Origin of the World-Class Eagle, Eagle East, and Tamarack Ni-Cu-PGE Deposits
Abstract
1. Introduction
2. Regional Geological Background and Deposit Geology
2.1. Geological Setting
2.2. Eagle and Eagle East Deposits, and Embayment Prospect Geology
2.3. Tamarack Deposit Geology
3. Materials and Methods
4. Results
4.1. Bulk-Rock Geochemistry
4.1.1. Alkaline, Transitional, and Tholeiitic Divisions
4.1.2. Trace Elements
4.1.3. Multi-Element Diagrams
4.1.4. Boron, Beryllium, and Lithium Concentrations
4.1.5. Sulfate
4.2. Mineral Chemistry, Thermobarometry, and Oxygen Fugacity (fO2) Estimates
Oxygen Fugacity (fO2) Estimates
5. Discussion
5.1. Primary Magma
Source Characteristics
5.2. Mantle and Crustal Contributions to Ore Deposit Host Magmas
5.3. Subduction-Related Contributions to Primary Magma
5.3.1. SCLM-Hosted Amphibolite Slab Component
5.3.2. SCLM-Hosted Eclogite Slab Component
5.3.3. SCLM-Hosted Subducted Sediment Component
5.3.4. Key Subduction-Related Tracers (B, Be, Li, and Sulfate)
5.4. Alkaline–Transitional Magma-Mixing
5.5. Crustal Contamination
5.6. Magma-Mixing and Crustal Contamination Effects on Oxygen Fugacity
5.7. Geologic Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naldrett, A.J. Magmatic Sulfide Deposits: Geology, Geochemistry, and Exploration; Springer: Berlin/Heidelberg, Germany, 2010; 727p. [Google Scholar]
- Campbell, I.H.; Naldrett, A.J. The influence of silicate: Sulfide ratios on the geochemistry of magmatic sulfides. Econ. Geol. 1979, 74, 1503–1506. [Google Scholar] [CrossRef]
- Naldrett, A.J. World-class Ni-Cu-PGE deposits: Key factors in their genesis. Miner. Depos. 1999, 34, 227–240. [Google Scholar] [CrossRef]
- Keays, R.R.; Lightfoot, P.C. Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits: Evidence from chalcophile element signatures of Siberian and Deccan Trap basalts. Miner. Depos. 2010, 45, 241–257. [Google Scholar] [CrossRef]
- Barnes, S.J.; Cruden, A.R.; Arndt, N.; Saumur, B.M. The mineral system approach applied to magmatic Ni-Cu-PGE sulphide deposits. Ore Geol. Rev. 2016, 76, 296–316. [Google Scholar] [CrossRef]
- Miller, J.; Nicholson, S. Geology and Mineral Deposits of the 1.1 Ga Midcontinent Rift in the Lake Superior Region—An Overview in Precambrian Research Center Field Guide 2013; University of Minnesota Duluth: Duluth, MN, USA, 2013; 50p. [Google Scholar]
- Naldrett, A.J. A Model for the Ni-Cu-PGE Ores of the Noril’sk Region and Its Application to Other Areas of Flood Basalt. Econ. Geol. 1992, 87, 1945–1962. [Google Scholar] [CrossRef]
- Sims, P.K.; Day, W.C. The Great Lakes Tectonic Zone-Revisited; U.S. Geological Survey: Michigan, WI, USA, 1993; p. 20.
- Gibbs, A.K.; Payne, B.; Setzer, T.; Brown, L.D.; Oliver, J.E.; Kaufman, S. Seismic-reflection study of Precambrian crust of central Minnesota. Geol. Soc. Am. Bull. 1984, 95, 280–294. [Google Scholar] [CrossRef]
- Wyman, D.A.; Hollings, P.; Conceicao, R.V. Geochemistry and radiogenic isotope characteristics of xenoliths in Archean diamondiferous lamprophyres: Implications for the Superior Province cratonic keel. Lithos 2015, 233, 111–130. [Google Scholar] [CrossRef]
- Sims, P.K. Great Lakes Tectonic Zone in Marquette Area, Michigan-Implications for Archean Tectonics in North-Central United States; Sims, P.K., Carter, L.M.H., Eds.; U.S. Geological Survey Bulletin 1904, Contributions to Precambrian Geology of Lake Superior Region; U.S. Geological Survey: Denver, CO, USA, 1991; p. 28.
