Production of Barium Sulfide from Low-Grade Barite Ores
Abstract
:1. Introduction
2. Materials and Methods
2.1. Barite Ore Characterization
2.2. Gravitational Concentration Studies
2.3. Mechanical Activation
2.4. Carbothermic Reduction
3. Results and Discussion
3.1. Ore Characterization
3.2. Concentration on the Shaking Table
3.3. Barium Sulfide Production
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penaloza, I.; Tita, A.; McNew, E.; Chu, P. Barite resources, production and recovery using flotation: A review. Miner. Eng. 2023, 203, 108327. [Google Scholar] [CrossRef]
- Guzmán, D.; Fernández, J.; Ordonez, S.; Aguilar, C.; Rojas, P.A.; Serafini, D. Effect of mechanical activation on the barite carbothermic reduction. Inter. J. Miner. Process. 2012, 102–103, 124–129. [Google Scholar] [CrossRef]
- Otoijamun, I.; Kigozi, M.; Adetunji, A.R.; Onwualu, P.A. Characterization and Suitability of Nigerian Barites for Different Industrial Applications. Minerals 2021, 11, 360. [Google Scholar] [CrossRef]
- Servicio Nacional de Geología y Minería (SERNAGEOMIN). Chilean Mining Yearbook 2023; SERNAGEOMIN: Santiago, Chile, 2023. [Google Scholar]
- Navea, M. Study of the Concentration and Effect of Mechanical Activation on the Carbothermic Reduction Process of Barite Ores. Master’s Thesis, University of Atacama, Copiapó, Atacama, Chile, 2018. [Google Scholar]
- Singh, R.; Banerjee, B.; Bhattacharyya, K.; Srivastava, J.P. Upgrading of barite waste to marketable grade concentrate. In Proceedings of the XXIII International Mineral Processing Congress, Istanbul, Turkey, 3–8 September 2006. [Google Scholar]
- Bhatia, M.A.; Kazmia, K.; Mehmooda, R.; Ahdb, A.; Tabassum, A.; Akrama, A. Beneficiation study on barite ore of Duddar Area, District Lasbela, Balochistan Province, Pakistan. Pak. J. Sci. Ind. Res. Ser. A Phys. Sci. 2017, 60, 9–22. [Google Scholar] [CrossRef]
- Mgbemere, H.E.; Obidiegwu, E.O.; Obareki, E. Beneficiation of Azara barite ore using a combination of jigging, froth flotation and leaching. Niger. J. Technol. 2018, 37, 957–962. [Google Scholar] [CrossRef]
- McKetta, J. Encyclopedia of Chemical Processing and Design; Marcel Dekker: New York, NY, USA, 1977. [Google Scholar]
- Jamshidi, S.; Salem, A. Role of extrusion process on kinetic of carbothermal reduction of barite. Thermochim. Acta 2010, 503–504, 108–114. [Google Scholar] [CrossRef]
- Jagtap, S.; Pande, A.; Gokarn, A. Effect of catalysts on the kinetics of reduction of barite by carbon. Ind. Eng. Chem. Res. 1990, 29, 795–799. [Google Scholar] [CrossRef]
- Gokarn, A.; Pradhan, S.; Pathak, G.; Kulkarni, S. Vanadium-catalyzed gasification of carbon and its application in the carbothermic reduction of barite. Fuel 2000, 79, 821–827. [Google Scholar] [CrossRef]
- Salem, A.; Tavakkoli-Osgouei, Y.; Jamshidi, S. Kinetic study of barite carbothermic reduction in presence of sodium carbonate as catalyst. Iran J. Chem. Eng. 2010, 7, 58–67. [Google Scholar]
- Murthy, J.S.N.; Reddy, P.V.V. Solid-state reaction between barium sulfate and carbon. Chem. Eng. Commun. 2012, 199, 966–990. [Google Scholar] [CrossRef]
- Bafghi, M.S.; Yarahmadi, A.; Ahmadi, A.; Mehrjoo, H. Effect of the type of carbon material on the reduction kinetics of barium sulfate. Iran J. Mater. Sci. Eng. 2011, 8, 1–7. [Google Scholar]
- Suñol, J.J.; Clavaguera, N.; Mora, M.T. Thermal Stability Study of Fe-Ni-Based Alloys Determination of T-HR-T and T-T-T diagrams. J. Therm. Anal. Calorim. 1988, 52, 853–862. [Google Scholar] [CrossRef]
