Layered Double Hydroxides Modified with Carbon Quantum Dots as Promising Materials for Pharmaceutical Removal
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of CQD
2.2. Synthesis of Pristine Mg/Al-LDH and Hybrid Material LDH-CQD
2.3. Characterization of Materials
2.4. Point of Zero Charge
2.5. Adsorption Study
2.5.1. Adsorption Kinetics
2.5.2. Adsorption Isotherms
3. Results and Discussion
3.1. PXRD Measurements
3.2. FTIR Analysis
3.3. Thermal Behavior and Stability (DSC and TGA-DTG)
3.4. Morphological and Compositional Analysis (SEM–EDS and TEM)
3.5. N2 Physisorption Analysis
3.6. Point of Zero Charge
3.7. Adsorption Experiments
3.7.1. Influence of Contact Time and Initial Concentration on Adsorption Effect
3.7.2. Influence of the IBU Solution pH on Adsorption Effect
3.7.3. Adsorption Kinetics
3.7.4. Adsorption Isotherms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mkaddem, H.; Rosales, E.; Pazos, M.; Ben Amor, H.; Sanromán, M.A.; Meijide, J. Anti-inflammatory drug diclofenac removal by a synthesized MgAl layered double hydroxide. J. Mol. Liq. 2022, 359, 119207. [Google Scholar] [CrossRef]
- Kaur, J.; Pal, B.; Singh, S.; Kaur, H. Fabrication of highly efficient Au and layered double hydroxide modified g-C3N4 ternary composites for degradation of pharmaceutical drug: Pathways and mechanism. Surf. Interfaces 2023, 36, 102583. [Google Scholar] [CrossRef]
- Morais, A.Í.S.; Oliveira, W.V.; Oliveira, V.V.; Honorio, L.M.C.; Araujo, F.P.; Bezerra, R.D.S.; Fechine, P.B.A.; Viana, B.C.; Furtini, M.B.; Silva-Filho, E.C.; et al. Semiconductor supported by palygorskite and layered double hydroxides clays to dye discoloration in solution by a photocatalytic process. J. Environ. Chem. Eng. 2019, 7, 103431. [Google Scholar] [CrossRef]
- Huang, H.; Chen, L.; Tang, W.; Yang, Y. In situ grown petal-like La-doped FeCo-layered double hydroxide on carbon felt for enhanced moxifloxacin hydrochloride removal via heterogeneous electro-Fenton process. Chemosphere 2024, 369, 143845. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Luo, M.; Li, L.; Cheng, W. Hierarchical Al2O3@MgAl-LDH core-shell composites for enhanced phosphate adsorption. J. Environ. Chem. Eng. 2025, 13, 117169. [Google Scholar] [CrossRef]
- Wang, D.L.; Fu, Y.H.; Yang, J.Y. Enhanced Fluoride Stabilization by Modified Layered Double Hydroxides for the Remediation of Soil Pollution: Performance and Mechanism. Water Air Soil Pollut. 2022, 233, 471. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Nie, R.; Li, Y.; Li, Q.; Lei, Y.; Guo, M.; Zhang, Y. Highly efficient adsorption of anionic dyes on a porous graphene oxide nanosheets/chitosan composite aerogel. Ind. Crops Prod. 2024, 220, 119146. [Google Scholar] [CrossRef]
- Wijaya, A.; Hanum, L.; Melwita, E.; Lesbani, A. CuAl-LDH Modified with Filamentous Macroalgae for Anionic Dyes Removal: A Study on Selectivity, Adsorption Efficiency, and Regeneration. Bull. Chem. React. Eng. Catal. 2024, 19, 560–572. [Google Scholar] [CrossRef]