- Schulz, K.J.; Cannon, W.F. The Penokean orogeny in the Lake Superior region. Precambrian Res. 2007, 157, 4–15. [Google Scholar] [CrossRef]
- Southwick, D.L.; Morey, G.B. Tectonic Imbrication and Foredeep Development in the Penokean Orogen, East-Central Minnesota-An Interpretation Based on Regional Geophysics and the Results of Test-Drilling; U.S. Geological Survey Bulletin 1904-C; U.S. Geological Survey: Denver, CO, USA, 1991; pp. 1–17.
- Zartman, R.E.; Kempton, P.D.; Paces, J.B.; Downes, H.; Williams, I.S.; Dobosi, G.; Futa, K. Lower-Crustal Xenoliths from Jurassic Kimberlite Diatremes, Upper Michigan (USA): Evidence for Proterozoic Orogenesis and Plume Magmatism in the Lower Crust of the Southern Superior Province. J. Petrol. 2013, 54, 575–608. [Google Scholar] [CrossRef]
- Hutchinson, D.R.; White, R.S.; Cannon, W.F.; Schulz, K.J. Keweenaw hot spot: Geophysical evidence for 1.1 Ga mantle plume beneath the Midcontinent Rift System. J. Geophys. Res. 1990, 95, 10869–10884. [Google Scholar] [CrossRef]
- Cannon, W.F. The Midcontinent rift in the Lake Superior region with emphasis on its geodynamic evolution. Tectonophysics 1992, 213, 41–48. [Google Scholar] [CrossRef]
- Wold, R.J.; Hinze, W.J. Geology and tectonics of the Lake Superior basin. Geol. Soc. Am. Mem. 1982, 156, 280. [Google Scholar]
- Ernst, R.E.; Bell, K. Large igneous provinces (LIPs) and carbonatites. Mineral. Petrol. 2010, 98, 55–76. [Google Scholar] [CrossRef]
- Stein, C.A.; Kley, J.; Stein, S.; Hindle, D.; Keller, G.R. North America’s Midcontinent Rift: When rift met LIP. Geosphere 2015, 11, 1607–1616. [Google Scholar] [CrossRef]
- Campbell, I.H. Identification of ancient mantle plumes. In Mantle Plumes: Their Identification Through Time; Ernst, R.E., Buchan, K.I., Eds.; Geological Society of America Special Paper: Boulder, CO, USA, 2001; Volume 352, pp. 5–21. [Google Scholar]
- Woodruff, L.G.; Schulz, K.J.; Nicholson, S.W.; Dicken, C.L. Mineral deposits of the Mesoproterozoic Midcontinent Rift system in the Lake Superior region—A space and time classification. Ore Geol. Rev. 2020, 126, 103716. [Google Scholar] [CrossRef]
- Nicholson, S.W.; Shirey, S.B.; Schulz, K.J.; Green, J.C. Rift-wide correlation of 1.1 Ga Midcontinent rift system basalts: Implications for multiple mantle sources during rift development. Can. J. Earth Sci. 1997, 34, 504–520. [Google Scholar] [CrossRef]
- Johnson, T.A. Petrology and Geochemistry of the Mafic and Ultramafic Dikes and Intrusions in Aitkin, Pine, and Carlton Counties, Minnesota. Master’s Thesis, Colorado School of Mines, Golden, CO, USA, 2015. [Google Scholar]
- Heaman, L.M.; Machado, N. Timing and origin of Midcontinent Rift alkaline magmatism, North America: Evidence from the Coldwell Complex. Contrib. Mineral. Petrol. 1992, 110, 289–303. [Google Scholar] [CrossRef]
- Walker, E.; Sutcliffe, R.; Shaw, C.; Shore, G.; Penczak, R. Precambrian Geology of the Coldwell Alkalic Complex; Ontario Geological Survey 1993, Open File Report 5868; Ministry of Northern Development and Mines, Mines and Minerals Division: Sudbury, ON, Canada, 1993; pp. 1–30.
