Four Decades of Efforts to Reduce or Eliminate Mercury Pollution in Artisanal Gold Mining
Abstract
:1. More Mercury Monitoring, Less Solutions Applied
2. Where Does the Mercury Come from?
3. No Data on Mercury, No Pollution
4. Engineering Solutions Are Overlooked
5. A Herculean Effort
6. A New Generation of Researchers and Engineers
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cousteau, J.Y.; Richards, M. Jacques Cousteau’s Amazon Journey, 1st ed.; H.N. Abrams Inc.: New York, NY, USA, 1984. [Google Scholar]
- Cleary, D. Anatomy of the Amazon Gold Rush, 1st ed.; St Antony’s Series; Macmillan: Oxford, UK, 1990; ISBN 978-1-349-11247-0. [Google Scholar]
- Veiga, M.M.; Hinton, J.J. Abandoned Artisanal Gold Mines in the Amazon: A Legacy of Mercury Pollution. Nat. Res. Forum 2002, 26, 15–26. [Google Scholar] [CrossRef]
- Guimaraes, J.R.D. Mercury in the Amazon: Problem or Opportunity? A Commentary on 30 Years of Research on the Subject. Elem. Sci. Anthr. 2020, 8, 032. [Google Scholar] [CrossRef]
- Lacerda, L.D.; Pfeiffer, W.C.; Marins, R.V.; Rodrigues, S.; Souza, C.M.M.; Bastos, W.R. Mercury Dispersal in Water, Sediments and Aquatic Biota of a Gold Mining Tailing Deposit Drainage in Pocone, Brazil. Water Air Soil Pollut. 1991, 55, 283–294. [Google Scholar] [CrossRef]
- Veiga, M.M.; Baker, R.F. Protocols for Environmental and Health Assessment of Mercury Released by Artisanal and Small-Scale Gold Miners; United Nations Industrial Development Organization: Vienna, Austria, 2004; ISBN 92-1-106429-5. [Google Scholar]
- Veiga, M.M. Mercury in Artisanal Gold Mining in Latin America: Facts, Fantasies and Solutions. In Proceedings of the UNIDO Expert Group Meeting, Vienna, Austria, 1–3 July 1997; Available online: http://artisanalmining.org/Repository/01/The_CASM_Files/CASM_Projects/Topic_Mercury/veiga_02.pdf (accessed on 25 March 2025).
- Milea, Ş.A.; Lazăr, N.N.; Simionov, I.A.; Petrea, Ş.M.; Călmuc, M.; Călmuc, V.; Georgescu, P.L.; Iticescu, C. Effects of Cooking Methods and Co-Ingested Foods on Mercury Bioaccessibility in Pontic Shad (Alosa immaculata). Curr. Res. Food Sci. 2023, 7, 100599. [Google Scholar] [CrossRef]
- Ouédraogo, C.; Amyot, M. Effects of Various Cooking Methods and Food Components on Bioaccessibility of Mercury from Fish. Environ. Res. 2011, 111, 1064–1069. [Google Scholar] [CrossRef]
- Jovel, E.; Abramowski, Z.; Pakalnis, E.; Marshall, B.; Veiga, M.M. Mercury (II) Binding Activity of Vegetable and Fruit Juices: Identifying Potential Detoxifying Juices for the Citizens of Portovelo-Zaruma, Ecuador. Asp. Min. Min. Sci. 2018, 2, 1–15. [Google Scholar]
- Mieiro, C.L.; Coelho, J.P.; Dolbeth, M.; Pacheco, M.; Duarte, A.C.; Pardal, M.A.; Pereira, M.E. Fish and Mercury: Influence of Fish Fillet Culinary Practices on Human Risk. Food Control 2016, 60, 575–581. [Google Scholar] [CrossRef]