- Yang, T.; He, Y.; Wang, C.; Bi, H.; Chen, G. Carbon quantum dots derived from lignin nanoparticles for dual UV-excited fluorescent anti-counterfeiting materials. Int. J. Biol. Macromol. 2025, 307, 140666. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhu, J.; Yin, J.; Miao, P. Zeolitic imidazolate framework-8 encapsulating carbon nanodots and silver nanoparticles for fluorescent detection of H2O2 and glucose. J. Colloid Interface Sci. 2023, 643, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Muhmood, T.; Rehman, A.; Zahid, M.; Abohashrh, M.; Nishat, S.; Raharjo, Y.; Zhou, Z.; Yang, X. Zeolite imidazole framework entrapped quantum dots (QDs@ZIF-8): Encapsulation, properties, and applications. J. Taiwan Inst. Chem. Eng. 2023, 149, 104993. [Google Scholar] [CrossRef]
- Liu, J.; Li, R.; Yang, B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Cent. Sci. 2020, 6, 2179–2195. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Abd-El-Nabey, B.A.; Abdelrahman, A.; Abd-El-Fatah, M.A. Decorated Ca-Fe-LDHs onto derived olive leaves carbon quantum dots for effective remediation of arsenic (V) from water. Inorg. Chem. Commun. 2025, 175, 114118. [Google Scholar] [CrossRef]
- Qu, K.; Chen, M.; Wang, W.; Yang, S.; Jing, S.; Guo, S.; Tian, J.; Qi, H.; Huang, Z. Biomass-derived carbon dots regulating nickel cobalt layered double hydroxide from 2D nanosheets to 3D flower-like spheres as electrodes for enhanced asymmetric supercapacitors. J. Colloid Interface Sci. 2022, 616, 584–594. [Google Scholar] [CrossRef]
- Campos, V.N.S.; Santos, J.D.J.P.; Araújo, R.J.P.; Lopes, P.H.S.; Garcia, M.A.S.; Rojas, A.; Teixeira, M.M.; Bezerra, C.W.B.; Alcântara, A.C.S. High Performance of Ciprofloxacin Removal Using Heterostructure Material Based on the Combination of CeO2 and Palygorskite Fibrous Clay. Minerals 2024, 14, 792. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, D.; Zhang, G.; Cai, C.; Zhang, C.; Qiu, G.; Zheng, K.; Wu, Z. Adsorption of methylene blue from aqueous solution onto multiporous palygorskite modified by ion beam bombardment: Effect of contact time, temperature, pH and ionic strength. Appl. Clay Sci. 2013, 83–84, 137–143. [Google Scholar] [CrossRef]
- Jedynak, K.; Charmas, B. Application of Activated Carbons Obtained from Polymer Waste for the Adsorption of Dyes from Aqueous Solutions. Materials 2024, 17, 748. [Google Scholar] [CrossRef]
- Zavala-Flores, E.; Flores-López, L.Z.; Alonso-Nuñez, G.; Espinoza-Gomez, H. Removal and adsorption kinetics of methylene blue dye by pristine cotton husk bracts (Gossypium hirsutum L.) from agroindustrial waste. Ind. Crops Prod. 2024, 209, 117947. [Google Scholar] [CrossRef]
- Semwal, N.; Mahar, D.; Chatti, M.; Dandapat, A.; Chandra Arya, M. Adsorptive removal of Congo Red dye from its aqueous solution by Ag–Cu–CeO2 nanocomposites: Adsorption kinetics, isotherms, and thermodynamics. Heliyon 2023, 9, e22027. [Google Scholar] [CrossRef]
- Lins, P.V.S.; Gabriel, R.; Brandão, R.J.; Meili, L. Efficient removal of triarylmethane biocide from aqueous solutions using ZnAl/LDH: Adsorption kinetics, isotherms, and thermodynamic insights. Colloids Surf. A Physicochem. Eng. Asp. 2025, 725, 137598. [Google Scholar] [CrossRef]
- Khaksarfard, Y.; Bagheri, A.; Rafati, A.A. Synergistic effects of binary surfactant mixtures in the adsorption of diclofenac sodium drug from aqueous solution by modified zeolite. J. Colloid Interface Sci. 2023, 644, 186–199. [Google Scholar] [CrossRef]
- Ribeiro, L.N.M.; Alcântara, A.C.S.; Darder, M.; Aranda, P.; Araújo-Moreira, F.M.; Ruiz-Hitzky, E. Pectin-coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. Int. J. Pharm. 2014, 463, 1–9. [Google Scholar] [CrossRef]