- Schulz, K.J.; Nicholson, S.W. The geochemistry of the Siemens Creek Formation and the nature of early Midcontinent Rift basaltic magmatism in the western Lake Superior region. In Proceedings of the Institute on Lake Superior Geology Proceedings, 62nd Annual Meeting, Part 1—Proceedings and Abstracts, Duluth, MN, USA, 4–8 May 2016; pp. 133–134. [Google Scholar]
- Davis, D.W.; Green, J.C.; Manson, M. Geochronology of the 1.1 Ga North American Mid-Continent Rift. Can. J. Earth Sci. 1997, 34, 476–488. [Google Scholar] [CrossRef]
- Klewin, K.W.; Berg, J.H. Petrology of the Keweenawan Mamainse Point lavas, Ontario: Petrogenesis and continental drift evolution. J. Geophys. Res. 1991, 96, 457–474. [Google Scholar] [CrossRef]
- Walter, M.J. Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. J. Petrol. 1998, 39, 29–60. [Google Scholar] [CrossRef]
- Faure, S.; Godey, S.; Fallara, F.; Trepanier, S. Seismic architecture of the Archean North American mantle and its relationship to diamondiferous kimberlite fields. Econ. Geol. 2011, 106, 223–240. [Google Scholar] [CrossRef]
- Ding, X.; Li, C.; Ripley, E.M.; Rossell, D.; Kamo, S. The Eagle and East Eagle sulfide ore-bearing mafic-ultramafic intrusions in the Midcontinent Rift System, upper Michigan: Geochronology and petrologic evolution. G3 Geochem. Geophys. Geosyst. 2010, 11. [Google Scholar] [CrossRef]
- Van Schmus, W.R.; Bickford, M.E.; Zietz, I. Early and middle Proterozoic provinces in the central United States. In Proterozoic Lithosphere Evolution; Kroner, A., Ed.; Geodynamic Series 1987; American Geophysical Union: Washington, DC, USA, 1987; Volume 17, pp. 43–68. [Google Scholar]
- Goldner, B.D. Igneous Petrology of the Ni-Cu-PGE Mineralized Tamarack Intrusion, Aitkin and Carlton Counties, Minnesota. Master’s Thesis, University of Minnesota, Duluth, MN, USA, 2011. [Google Scholar]
- Cannon, W.F. Map Showing Precambrian Geology in Parts of the Baraga, Dead River, and Clark Creek Basins, Marquette and Baraga Counties, Michigan 1977; U.S. Geological Survey: Denver, CO, USA, 1977.
- Klasner, J.S.; Snider, D.W.; Cannon, W.F.; Slack, J.F. The Yellow Dog Peridotite and A Possible Buried Igneous Complex of Lower Keweenawan Age in The Northern Peninsula of Michigan 1977; USGS Reports-Open File Series; U.S. Geological Survey: Denver, CO, USA, 1977.
- Morris, W.J. Geochemistry and origin of the Yellow Dog Plains Peridotite, Marquette County. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 1977. [Google Scholar]
- Bornhorst, T.J.; Baxter, D.A. Reconnaissance Evaluation of Platinum-Group Elements in Selected Precambrian Rocks of the Western Upper Peninsula, Michigan; Michigan Department of Natural Resources Geological Survey Division: Lansing, MI, USA, 1990; Volume 90–92, pp. 1–9.
