Direct Dating of Natural Fracturing System in the Jurassic Source Rocks, NE-Iraq: Age Constraint on Multi Fracture-Filling Cements and Fractures Associated with Hydrocarbon Phases/Migration Utilizing LA ICP MS
Abstract
1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Optical Observation
4.2. The Petrographic Study of Multi-Stages of the Fracture System in the Upper Jurassic Source Rock
4.3. Electron Microprobe and Backscattering Image (BSE)
4.4. Geochronological Results
5. Interpretation and Discussion
5.1. Integrating U-Pb Direct Dating and Micropore Analyses (EMPA) for Tracking the Geochemical Evolution and Geochronology of Fracture-Filling Carbonates
5.1.1. Early Fracturing Stage (FI)
5.1.2. Transitional Early-Intermediate Fracturing Stage (FII)
5.1.3. Intermediate Burial Fracturing Stage (FIII)
5.1.4. Burial Fracturing Stage (FIV)
5.1.5. Late Burial Fracturing Stage (FV)
5.2. Geochronological Evolution of Multi-Fracture System in Upper Jurassic Formation
5.3. Hydrocarbon Migration Within Deep Burial Fracturing System: Insights from Regional Tectonic Framework, Burial History Curve, U-Pb Dating, and Hb Fluid Entrapments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Montano, D.; Gasparrini, M.; Gerdes, A.; Della Porta, G.; Albert, R. In-situ U-Pb dating of Ries Crater lacustrine carbonates (Miocene, South-West Germany): Implications for continental carbonate chronostratigraphy. Earth Planet. Sci. Lett. 2021, 568, 117011. [Google Scholar] [CrossRef]
- Rasbury, E.T.; Present, T.M.; Northrup, P.; Tappero, R.V.; Lanzirotti, A.; Cole, J.M.; Wooton, K.M.; Hatton, K. Tools for uranium characterization in carbonate samples: Case studies of natural U–Pb geochronology reference materials. Geochronology 2021, 3, 103–122. [Google Scholar] [CrossRef]
- Roberts, N.M.; Drost, K.; Horstwood, M.S.; Condon, D.J.; Drake, H.; Milodowski, A.E.; Mclean, N.M.; Smye, A.J.; Haslam, R.; Hodson, K. LA-ICP-MS U-Pb carbonate geochronology: Strategies, progress, and application to fracture-fill calcite. Geochronol. Discuss. 2020, 2, 33–61. [Google Scholar] [CrossRef]
- Salih, N.; Mansurbeg, H.; Kolo, K.; Gerdes, A.; Préat, A. In situ U-Pb dating of hydrothermal diagenesis in tectonically controlled fracturing in the Upper Cretaceous Bekhme Formation, Kurdistan Region-Iraq. Int. Geol. Rev. 2019, 62, 2261–2279. [Google Scholar] [CrossRef]
- Zhang, C.; Wen, H.; Wang, X.; Wen, L.; Shen, A.; Zhou, G.; Wang, Q.; She, M.; Ma, C.; Qiao, Z. Formational stages of natural fractures revealed by U-Pb dating and CO-Sr-Nd isotopes of dolomites in the Ediacaran Dengying Formation, Sichuan Basin, southwest China. Geol. Soc. Am. Bull. 2024, 136, 4671–4688. [Google Scholar] [CrossRef]
- Xie, H.; Tian, J. Fault activity history under absolute age constraints and its impact on hydrocarbon accumulation: A case study of the Tuoputai area in the Tarim Basin, China. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 14–19 April 2024; p. 10059. [Google Scholar]
- Xu, J.; Zhang, B.; Qin, Y.; Cao, G.; Zhang, H. Method for calculating the fracture porosity of tight-fracture reservoirs. Geophysics 2016, 81, IM57–IM70. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Nixon, C.W.; Rotevatn, A.; Sanderson, D.J.; Zuluaga, L.F. Glossary of fault and other fracture networks. J. Struct. Geol. 2016, 92, 12–29. [Google Scholar] [CrossRef]
- Tiab, D.; Donaldson, E. Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, 2nd ed.; Gulf Professional Publishing—Elsevier: Amsterdam, The Netherlands, 2003; p. 1008. [Google Scholar]
- Zhao, W.; Shen, A.; Hu, S.; Pan, W.; Zheng, J.; Qiao, Z. Types and distributional features of Cambrian-Ordovician dolostone reservoirs in Tarim Basin, northwestern China. Acta Petrol. Sin. 2012, 28, 758–768. [Google Scholar]
- Jiang, L.; Cai, C.; Worden, R.H.; Crowley, S.F.; Jia, L.; Zhang, K.; Duncan, I.J. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China. Sedimentology 2016, 63, 2130–2157. [Google Scholar] [CrossRef]
- Ren, Q.; Jin, Q.; Feng, J.; Li, M. Simulation of stress fields and quantitative prediction of fractures distribution in upper Ordovician biological limestone formation within Hetianhe field, Tarim Basin, NW China. J. Pet. Sci. Eng. 2019, 173, 1236–1253. [Google Scholar] [CrossRef]