- Rebitski, E.P.; Souza, G.P.; Santana, S.A.; Pergher, S.B.; Alcântara, A.C. Bionanocomposites based on cationic and anionic layered clays as controlled release devices of amoxicillin. Appl. Clay Sci. 2019, 173, 35–45. [Google Scholar] [CrossRef]
- Aslam, R.; Wang, Q.; Aslam, J.; Mobin, M.; Hussain, C.M.; Yan, Z. Effect of temperature, and immersion time on the inhibition performance of Q235 steel using spent coffee grounds derived carbon quantum dots: Electrochemical, spectroscopic and surface studies. Biomass Bioenergy 2025, 200, 107961. [Google Scholar] [CrossRef]
- Mojtabazadeh, H.; Safaei-Ghomi, J. High conductivity graphite paste for radio frequency identification tag with wireless hydrogen sensor based on CeO2-Fe2O3-graphene oxide. RSC Adv. 2025, 15, 12773–12784. [Google Scholar] [CrossRef]
- Mintz, K.J.; Bartoli, M.; Rovere, M.; Zhou, Y.; Hettiarachchi, S.D.; Paudyal, S.; Chen, J.; Domena, J.B.; Liyanage, P.Y.; Sampson, R.; et al. A deep investigation into the structure of carbon dots. Carbon 2021, 173, 433–447. [Google Scholar] [CrossRef]
- Mandal, S.; Prasad, S.; Mandal, D.; Das, P. Bovine Serum Albumin Amplified Reactive Oxygen Species Generation from Anthrarufin-Derived Carbon Dot and Concomitant Nanoassembly for Combination Antibiotic-Photodynamic Therapy Application. ACS Appl. Mater. Interfaces 2019, 11, 33273–33284. [Google Scholar] [CrossRef]
- Cutrim, E.S.M.; Vale, A.A.M.; Manzani, D.; Barud, H.S.; Rodríguez-Castellón, E.; Santos, A.P.S.A.; Alcântara, A.C.S. Preparation, characterization and in vitro anticancer performance of nanoconjugate based on carbon quantum dots and 5-Fluorouracil. Mater. Sci. Eng. C 2021, 120, 111781. [Google Scholar] [CrossRef]
- Wang, J.; Quiang, L.; Jingxia, Z.; Yongzhen, Y.; Xuguang, L.; Bingshe, X. N, B-Codoping Induces High-Efficiency Solid-State Fluorescence and Dual Emission of Yellow/Orange Carbon Dots. ACS Sustain. Chem. Eng. 2021, 9, 2224–2236. [Google Scholar] [CrossRef]
- Brubaker, Z.E.; Langford, J.J.; Kapsimalis, R.J.; Niedziela, J.L. Quantitative analysis of Raman spectral parameters for carbon fibers: Practical considerations and connection to mechanical properties. J. Mater. Sci. 2021, 56, 15087–15121. [Google Scholar] [CrossRef]
- Lee, A.Y.; Yang, K.; Anh, N.D.; Park, C.; Lee, S.M.; Lee, T.G.; Jeong, M.S. Raman study of D* band in graphene oxide and its correlation with reduction. Appl. Surf. Sci. 2021, 536, 147990. [Google Scholar] [CrossRef]
- Chuaicham, C.; Sekar, K.; Balakumar, V.; Uchida, J.; Katsurao, T.; Sakabe, H.; Ohtani, B.; Sasaki, K. Efficient photocatalytic degradation of emerging ciprofloxacin under visible light irradiation using BiOBr/carbon quantum dot/saponite composite. Environ. Res. 2022, 212, 113635. [Google Scholar] [CrossRef]
- Silva, E.H.C.; Cutrim, E.S.M.; Iemma, M.R.C.; Barud, H.S.; Rojas, A.; Gomez-Hortiguela, L.; Meneses, A.S.; Rodriguez-Castellón, E.; Tanaka, A.A.; Alcântara, A.A. New insights about the intercalation of 5-Fluorouracil into 2D Mg–Al layered double hydroxide nanosheets: A theoretical and experimental investigation. J. Drug Deliv. Sci. Technol. 2023, 81, 104294. [Google Scholar] [CrossRef]