- Ding, X.; Ripley, E.M.; Li, C. PGE geochemistry of the Eagle Ni-Cu-(PGE) deposit, Upper Michigan: Constraints on ore genesis in a dynamic magma conduit. Miner. Depos. 2012, 47, 89–104. [Google Scholar] [CrossRef]
- Rupp, K. Petrogenesis of the Eagle East Gabbro in Marquette County, Michigan. Master’s Thesis, Western Michigan University, Kalamazoo, MI, USA, 2019. [Google Scholar]
- Thakurta, J.; Rupp, K.; Haag, B. Episodic Nature of Magmatic Ascent in a Dynamic Conduit System: Evidence From a Late Gabbroic Intrusion Associated with the Eagle Ni-Cu Sulfide Deposit in Northern Michigan, USA. Econ. Geol. 2022, 117, 1105–1130. [Google Scholar] [CrossRef]
- Taranovic, V.; Ripley, E.M.; Li, C.; Rossell, D. Petrogenesis of the Ni-Cu-PGE sulfide-bearing Tamarack Intrusive Complex, Midcontinent Rift System, Minnesota. Lithos 2015, 212–215, 16–31. [Google Scholar] [CrossRef]
- Jirsa, M.A.; Boerboom, T.J.; Chandler, V.W.; Mossler, J.H.; Runkel, A.; Setterholm, C.; Dale, R. S-21 Geologic Map of Minnesota-Bedrock Geology. Minnesota Geological Survey 2011, Retrieved from the University of Minnesota Digital Conservancy. Available online: https://hdl.handle.net/11299/101466 (accessed on 20 February 2023).
- Owen, M.L.; Meyer, L.H.I. NI 43-101 Technical report on the Eagle Mine, Upper Peninsula of Michigan, USA. In Proceedings of the Report for Lundin Mining Corporation 2013, Toronto, ON, Canada, 26 July 2013; pp. 1–241. [Google Scholar]
- Greenway, G. Mineral Resource and Reserve Estimate (Eagle East)—Internal Report. Lundin Mining, 8 September 2020. [Google Scholar]
- Talon Metals Corp. NI-43-101 Technical Report Preliminary Economic Assessment (PEA) of the Tamarack North Project-Tamarack, Minnesota 2018. Document Number: G02420-PA-RPT-007-02, pp. 1–332. Available online: https://talonmetals.com/wp-content/uploads/2020/08/Talon-Tamarack-PEA-Final.pdf (accessed on 12 January 2022).
- Nesbitt, H.W.; Young, G.M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Barnes, S.J. Lithogeochemistry in exploration for intrusion-hosted magmatic Ni-Cu-Co deposits. Geochem. Explor. Environ. Anal. 2023, 23, geochem2022-025. [Google Scholar] [CrossRef]
- Floyd, P.A.; Winchester, J.A. Magma type and tectonic setting discrimination using immobile elements. Earth Planet. Sci. Lett. 1975, 27, 211–218. [Google Scholar] [CrossRef]
- Pearce, J.A. A User’s Guide to Basalt Discrimination Diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration; Wyman, D.A., Ed.; Short Course Notes; Geological Association of Canada: St. John’s, NL, Canada, 1996; Volume 12, pp. 79–113. [Google Scholar]
- Lightfoot, P.C.; Naldrett, A.J.; Gorbachev, N.S.; Doherty, W.; Fedorenko, V.A. Geochemistry of the Siberian Trap of the Noril’sk area USSR with implications for the relative contributions of crust and mantle to flood basalt magmatism. Contrib. Mineral. Petrol. 1990, 104, 631–644. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Naldrett, A.J.; Fedorenko, V.A.; Lightfoot, P.C.; Kunilov, V.E.; Gorbachev, N.S.; Doherty, W.; Johan, J. Ni-Cu-PGE deposits of the Noril’sk region Siberia: Their formation in conduits for flood basalt volcanism. Trans.-Inst. Min. Metall. 1995, 104, B18–B36. [Google Scholar]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Condie, K.C. Mantle Plumes and Their Record in Earth History; Cambridge University Press: Cambridge, UK, 2001; p. 306. [Google Scholar]