- Girard, C.; Charette, T.; Leclerc, M.; Shapiro, B.J.; Amyot, M. Cooking and Co-Ingested Polyphenols Reduce In Vitro Methylmercury Bioaccessibility from Fish and May Alter Exposure in Humans. Sci. Total Environ. 2018, 616–617, 863–874. [Google Scholar] [CrossRef]
- Oliveira, T.A.S.; Dias, R.K.S.; Souza, L.R.R.; da Veiga, M.A.M.S. The Effect of Selenium Co-Ingestion on Mercury Bioaccessibility in Contaminated Fish of the Amazon Region. Environ. Adv. 2023, 14, 100450. [Google Scholar] [CrossRef]
- Passos, C.J.; Mergler, D.; Gaspar, E.; Morais, S.; Lucotte, M.; Larribe, F.; Davidson, R.; de Grosbois, S. Eating Tropical Fruit Reduces Mercury Exposure from Fish Consumption in the Brazilian Amazon. Environ. Res. 2003, 93, 123–130. [Google Scholar] [CrossRef]
- Dórea, J.G. Research into Mercury Exposure and Health Education in Subsistence Fish-Eating Communities of the Amazon Basin: Potential Effects on Public Health Policy. Int. J. Environ. Res. Public Health 2010, 7, 3467–3477. [Google Scholar] [CrossRef] [PubMed]
- Silva-Forsberg, M.C.; Forsberg, B.R.; Zeidemann, V.K. Mercury Contamination in Humans Linked to River Chemistry in the Amazon Basin. Ambio 1999, 28, 519–521. [Google Scholar]
- Roulet, M. Methylmercury in Water, Seston, and Epiphyton of an Amazonian River and Its Floodplain, Tapajós River, Brazil. Sci. Total Environ. 2000, 261, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Tromans, D.; Meech, J.A.; Veiga, M.M. Natural Organics and Environmental Stability of Mercury: Electrochemical Considerations. J. Electrochem. Soc. 1996, 143, L123. [Google Scholar] [CrossRef]
- Barbosa, A.; Souza, J.; Dórea, J.; Jardim, W.; Fadini, P. Mercury Biomagnification in a Tropical Black Water, Rio Negro, Brazil. Arch. Environ. Contam. Toxicol. 2003, 45, 235–246. [Google Scholar] [CrossRef]
- Jardim, W.F.; Bisinoti, M.C.; Fadini, P.S.; da Silva, G.S. Mercury Redox Chemistry in the Negro River Basin, Amazon: The Role of Organic Matter and Solar Light. Aquat. Geochem. 2010, 16, 267–278. [Google Scholar] [CrossRef]
- Kasper, D.; Forsberg, B.R.; do Amaral Kehrig, H.; Amaral, J.H.F.; Bastos, W.R.; Malm, O. Mercury in Black-Waters of the Amazon. In Igapó (Black-Water Flooded Forests) of the Amazon Basin; Myster, R.W., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 39–56. ISBN 978-3-319-90122-0. [Google Scholar]
- Meech, J.A.; Veiga, M.M.; Tromans, D. Reactivity of Mercury from Gold Mining Activities in Darkwater Ecosystems. Ambio 1998, 27, 92–98. [Google Scholar]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]
- Araujo, B.F.; Hintelmann, H.; Dimock, B.; Sobrinho, R.L.; Bernardes, M.C.; Almeida, M.G.; Krusche, A.V.; Rangel, T.P.; Thompson, F.T.; Rezende, C.E. Mercury Speciation and Hg Stable Isotope Ratios in Sediments from Amazon Floodplain Lakes—Brazil. Limnol. Oceanogr. 2017, 63, 1134–1145. [Google Scholar] [CrossRef]
- Marshall, B.G.; Veiga, M.M.; Kaplan, R.J.; Miserendino, R.A.; Schudel, G.; Berquist, B.; Guimarães, J.R.; Gonzalez-Mueller, C. Evidence of Transboundary Mercury and Other Pollutants in the Puyango-Tumbes River Basin, Ecuador-Peru. Environ. Sci. Process. Impacts 2018, 20, 638–641. [Google Scholar]