- Molaei, M.J. Carbon quantum dots-based fluorescent layered double hydroxide for targeted drug delivery application. Diam. Relat. Mater. 2023, 137, 110135. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, S.; Zhu, Q. The effect of CQDs particle size on its fluorescence behavior and Cu2+ detection. Spectrochim. Acta–Part A Mol. Biomol. Spectrosc. 2025, 341, 126408. [Google Scholar] [CrossRef]
- Mohammed, S.J.; Omer, K.M.; Hawaiz, F.E. Deep insights to explain the mechanism of carbon dot formation at various reaction times using the hydrothermal technique: FT-IR, 13C-NMR, 1H-NMR, and UV-visible spectroscopic approaches. RSC Adv. 2023, 13, 14340–14349. [Google Scholar] [CrossRef]
- Nallayagari, A.R.; Sgreccia, E.; Pizzoferrato, R.; Cabibbo, M.; Kaciulis, S.; Bolli, E.; Pasquini, L.; Knauth, P.; Di Vona, M.L. Tunable properties of carbon quantum dots by different synthetic methods. J. Nanostruct. Chem. 2022, 12, 565–580. [Google Scholar] [CrossRef]
- Šafranko, S.; Stanković, A.; Hajra, S.; Kim, H.-J.; Strelec, I.; Dutour-Sikirić, M.; Weber, I.; Bosnar, M.H.; Grbčić, P.; Pavelić, S.K. Preparation of multifunctional n-doped carbon quantum dots from citrus clementina peel: Investigating targeted pharmacological activities and the potential application for Fe3+ sensing. Pharmaceuticals 2021, 14, 857. [Google Scholar] [CrossRef]
- Aygun, A.; Bennini, N.; Tiri, R.N.E.; Idris Kaynak, I.; Sen, F. Hydrothermal synthesis of nitrogen-doped CQDs for detection of Cr6+ and removal of MB dye in wastewater. Next Nanotechnol. 2025, 8, 100150. [Google Scholar] [CrossRef]
- Mahmood, M.; Mubeen, M.; Wang, W.; Tabish, M.; Murtaza, H.; Jawad, M.; Wang, J.; Lv, Y.; Zhao, J.; Fan, B. Mechanically robust and self-healing protective coating for Zn-Al-Mg coated steel enhanced by benzotriazole-5 carboxylic acid intercalated MgAlCe ternary LDH. Prog. Org. Coat. 2025, 21, 109107. [Google Scholar] [CrossRef]
- Zainal Abidin, N.H.; Wongso, V.; Hui, K.C.; Cho, K.; Sambudi, N.S.; Ang, W.L.; Saad, B. The effect of functionalization on rice-husks derived carbon quantum dots properties and cadmium removal. J. Water Process Eng. 2020, 38, 101634. [Google Scholar] [CrossRef]
- Wang, X.; Song, X.; Gao, J.; Zhang, Y.; Pan, K.; Wang, H.; Guo, L.; Li, P.; Huang, C.; Yang, S. Effect of synthesis temperature on the structural morphology of a metal–organic framework and the capacitor performance of derived cobalt–nickel layered double hydroxides. J. Colloid Interface Sci. 2024, 664, 946–959. [Google Scholar] [CrossRef]
- Foruzin, L.J.; Nejati, K.; Dai, H.; Rezvani, Z. Ultrasonic-assisted synthesis of Ni based-layered double hydroxide doped carbon nanotube and its highly efficient in water oxidation reaction. Int. J. Hydrogen Energy 2023, 48, 3429–3439. [Google Scholar] [CrossRef]
- Bansal, M.; Pal, B. Starch modified NiFe layered double hydroxide composites for better adsorption and photocatalytic removal of reactive dye and piroxicam-20 drug. Environ. Sci. Pollut. Res. 2023, 30, 73825–73848. [Google Scholar] [CrossRef]
- Bansal, M.; Pal, B. Enhanced elimination of nitrate and nitrite ions from ground and surface wastewater using chitosan sphere-modified Mg-Al layered double hydroxide composite. J. Ind. Eng. Chem. 2024, 142, 635–650. [Google Scholar] [CrossRef]