- Larocque, A.C.L.; Stimac, J.A.; Keith, J.D.; Huminicki, M.A.E. Evidence for open behavior in immiscible Fe-S-O liquids in silicate magmas: Implications for contributions of metals and sulfur to ore-forming fluids. Can. Mineral. 2000, 38, 1233–1249. [Google Scholar] [CrossRef]
- Morris, J.D. Subduction, volcanism, and change in the Earth. Carnegie Inst. Wash. Year Book 1989, 88, 111–123. [Google Scholar]
- Dostal, J.; Dupuy, C.; Dudoignon, P. Distribution of boron, lithium and beryllium in ocean island basalts from French Polynesia: Implications for the B/Be and Li/Be ratios as tracers of subducted components. Mineral. Mag. 1996, 60, 563–580. [Google Scholar] [CrossRef]
- Wood, B.J.; Virgo, D. Upper mantle oxidation state: Ferric iron contents of Iherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacities. Geochim. Cosmochim. Acta 1989, 53, 1277–1291. [Google Scholar] [CrossRef]
- Wood, B.J.; Bryndzia, L.T.; Johnson, K.E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 1990, 248, 337–345. [Google Scholar] [CrossRef]
- Benard, A.; Klimm, K.; Woodland, A.B.; Arculus, R.J.; Wilke, M.; Botcharnikov, R.E.; Shimizu, N.; Nebel, O.; Rivard, C.; Ionov, D.A. Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas. Nat. Commun. 2018, 9, 3500. [Google Scholar] [CrossRef]
- Arndt, N.; Lesher, C.M.; Czamanske, G.K. Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits. Econ. Geol. 2005, 5–24. [Google Scholar] [CrossRef]
- Lesher, C.M.; Campbell, I.H. Geochemical and fluid dynamic modeling of compositional variations in Archean komatiite-hosted nickel sulfide ores in Western Australia. Econ. Geol. 1993, 88, 804–816. [Google Scholar] [CrossRef]
- Barnes, S.J.; Mungall, J.E.; Maier, W.D. Platinum group elements in mantle melts and mantle samples. Lithos 2015, 232, 395–417. [Google Scholar] [CrossRef]
- Wendlandt, R.F. Sulfide saturation of basalt and andesite melts at high pressures and temperatures. Am. Mineral. 1982, 67, 877–885. [Google Scholar]
- Keays, R.R. The role of komatiitic and picritic magmatism and S-saturation in the formation of ore deposits. Lithos 1995, 34, 1–18. [Google Scholar] [CrossRef]
- Sisson, T.W. Native gold in a Hawaiian alkalic magma. Econ. Geol. 2003, 98, 643–648. [Google Scholar] [CrossRef]
- Hong, L.; Xu, Y.; Zhang, L.; Liu, Z.; Xia, X.; Kuang, Y. Oxidized Late Mesozoic subcontinental lithospheric mantle beneath the eastern North China Craton: A clue to understanding cratonic destruction. Gondwana Res. 2020, 81, 230–239. [Google Scholar] [CrossRef]
- Jugo, P.J.; Luth, R.W.; Richards, J.P. An experimental study of sulfur content in basaltic melts associated with immiscible sulfide or sulfate liquids at 1300 °C and 1.0 GPa. J. Petrol. 2005, 46, 783–798. [Google Scholar] [CrossRef]
- Maughan, D.T.; Keith, J.D.; Christiansen, E.H.; Pulsipher, T.; Hattori, K.; Evan, N.J. Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA. Miner. Depos. 2002, 37, 14–37. [Google Scholar] [CrossRef]
- Chong, J.; Fiorentini, M.L.; Holwell, D.A.; Moroni, M.; Blanks, D.E.; Dering, G.M.; Davis, A.; Ferrari, E. Magmatic cannibalization of a Permo-Triassic Ni-Cu-PGE-(Au-Te) system during the breakup of Pangea- Implications for craton margin metal and volatile transfer in the lower crust. Lithos 2021, 388–389, 106079. [Google Scholar] [CrossRef]
- Ripley, E.M.; Li, C. Sulfide Saturation in Mafic Magmas: Is External Sulfur Required for Magmatic Ni-Cu-(PGE) Ore Genesis? Econ. Geol. 2013, 108, 45–58. [Google Scholar] [CrossRef]
