |
Gaussian Blurring | 0.9082 | 0.9699 | 0.8336 | 0.7999 | 0.8485 | 0.9103 | 0.7975 | 0.8063 |
Model | Train Set | Validation Set | ||||||
---|---|---|---|---|---|---|---|---|
Dice | PA | Mask IOU | Box IOU | Dice | PA | Mask IOU | Box IOU | |
Yolo5s | 0.9070 | 0.9696 | 0.8321 | 0.8211 | 0.8046 | 0.8717 | 0.8267 | 0.7996 |
Yolo5m | 0.9152 | 0.9727 | 0.8455 | 0.8138 | 0.8049 | 0.8719 | 0.7971 | 0.7954 |
Yolo5l | 0.9676 | 0.9899 | 0.9374 | 0.9363 | 0.8922 | 0.9670 | 0.8068 | 0.8123 |
Yolo5x | 0.8772 | 0.9611 | 0.7846 | 0.7773 | 0.7960 | 0.8678 | 0.8125 | 0.8051 |
U-Net | 0.7513 | 0.8611 | 0.7127 | 0.7267 | 0.7288 | 0.7812 | 0.6518 | 0.6674 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Li, K.; Pan, J.; Zheng, J.; Zhang, Q.; Qi, C. The Segmentation of Tunnel Faces in Underground Mines Based on the Optimized YOLOv5. Minerals 2025, 15, 255. https://doi.org/10.3390/min15030255
Ma C, Li K, Pan J, Zheng J, Zhang Q, Qi C. The Segmentation of Tunnel Faces in Underground Mines Based on the Optimized YOLOv5. Minerals. 2025; 15(3):255. https://doi.org/10.3390/min15030255
Chicago/Turabian StyleMa, Chundi, Kechao Li, Jilong Pan, Jiashuai Zheng, Qinli Zhang, and Chongchong Qi. 2025. "The Segmentation of Tunnel Faces in Underground Mines Based on the Optimized YOLOv5" Minerals 15, no. 3: 255. https://doi.org/10.3390/min15030255
APA StyleMa, C., Li, K., Pan, J., Zheng, J., Zhang, Q., & Qi, C. (2025). The Segmentation of Tunnel Faces in Underground Mines Based on the Optimized YOLOv5. Minerals, 15(3), 255. https://doi.org/10.3390/min15030255