- Lepak, R.F.; Janssen, S.E.; Yin, R.; Krabbenhoft, D.P.; Ogorek, J.M.; DeWild, J.F.; Tate, M.T.; Holsen, T.M.; Hurley, J.P. Factors Affecting Mercury Stable Isotopic Distribution in Piscivorous Fish of the Laurentian Great Lakes. Environ. Sci. Technol. 2018, 52, 2768–2776. [Google Scholar] [CrossRef] [PubMed]
- Janssen, S.E.; Riva-Murray, K.; DeWild, J.F.; Ogorek, J.M.; Tate, M.T.; Van Metre, P.C.; Krabbenhoft, D.P.; Coles, J.F. Chemical and Physical Controls on Mercury Source Signatures in Stream Fish from the Northeastern United States. Environ. Sci. Technol. 2019, 53, 10110–10119. [Google Scholar] [CrossRef] [PubMed]
- Hinton, J.J.; Veiga, M.M. Earthworms as Bioindicators of Mercury Pollution from Mining and Other Industrial Activities. Geochem. Explor. Environ. Anal. 2002, 2, 269–274. [Google Scholar] [CrossRef]
- Hinton, J.J.; Veiga, M.M. The Influence of Organic Acids on Mercury Bioavailability: Insight from an Earthworm Assessment Protocol. Environ. Bioindic. 2008, 3, 47–67. [Google Scholar] [CrossRef]
- Brown, S.T.; Bandoo, L.L.; Agard, S.S.; Thom, S.T.; Gilhuys, T.E.; Mudireddy, G.K.; Eechampati, A.V.; Hasan, K.M.; Hasan, K.M.; Loving, D.C.; et al. A Collaborative Training Program to Assess Mercury Pollution from Gold Shops in Guyana’s Artisanal and Small-Scale Gold Mining Sector. Atmosphere 2020, 11, 719. [Google Scholar] [CrossRef]
- Veiga, M.M.; Fadina, O. A Review of the Failed Attempts to Curb Mercury Use at Artisanal Gold Mines and a Proposed Solution. Extr. Ind. Soc. 2020, 7, 1135–1146. [Google Scholar] [CrossRef]
- Veiga, M.M.; Meech, J.A.; Hypolito, R. Educational Measures to Address Mercury Pollution from Gold-Mining Activities in the Amazon. Ambio 1995, 24, 216–220. [Google Scholar]
- Kiefer, A. Mercury Capture System. ASM Grand Challenge, Conservation X Labs. Available online: https://www.youtube.com/watch?v=yv7zfSGN2VM&ab_channel=ConservationXLabs (accessed on 31 March 2025).
- Veiga, M.M.; Angeloci-Santos, G.; Meech, J.A. Review of Barriers to Reduce Mercury Use in Artisanal Gold Mining. Extr. Ind. Soc. 2014, 1, 351–361. [Google Scholar] [CrossRef]
- Chen, A.; Danfakha, F.; Hausermann, H.; Gerson, J.R. Education and Equipment Distribution Lead to Increased Mercury Knowledge and Retort Use in Artisanal and Small-Scale Gold Mining Communities in Senegal. Clean. Prod. Lett. 2023, 5, 100050. [Google Scholar] [CrossRef]
- Esdaile, L.J.; Chalker, J.M. The Mercury Problem in Artisanal and Small-Scale Gold Mining. Chem. Eur. J. 2018, 24, 6905–6916. [Google Scholar] [CrossRef]
- IGF—Intergovernmental Forum Global Trends in ASGM Tailings Management and Reprocessing Governance. 16 May 2024. Available online: https://www.igfmining.org/event/global-trends-in-asgm-tailings-management-and-reprocessing-governance (accessed on 31 March 2025).