- Ripley, E.M.; Lambert, D.D.; Frick, L.R. Re-Os, Sm-Nd, and Pb isotopic constraints on mantle and crustal contributions to magmatic sulfide mineralization in the Duluth Complex. Geochim. Cosmochim. Acta 1998, 62, 3349–3365. [Google Scholar] [CrossRef]
- Hofmann, A.W.; White, W.M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 1982, 57, 421–436. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S.R. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Hauri, E.H.; Hart, S.R. Correction to Constraints on melt migration from mantle plumes: A trace element study of peridotite xenoliths from Savai’i, Western Samoa. J. Geophys. Res. 1995, 100, 2003. [Google Scholar] [CrossRef]
- Wang, K.; Plank, T.; Walker, J.D.; Smith, E.I. A mantle melting profile across the Basin and Range, SW USA. J. Geophys. Res. 2002, 107, 1–21. [Google Scholar] [CrossRef]
- Shirey, S.B. Re-Os isotopic compositions of Midcontinent rift system picrites: Implications for plume-lithosphere interaction and enriched mantle sources. Can. J. Earth Sci. 1997, 34, 489–503. [Google Scholar] [CrossRef]
- Ding, X.; Ripley, E.M.; Shirey, S.B.; Li, C. Os, Nd, O and S isotope constraints on country rock contamination in the conduit-related Eagle Cu-Ni-(PGE) deposit, Midcontinent Rift System, Upper Michigan. Geochim. Cosmochim. Acta 2012, 89, 10–30. [Google Scholar] [CrossRef]
- Taranovic, V.; Ripley, E.M.; Li, C.; Shirey, S.B. S, O, and Re-Os Isotope Studies of the Tamarack Igneous Complex: Melt-Rock Interaction During the Early Stage of Midcontinent Rift Development. Econ. Geol. 2018, 113, 1161–1179. [Google Scholar] [CrossRef]
- Gair, J.E.; Thaden, R.E. Geology of the Marquette and Sands Quadrangles Marquette County, Michigan; U.S. Geological Survey Professional Paper 1968; U.S. Geological Survey: Washington, DC, USA, 1968; Volume 397, pp. 1–77.
- Smith, J.M.; Ripley, E.M.; Li, C.; Shirey, S.B.; Benson, E.K. Magmatic origin for the massive sulfide ores in the sedimentary country rocks of mafic-ultramafic intrusions in the Midcontinent Rift System. Miner. Depos. 2022, 57, 1189–1210. [Google Scholar] [CrossRef]
- Hofmann, A.W. Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. In Treatise on Geochemistry; Holland, H.D., Turekian, K.T., Eds.; Pergamon: Oxford, UK, 2007; pp. 1–44. [Google Scholar] [CrossRef]
- Plank, T.; Langmuir, C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 325–394. [Google Scholar] [CrossRef]
- Shirey, S.B.; Klewin, K.W.; Berg, J.H.; Carlson, R.W. Temporal changes in the sources of flood basalts: Isotopic and trace element evidence from the 1100 Ma old Keweenawan Mamainse Point Formation, Ontario, Canada. Geochim. Cosmochim. Acta 1994, 58, 4475–4490. [Google Scholar] [CrossRef]
- Hemming, S.R.; McLennan, S.M.; Hanson, G.N. Geochemical and Nb/Pb Isotopic Evidence for the Provenance of the Early Proterozoic Virginia Formation, Minnesota: Implications for the Tectonic Setting of the Animikie Basin. J. Geol. 1995, 103, 147–168. [Google Scholar] [CrossRef]
- Class, C.; Miller, D.M.; Goldstein, S.L.; Langmuir, C.H. Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochem. Geophys. Geosystems 2000, 1. [Google Scholar] [CrossRef]
- Rosner, M.; Erzinger, J.; Franz, G.; Trumbull, R.B. Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration. Geochem. Geophys. Geosyst. 2003, 4. [Google Scholar] [CrossRef]
- Brenan, J.M.; Ryerson, F.J.; Shaw, H.F. The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: Experiments and models. Geochim. Cosmochim. Acta 1998, 62, 3337–3347. [Google Scholar] [CrossRef]