- Ge, J.; Lian, L.; Wang, X.; Cao, X.; Gao, W.; Lou, D. Coating layered double hydroxides with carbon dots for highly efficient removal of multiple dyes. J. Hazard. Mater. 2022, 424, 127613. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, L.A.; Aniagor, C.O.; Taha, G.M.; Abou-Okeil, A.; Hashem, A. Mechanistic investigation of the mass transfer stages involved during the adsorption of aqueous lead onto Scopulariopsis brevicompactum fungal biomass. Environ. Chall. 2021, 5, 100373. [Google Scholar] [CrossRef]
- Show, S.; Karmakar, B.; Halder, G. Sorptive uptake of anti-inflammatory drug ibuprofen by waste biomass–derived biochar: Experimental and statistical analysis. Biomass Conv. Bioref. 2022, 12, 3955–3973. [Google Scholar] [CrossRef]
- Mittal, J. Recent progress in the synthesis of Layered Double Hydroxides and their application for the adsorptive removal of dyes: A review. J. Environ. Manag. 2021, 295, 113017. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Mujtaba, G.; Zubair, M.; Shah, M.U.H.; Daud, M.; Mu’azu, N.D.; Al-Harthi, M.A. A review of performance, mechanism, and challenges of layered double hydroxide-based biocomposites for the adsorptive removal of dye contaminants from water and wastewater. J. Water Process Eng. 2025, 70, 106837. [Google Scholar] [CrossRef]
- Shooto, N.D. Application of carbon from pomegranate husk for the removal of ibuprofen, cadmium and methylene blue from water. Heliyon 2023, 9, e20268. [Google Scholar] [CrossRef]
- Siyal, A.A.; Mohamed, S.R.R.M.; Ahmad, F.; Malek, M.A.; Alsubih, M.; Shamsuddin, R.; Hussain, S.; Musa, S. A review of the developments in adsorbents for the efficient adsorption of ibuprofen from wastewater. RSC Adv. R. Soc. Chem. 2025, 15, 17843. [Google Scholar] [CrossRef]
- Hinz, C. Description of sorption data with isotherm equations. Geoderma 2001, 99, 225–243. [Google Scholar] [CrossRef]
- Zahoor, M.; Ullah, A.; Alam, S.; Muhammad, M.; Hendroko Setyobudi, R.; Zekker, I.; Sohail, A. Novel Magnetite Nanocomposites (Fe3O4/C) for Efficient Immobilization of Ciprofloxacin from Aqueous Solutions through Adsorption Pretreatment and Membrane Processes. Water 2022, 14, 724. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.J.; Hosseini-Bandegharaei, A.; Chao, H.P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Aharoni, C.; Ungarish, M. Kinetics of activated chemisorption. Part 2.-Theoretical models. J. Chem. Soc. Faraday Trans. 1 1977, 73, 456–464. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Giles, C.H. Studies in adsorption: Part X1. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 1960, 111, 3973–3993. [Google Scholar] [CrossRef]
- Ghiasinejad, H.; Javanshir, S. Efficient removal of Ibuprofen via novel core–shell magnetic bio-surfactant rhamnolipid–layered double hydroxide nanocomposite. J. Environ. Chem. Eng. 2021, 9, 106158. [Google Scholar]
- Sherazi, A.; Hussain, G.; Anis, M.; Aurangzeb, S. Removal of Ibuprofen and Diclofenac using Azadirachta indica leaves extract modified with Iron oxide. Desalination Water Treat. 2024, 137, 100151. [Google Scholar] [CrossRef]
- Banerjee, P.; Das, P.; Zaman, A.; Das, P. Application of graphene oxide nanoplatelets for adsorption of Ibuprofen from aqueous solutions: Evaluation of process kinetics and thermodynamics. Process Saf. Environ. Prot. 2016, 101, 45–53. [Google Scholar] [CrossRef]