- Cheng, Y.; Nakajima, K.; Nansai, K.; Seccatore, J.; Veiga, M.M.; Takaoka, M. Examining the Inconsistency of Mercury Flow in Post-Minamata Convention Global Trade Concerning Artisanal and Small-Scale Gold Mining Activity. Resour. Conserv. Recycl. 2022, 185, 106461. [Google Scholar] [CrossRef]
- Veiga, M.; Marshall, B. Why Does Canada Export Mercury to Cuba? Extr. Ind. Soc. 2016, 3, 359–360. [Google Scholar] [CrossRef]
- Cordy, P.; Veiga, M.M.; Salih, I.; Al-Saadi, S.; Console, S.; Garcia, O.; Mesa, L.A.; Velásquez-López, P.C.; Roeser, M. Mercury Contamination from Artisanal Gold Mining in Antioquia, Colombia: The World’s Highest per Capita Mercury Pollution. Sci. Total Environ. 2011, 410–411, 154–160. [Google Scholar] [CrossRef]
- García, O.; Veiga, M.M.; Cordy, P.; Suescún, O.E.; Molina, J.M.; Roeser, M. Artisanal Gold Mining in Antioquia, Colombia: A Successful Case of Mercury Reduction. J. Clean. Prod. 2015, 90, 244–252. [Google Scholar] [CrossRef]
- Anene, N.C.; Dangulbi, B.M.; Veiga, M.M. Assessment of Gold and Mercury Losses in an Artisanal Gold Mining Site in Nigeria and Its Implication on the Local Economy and the Environment. Minerals 2024, 14, 1131. [Google Scholar] [CrossRef]
- Keane, S.; Bernaudat, L.; Davis, K.J.; Stylo, M.; Mutemeri, N.; Singo, P.; Twala, P.; Mutemeri, L.; Nakafeero, A.; Etui, I.D. Mercury and Artisanal and Small-Scale Gold Mining: Review of Global Use Estimates and Considerations for Promoting Mercury-Free Alternatives. Ambio 2023, 52, 833–852. [Google Scholar] [CrossRef]
- McDaniels, J.; Chouinard, R.; Veiga, M.M. Appraising the Global Mercury Project: An Adaptive Management Approach to Combating Mercury Pollution in Small-Scale Gold Mining. Int. J. Environ. Pollut. 2010, 41, 242–258. [Google Scholar] [CrossRef]
- Stocklin-Weinberg, R.; Veiga, M.M.; Marshall, B.G. Training Artisanal Miners: A Proposed Framework with Performance Evaluation Indicators. Sci. Total Environ. 2019, 660, 1533–1541. [Google Scholar] [CrossRef]
- Martinez, G.; Restrepo-Baena, O.J.; Veiga, M.M. The Myth of Gravity Concentration to Eliminate Mercury Use in Artisanal Gold Mining. Extr. Ind. Soc. 2021, 8, 477–485. [Google Scholar] [CrossRef]
- Veiga, M.M.; Gunson, A.J. Gravity Concentration in Artisanal Gold Mining. Minerals 2020, 10, 1026. [Google Scholar] [CrossRef]
- Torkaman, P.; Veiga, M.M. Comparing Cyanidation with Amalgamation of a Colombian Artisanal Gold Mining Sample: Suggestion of a Simplified Zinc Precipitation Process. Extr. Ind. Soc. 2023, 13, 101208. [Google Scholar] [CrossRef]
- Jønsson, J.B.; Appel, P.W.U.; Chibunda, R.T. A Matter of Approach: The Retort’s Potential to Reduce Mercury Consumption Within Small-Scale Gold Mining Settlements in Tanzania. J. Clean. Prod. 2009, 17, 77–86. [Google Scholar] [CrossRef]
- Yoshimura, A.; Suemasu, K.; Veiga, M.M. Estimation of Mercury Losses and Gold Production by Artisanal and Small-Scale Gold Mining (ASGM). J. Sustain. Metall. 2021, 7, 1045–1059. [Google Scholar] [CrossRef]
- Dooyema, C.A.; Neri, A.; Lo, Y.-C.; Durant, J.; Dargan, P.I.; Swarthout, T.; Biya, O.; Gidado, S.O.; Haladu, S.; Sani-Gwarzo, N.; et al. Outbreak of Fatal Childhood Lead Poisoning Related to Artisanal Gold Mining in Northwestern Nigeria, 2010. Environ. Health Perspect. 2012, 120, 601–607. [Google Scholar] [CrossRef]