- Nakano, T.; Nakamura, E. Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Phys. Earth Planet. Inter. 2001, 127, 233–252. [Google Scholar] [CrossRef]
- Shaw, D.M.; Cramer, J.J.; Higgins, M.D.; Truscott, M.G. Composition of the Canadian Precambrian Shield and the continental crust of the Earth. Geol. Soc. Lond. Spec. Publ. 1986, 24, 275–282. [Google Scholar] [CrossRef]
- Bodden, T.J.; Bornhorst, T.J.; Begue, F.; Deering, C. Sources of Hydrothermal Fluids Inferred from Oxygen and Carbon Isotope Composition of Calcite, Keweenaw Peninsula Native Copper District, Michigan, USA. Minerals 2022, 12, 474. [Google Scholar] [CrossRef]
- Kah, L.C.; Lyons, T.W.; Frank, T.D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 2004, 431, 834–838. [Google Scholar] [CrossRef]
- Crowe, S.A.; Paris, G.; Katsev, S.; Jones, C.-A.; Kim, S.-T.; Zerkle, A.L.; Nomosatryo, S.; Fowle, D.A.; Adkins, J.F.; Sessions, A.L.; et al. Sulfate was a trace constituent of Archean seawater. Science 2014, 7, 735–739. [Google Scholar] [CrossRef]
- Li, Y.; Vocadlo, L.; Edgington, A.; Brodholt, J.P. Equation of state for CO and CO2 fluids and their application on decarbonation reactions at high pressure and temperature. Chem. Geol. 2021, 559, 119918. [Google Scholar] [CrossRef]
- Marfin, A.E.; Bizimis, M.; Lightfoot, P.C.; Yogodzinski, G.; Ivanov, A.; Brzozowski, M.; Latyshev, A.; Radomskaya, T. Constraints on the source of Siberian Trap magmas from Mo isotope evidence. Geochim. Cosmochim. Acta 2024, 375, 106–122. [Google Scholar] [CrossRef]
- Menzies, M. Alkaline rocks and their inclusions: A window on the Earth’s interior. Geol. Soc. Lond. Spec. Publ. 1987, 30, 15–27. [Google Scholar] [CrossRef]
- Kampunzu, A.B.; Lubala, R.T. (Eds.) Magmatism in Extensional Settings, the Phanerozoic African Plate; Springer: Berlin/Heidelberg, Germany, 1991; pp. 1–639. [Google Scholar]
- White, R.S. Mantle temperature and lithospheric thinning beneath the Midcontinent rift system: Evidence from magmatism and subsidence. Can. J. Earth Sci. 1997, 34, 464–475. [Google Scholar] [CrossRef]
- Jugo, P.J.; Wilke, M.; Botcharnikov, R.E. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as a function of oxygen fugacity. Geochim. Cosmochim. Acta 2010, 69, 497–503. [Google Scholar] [CrossRef]
- Carroll, M.R.; Rutherford, M.J. Sulfide and sulfate saturation in hydrous silicate melts. J. Geophys. Res. 1985, 90, 601–612. [Google Scholar] [CrossRef]
- Carroll, M.R.; Rutherford, M.J. The stability of igneous anhydrite: Experimental results and implications for S behavior in the 1982 El Chichón trachyandesite and other evolved magmas. J. Petrol. 1987, 28, 781–801. [Google Scholar] [CrossRef]
- Luhr, J.F. Experimental phase relations of water-saturated and sulfur-saturated arc magmas and the 1982 eruptions of El Chichon volcano. J. Petrol. 1990, 31, 1071–1114. [Google Scholar] [CrossRef]
- Jugo, P.J. Sulfur content at sulfide saturation in oxidized magmas. Geology 2009, 37, 415–418. [Google Scholar] [CrossRef]
- Cundari, R.M.; Hollings, P.; Smyk, M.C.; Scott, J.F.; Campbell, D.A. Project Unit 11–007. Whole Rock and Isotope Data from the Midcontinent Rift: Implications for Crustal Contamination History. Ontario Geologic Survey 2011, OFR 6280, 18/1-18/10. Available online: https://prd-0420-geoontario-0000-blob-cge0eud7azhvfsf7.z01.azurefd.net/lrc-geology-documents/publication/MRD308-REV/MRD308-REV_readme.pdf (accessed on 20 March 2023).