- Escalante, P.; Oliva, J.; Anticoi, H.; Sampaio, C.; Mohanty, K. Characterization of mineralogical impurities in a carbonate-rich material using MLA. Miner. Eng. 2025, 230, 109409. [Google Scholar] [CrossRef]
- Jordão, H.; Sousa, A.J.; Carvalho, M.T. Optimization of wet shaking table process using response surface methodology applied to the separation of copper and aluminum from the fine fraction of shredder ELVs. Waste Manag. 2016, 48, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, S.K.; Ramamurthy, Y.; Singh, V. Recovery of chromite values from plant tailing by gravity concentration. J. Miner. Mater. Charact. Eng. 2011, 10, 13–25. [Google Scholar] [CrossRef]
- Gupta, A.; Yan, D.S. Mineral Processing Design and Operation: An Introduction; Elsevier Science: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Flynn, J.H. The effect of heating rate upon the coupling of complex reactions. I. Independent and competitive reactions. Thermochim. Acta 1980, 37, 225–238. [Google Scholar] [CrossRef]
- Friedman, H.L. Kinetic of thermal degradation of char-forming plastics from thermogravometry. Application to a phenolic plastic. J. Polym. Sci. A Polym. Chem. 1964, 6, 183–195. [Google Scholar] [CrossRef]
Characteristic | Unit | Amount |
---|---|---|
Fixed carbon | % | 95 |
Volatile matter | % | 1.8 |
Ash content | % | 1.8 |
Calorific value | kcal/kg | 7600 |
Constituent | Weight% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
O | Ba | Si | S | Al | K | Ca | Fe | Na | Sr | Mg | |
White particle | 39.6 | 35.5 | 11.9 | 6.4 | 2.8 | 1.0 | 1.0 | 0.7 | 0.4 | 0.4 | 0.3 |
Dark particle | 62.4 | 4.2 | 22.5 | 0.9 | 4.0 | 1.5 | 1.1 | 1.8 | 1.6 | - | - |
Water | Stroke | Stroke | Concentrate | Middlings | Tailings | ||||
---|---|---|---|---|---|---|---|---|---|
Test | Flow | Length | Frequency | Grade | Recovery | Grade | Recovery | Grade | Recovery |
L/min | mm | Strokes/min | % | % | % | % | % | % | |
1 | 5 | 8 | 292 | 87.8 | 48.8 | 58.9 | 41.1 | 52.0 | 10.1 |
2 | 5 | 14 | 292 | 90.7 | 60.3 | 48.8 | 26.0 | 54.6 | 13.7 |
3 | 7 | 14 | 292 | 91.8 | 54.8 | 52.2 | 38.1 | 58.4 | 7.1 |
4 | 5 | 14 | 240 | 89.3 | 62.3 | 49.1 | 30.2 | 55.1 | 7.5 |
Water | Stroke | Stroke | Concentrate | Middlings | Tailings | ||||
---|---|---|---|---|---|---|---|---|---|
Test | Flow | Length | Frequency | Grade | Recovery | Grade | Recovery | Grade | Recovery |
L/min | mm | Strokes/min | % | % | % | % | % | % | |
5 | 7 | 14 | 292 | 97.7 | 51.4 | 41.9 | 43.1 | 61.5 | 5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santander, M.; Guzmán, D.; Navea, M.; Valderrama, L.; Pérez-Maqueda, L.; Cárdenas, E. Production of Barium Sulfide from Low-Grade Barite Ores. Minerals 2025, 15, 646. https://doi.org/10.3390/min15060646
Santander M, Guzmán D, Navea M, Valderrama L, Pérez-Maqueda L, Cárdenas E. Production of Barium Sulfide from Low-Grade Barite Ores. Minerals. 2025; 15(6):646. https://doi.org/10.3390/min15060646
Chicago/Turabian StyleSantander, Mario, Danny Guzmán, Marisela Navea, Luis Valderrama, Luis Pérez-Maqueda, and Evelyn Cárdenas. 2025. "Production of Barium Sulfide from Low-Grade Barite Ores" Minerals 15, no. 6: 646. https://doi.org/10.3390/min15060646
APA StyleSantander, M., Guzmán, D., Navea, M., Valderrama, L., Pérez-Maqueda, L., & Cárdenas, E. (2025). Production of Barium Sulfide from Low-Grade Barite Ores. Minerals, 15(6), 646. https://doi.org/10.3390/min15060646