- Landrigan, P.; Bose-O’Reilly, S.; Elbel, J.; Nordberg, G.; Lucchini, R.; Bartrem, C.; Grandjean, P.; Mergler, D.; Moyo, D.; Nemery, B.; et al. Reducing Disease and Death from Artisanal and Small-Scale Mining (ASM)—The Urgent Need for Responsible Mining in the Context of Growing Global Demand for Minerals and Metals for Climate Change Mitigation. Environ. Health 2022, 21, 78. [Google Scholar] [CrossRef]
- Morgan, V.L.; McLamore, E.S.; Correll, M.; Kiker, G.A. Emerging Mercury Mitigation Solutions for Artisanal Small-Scale Gold Mining Communities Evaluated Through a Multicriteria Decision Analysis Approach. Environ. Syst. Decis. 2021, 41, 413–424. [Google Scholar] [CrossRef]
- Appel, P.W.U.; Na-Oy, L. The Borax Method of Gold Extraction for Small-Scale Miners. J. Health Pollut. 2012, 2, 5–10. [Google Scholar] [CrossRef]
- Veiga, M.M.; Tarra A, J.A.; Restrepo-Baena, O.J.; De Tomi, G. Coexistence of Artisanal Gold Mining with Companies in Latin America. Extr. Ind. Soc. 2022, 12, 101177. [Google Scholar] [CrossRef]
- Tarra, J.A.; Restrepo, O.J.; Veiga, M.M. Coexistence between Conventional Alluvial Mining and Artisanal Mining to Deal with Problems Associated with Informality in the Lower Nechí River Basin-Colombia. Resour. Policy 2022, 78, 102821. [Google Scholar] [CrossRef]
- Hilson, G.; Zolnikov, T.R.; Ramirez-Ortiz, D.; Kumah, C. Formalizing Artisanal Gold Mining Under the Minamata Convention: Previewing the Challenge in Sub-Saharan Africa. Environ. Sci Policy 2018, 85, 123–131. [Google Scholar]
- Bansah, K.J. From Diurnal to Nocturnal: Surviving in a Chaotic Artisanal and Small-Scale Mining Sector. Resour. Policy 2019, 64, 101475. [Google Scholar] [CrossRef]
- Hilson, G. ‘Formalization Bubbles’: A Blueprint for Sustainable Artisanal and Small-Scale Mining (ASM) in Sub-Saharan Africa. Extr. Ind. Soc. 2020, 7, 1624–1638. [Google Scholar] [CrossRef]
- Marshall, B.G.; Veiga, M.M. Formalization of Artisanal Miners: Stop the Train, We Need to Get Off! Extr. Ind. Soc. 2017, 4, 300–303. [Google Scholar] [CrossRef]
- Hilson, G.; Bartels, E.; Hu, Y. Brick by Brick, Block by Block: Building a Sustainable Formalization Strategy for Small-Scale Gold Mining in Ghana. Environ. Sci. Policy 2022, 135, 207–225. [Google Scholar] [CrossRef]
- Atienza, M.; Scholvin, S.; Irarrazaval, F.; Arias-Loyola, M. Formalization Beyond Legalization: ENAMI and the Promotion of Small-Scale Mining in Chile. J. Rural Stud. 2023, 98, 123–133. [Google Scholar] [CrossRef]
- Kinyondo, A.; Huggins, C. Centres of Excellence’ for Artisanal and Small-Scale Gold Mining in Tanzania: Assumptions around Artisanal Entrepreneurship and Formalization. Extr. Ind. Soc. 2020, 7, 758–766. [Google Scholar] [CrossRef]
- Bernaudat, L.; Keane, S. PlanetGOLD as a Vehicle for the Implementation of the National Action Plans and Reporting Progress on the Minamata Convention. In Proceedings of the ICMGP 2024, Cape Town, South Africa, 21–26 July 2024; Available online: https://www.mercurycapetown.com/wp-content/uploads/2024/10/4-Session-16-Bernaudat.pdf (accessed on 31 March 2025).