- Li, C.; Ripley, E.M.; Naldrett, A.J.; Schmitt, A.K.; Moore, C.H. Magmatic anhydrite-sulfide assemblages in the plumbing system of the Siberian Traps. Geology 2010, 37, 259–262. [Google Scholar] [CrossRef]
- Mulcahy, C. Emplacement and Crystallization Histories of Cu-Ni-PGE Sulfide-Mineralized Peridotites in the Eagle and Eagle East Intrusions. Master’s Thesis, University of Minnesota-Duluth, Duluth, MN, USA, 2018. [Google Scholar]
- Dunlop, M. The Eagle Ni-Cu-PGE Magmatic Sulfide Deposit and Surrounding Mafic Dikes and Intrusions in the Baraga Basin, Upper Michigan: Relationships, Petrogenesis, and Implications for Magmatic Sulfide Exploration. Master’s Thesis, Indiana University, Bloomington, IN, USA, 2013. [Google Scholar]
- Rollinson, H.R. Using Geochemical Data: Evaluation, Presentation, Interpretation; Longman Scientific and Technical; Wiley: New York, NY, USA, 1993; 352p. [Google Scholar]
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, J. Nomenclature of pyroxene. Am. Mineral. 1988, 73, 1123–1133. [Google Scholar]
- Barnes, S.J.; Roeder, P.L. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Rhodes, J.M.; Dungan, M.A.; Blanchard, D.P.; Long, P.E. Magma mixing at mid-ocean ridges: Evidence form basalts drilled near 22°N on the mid-Atlantic ridge. Tectonophysics 1979, 55, 35–61. [Google Scholar] [CrossRef]
- Putirka, K.; Perfit, M.; Ryerson, F.J.; Jackson, M.G. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem. Geol. 2007, 241, 177–206. [Google Scholar] [CrossRef]
- Putirka, K. Thermometers and Barometers for Volcanic Systems. In Minerals, Inclusions and Volcanic Processes: Reviews in Mineralogy and Geochemistry; Putirka, K., Tepley, F., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2008; Volume 69, pp. 61–120. [Google Scholar]
- Putirka, K.; Johnson, M.; Kinzler, R.; Walker, D. Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib. Mineral. Petrol. 1996, 123, 92–108. [Google Scholar] [CrossRef]
- Putirka, K.; Ryerson, F.J.; Mikaelian, H. New igneous thermobarometers for mafic and evolved lava compositions, based on clinopyroxene + liquid equilibria. Am. Mineral. 2003, 88, 1542–1554. [Google Scholar] [CrossRef]
- Barnes, S.J.; Yao, Z.-S.; Mao, Y.-J.; Jesus, A.P.; Yang, S.; Taranovic, V.; Maier, W.D. Nickel in olivine as an exploration indicator for magmatic Ni-Cu sulfide deposits: A data review and re-evaluation. Am. Mineral. 2023, 108, 1–17. [Google Scholar] [CrossRef]
- Dare, S.; Barnes, S.J.; Beaudoin, G.; Meric, J.; Boutroy, E.; Potvin-Doucet, C. Trace elements in magnetite as petrogenetic indicators. Miner. Depos. 2014, 49, 785–796. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, R.; Deering, C.; Essig, E. Origin of the World-Class Eagle, Eagle East, and Tamarack Ni-Cu-PGE Deposits. Minerals 2025, 15, 871. https://doi.org/10.3390/min15080871
Nowak R, Deering C, Essig E. Origin of the World-Class Eagle, Eagle East, and Tamarack Ni-Cu-PGE Deposits. Minerals. 2025; 15(8):871. https://doi.org/10.3390/min15080871
Chicago/Turabian StyleNowak, Robert, Chad Deering, and Espree Essig. 2025. "Origin of the World-Class Eagle, Eagle East, and Tamarack Ni-Cu-PGE Deposits" Minerals 15, no. 8: 871. https://doi.org/10.3390/min15080871
APA StyleNowak, R., Deering, C., & Essig, E. (2025). Origin of the World-Class Eagle, Eagle East, and Tamarack Ni-Cu-PGE Deposits. Minerals, 15(8), 871. https://doi.org/10.3390/min15080871