- Gu, Y.; Yperman, J.; Carleer, R.; D’Haen, J.; Maggen, J.; Vanderheyden, S.; Vanreppelen, K.; Garcia, R.M. Adsorption and photocatalytic removal of Ibuprofen by activated carbon impregnated with TiO2 by UV–Vis monitoring. Chemosphere 2019, 217, 724–731. [Google Scholar] [CrossRef]
- Kim, M.; Njaramba, L.K.; Yoon, Y.; Jang, M.; Park, C.M. Thermally-activated gelatin–chitosan–MOF hybrid aerogels for efficient removal of ibuprofen and naproxen. Carbohydr. Polym. 2024, 324, 121436. [Google Scholar] [CrossRef] [PubMed]
Parameter/Model | Pseudo-First Order | Pseudo-Second Order | Intraparticle Diffusion | Elovich |
---|---|---|---|---|
qe experimental (mg.g−1) | 22.1331 | |||
qe calculated (mg.g−1) | 6.7865 | 22.2717 | - | - |
Constant k1 (min−1) | 0.585 | - | - | - |
Constant k2 (g.mg−1.min−1) | - | 0.0576 | - | - |
Coefficient of determination R2 | 0.4599 | 0.9978 | 0.5447 | 0.6084 |
Kdif (mg.g−1. min−0.5) | - | - | 2.9362 | - |
C (mg.g−1) | - | - | 7.6683 | - |
α (mg·g−1·min−1) | - | - | - | 20.457 |
β (g·mg−1) | - | - | - | 0.2029 |
Model | Parameter | Values |
---|---|---|
Freundlich | KF [(mg.g−1)(L.mg−1)1/n)] | 9.475 |
n | 1.531 | |
R | 0.843 | |
SSE | 24.82 | |
Langmuir | qmax (mg.g−1) | 34.361 |
KL (L.mg−1) | 0.332 | |
R | 0.565 | |
SSE | 28.97 | |
Dubinin-Radushkevich | qmax (mg.g−1) | 42.991 |
β (mol2.J−2) | 3779 × 10−8 | |
R | 0.089 | |
SSE | ≥1000 | |
Sips | qmax (mg.g−1) | 24.150 |
Ks (L.mg−1) | 1.020 | |
n | 1.740 | |
R | 0.993 | |
SSE | 24.25 |
Adsorbent | qmax (mg.g−1) | Removal Efficiency (%) | Contact Time (min) | Initial Conc. (ppm) | Reference |
---|---|---|---|---|---|
Green synthesized iron oxide (Fe2O3) | 19.84 | 90.2 | 30 | 40 | [61] |
Graphene oxide nanoplatelets (GONPs) | 3.72 | 98.2 | 180 | 6 | [62] |
Activated carbon impregnated with TiO2 | 16.68 | 92.0 | 240 | 25 | [63] |
MOF aerogel | 5.96 | 99.3 | 720 | 3 | [64] |
LDH-CQD | 27.03 | 88.53 | 40 | 25 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrêa, F.G.; Araujo, R.J.P.; Campos, V.N.S.; Silva, M.d.S.C.; Cutrim, E.S.M.; Rojas, A.; Teixeira, M.M.; Garcia, M.A.S.; Alcântara, A.C.S. Layered Double Hydroxides Modified with Carbon Quantum Dots as Promising Materials for Pharmaceutical Removal. Minerals 2025, 15, 899. https://doi.org/10.3390/min15090899
Corrêa FG, Araujo RJP, Campos VNS, Silva MdSC, Cutrim ESM, Rojas A, Teixeira MM, Garcia MAS, Alcântara ACS. Layered Double Hydroxides Modified with Carbon Quantum Dots as Promising Materials for Pharmaceutical Removal. Minerals. 2025; 15(9):899. https://doi.org/10.3390/min15090899
Chicago/Turabian StyleCorrêa, Fernanda G., Rebecca J. P. Araujo, Vanessa N. S. Campos, Maria do Socorro C. Silva, Elaine S. M. Cutrim, Alex Rojas, Mayara M. Teixeira, Marco A. S. Garcia, and Ana C. S. Alcântara. 2025. "Layered Double Hydroxides Modified with Carbon Quantum Dots as Promising Materials for Pharmaceutical Removal" Minerals 15, no. 9: 899. https://doi.org/10.3390/min15090899
APA StyleCorrêa, F. G., Araujo, R. J. P., Campos, V. N. S., Silva, M. d. S. C., Cutrim, E. S. M., Rojas, A., Teixeira, M. M., Garcia, M. A. S., & Alcântara, A. C. S. (2025). Layered Double Hydroxides Modified with Carbon Quantum Dots as Promising Materials for Pharmaceutical Removal. Minerals, 15(9), 899. https://doi.org/10.3390/min15090899