- PlanetGold Annual Progress Report (2022–2023), 73p. Available online: https://www.thegef.org/sites/default/files/documents/2024-05/planetGOLD_22-23_Annual_Progress_Report.pdf (accessed on 31 March 2025).
- Mahlatsi, S.; Guest, R.N. The iGoli Mercury-Free Gold Extraction Process. Urban Health Dev. Bull. 2003, 6, 62–63. [Google Scholar]
- Veiga, M.M.; Angeloci, G.; Hitch, M.; Velasquez-López, P.C. Processing Centers in Artisanal Gold Mining. J. Clean. Prod. 2014, 64, 535–544. [Google Scholar] [CrossRef]
- Drace, K.; Kiefer, A.M.; Veiga, M.M. Cyanidation of Mercury-Contaminated Tailings: Potential Health Effects and Environmental Justice. Curr. Environ. Health Rep. 2016, 3, 443–449. [Google Scholar] [CrossRef]
- Seney, C.S.; Bridges, C.C.; Aljic, S.; Moore, M.E.; Orr, S.E.; Barnes, M.C.; Joshee, L.; Uchakina, O.N.; Bellott, B.J.; McKallip, R.J.; et al. Reaction of Cyanide with Hg0-Contaminated Gold Mining Tailings Produces Soluble Mercuric Cyanide Complexes. Chem. Res. Toxicol. 2020, 33, 2834–2844. [Google Scholar] [CrossRef]
- Silva, H.A.M.; Kasper, D.; Marshall, B.G.; Veiga, M.M.; Guimarães, J.R.D. Acute Ecotoxicological Effects of Hg(CN)2 in Danio rerio (Zebrafish). Ecotoxicology 2023, 32, 429–437. [Google Scholar] [PubMed]
- Silva, E.M.; Vriesde, E.; Druiventak, A.; Veiga, M.; De Tomi, G. Production of Cement-Tailings Bricks with Artisanal Gold Mining Waste. Clean. Waste Syst. 2025, 11, 100269. [Google Scholar] [CrossRef]
Micro-Miners | Processing Centers | |
---|---|---|
Number of AGMs in the world | 90% | 10% |
Gold production | 20% | 80% |
Loss of Hg | 10% | 90% |
Attention to the intervention projects | 100% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veiga, M.M.; Anene, N.C.; Silva, E.M. Four Decades of Efforts to Reduce or Eliminate Mercury Pollution in Artisanal Gold Mining. Minerals 2025, 15, 376. https://doi.org/10.3390/min15040376
Veiga MM, Anene NC, Silva EM. Four Decades of Efforts to Reduce or Eliminate Mercury Pollution in Artisanal Gold Mining. Minerals. 2025; 15(4):376. https://doi.org/10.3390/min15040376
Chicago/Turabian StyleVeiga, Marcello M., Nnamdi C. Anene, and Emiliano M. Silva. 2025. "Four Decades of Efforts to Reduce or Eliminate Mercury Pollution in Artisanal Gold Mining" Minerals 15, no. 4: 376. https://doi.org/10.3390/min15040376
APA StyleVeiga, M. M., Anene, N. C., & Silva, E. M. (2025). Four Decades of Efforts to Reduce or Eliminate Mercury Pollution in Artisanal Gold Mining. Minerals, 15(4), 376. https://doi.org/10.3390/min15040376