- Amirjan, M.; Bozorg, M. Properties and corrosion behavior of Al based nanocomposite foams produced by the sintering-dissolution process. Int. J. Miner. Metall. Mater. 2018, 25, 94–101. [Google Scholar] [CrossRef]
- Weisenberger, T.B.; Eichhubl, P.; Laubach, S.E.; Fall, A. Degradation of fracture porosity in sandstone by carbonate cement, Piceance Basin, Colorado, USA. Pet. Geosci. 2019, 25, 354–370. [Google Scholar] [CrossRef]
- Warpinski, N.R.; Lorenz, J.C. Analysis of the multiwell experiment data and results: Implications for the basin-centered gas model. In Understanding, Exploring, and Developing Tight-Gas Sands; Vail Hedberg Conference: AAPG Hedberg Series; American Association of Petroleum Geologists: Tulsa, Oklahoma, 2008; pp. 157–176. [Google Scholar]
- Landry, C.J.; Eichhubl, P.; Prodanović, M.; Wilkins, S. Nanoscale grain boundary channels in fracture cement enhance flow in mudrocks. J. Geophys. Res. Solid Earth 2016, 121, 3366–3376. [Google Scholar] [CrossRef]
- Wennberg, O.P.; Casini, G.; Jonoud, S.; Peacock, D.C.P. The characteristics of open fractures in carbonate reservoirs and their impact on fluid flow: A discussion. Pet. Geosci. 2016, 22, 91–104. [Google Scholar] [CrossRef]
- Hooker, J.N.; Katz, R.F. Vein spacing in extending, layered rock: The effect of synkinematic cementation. Am. J. Sci. 2015, 315, 557–588. [Google Scholar] [CrossRef]
- Virgo, S.; Abe, S.; Urai, J.L. The evolution of crack seal vein and fracture networks in an evolving stress field: Insights from Discrete Element Models of fracture sealing. J. Geophys. Res. Solid Earth 2014, 119, 8708–8727. [Google Scholar] [CrossRef]
- Lee, H.P.; Olson, J.E.; Schultz, R.A. Interaction analysis of propagating opening mode fractures with veins using the Discrete Element Method. Int. J. Rock Mech. Min. Sci. 2018, 103, 275–288. [Google Scholar] [CrossRef]
- Aqrawi, A.; Goff, J.; Horbury, A.; Sadooni, F. The Petroleum Geology of Iraq; Scientific Press Ltd.: Beaconsfield, UK, 2010; Volume 424. [Google Scholar]
- Buday, T. The Regional Geology of Iraq. Vol. 1. Stratigraphy and Paleogeography; Publications of Geological Survey of Iraq: Baghdad, Iraq, 1980; Volume 445. [Google Scholar]
- Jassim, S.Z.; Goff, J.C. Geology of Iraq; DOLIN, sro; Geological Society of London: London, UK, 2006; Volume 445. [Google Scholar]
- Salih, N.; Préat, A.; Gerdes, A.; Konhauser, K.; Proust, J.-N. Tracking the origin and evolution of diagenetic fluids of Upper Jurassic carbonate rocks in the Zagros thrust fold Belt, NE-Iraq. Water 2021, 13, 3284. [Google Scholar] [CrossRef]
- Sharland, P.; Archer, R.; Casey, D.; Davies, R.; Hall, S.; Heward, A.; Horbury, A.; Simmons, M. Sequence stratigraphy of the Arabian Plate. GeoArabia 2001, 2, 1. [Google Scholar]
- Bellen, V.R.C.; Dunnington, H.; Wetzel, R.; Morton, D. Iraq: Lexique Stratigraphique International; Centre National de la Recherche Scientifique: Paris, France, 1959; Volume 333. [Google Scholar]
- Al-Badrani, M.; Al-Humaidi, R. Criteria of Stromatolitic Limestones in The Barsrain Formation from Surface Sections, Northeastren Iraq. Iraqi Natl. J. Earth Sci. 2019, 19, 80.80–99.80. [Google Scholar] [CrossRef]
- Daoud, H.S.; Karim, K.H. Types of Stromatolites in the Barsarin Formation (Late Jurassic), Barzinja Area, Northeast Iraq. Iraqi Bull. Geol. Min. 2010, 6, 47–57. [Google Scholar]
- Reed, S.J.B. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology; Cambridge University Press: Cambridge, UK, 2005; 182p. [Google Scholar]
- Fattah, R.; Salih, N.; Preat, A. Paragenesis and Multi-Fracture System in Jurassic Barsarin Formation: Implication from Various Burial Settings; Mosul, Iraq, 2026; Volume 26, under press. [Google Scholar]
- Cruset, D.; Vergés, J.; Albert, R.; Gerdes, A.; Benedicto, A.; Cantarero, I.; Travé, A. Quantifying deformation processes in the SE Pyrenees using U–Pb dating of fracture-filling calcites. J. Geol. Soc. 2020, 177, 1186–1196. [Google Scholar] [CrossRef]
- Veizer, J. Chemical diagenesis of carbonates: Theory and application of trace element technique. Stable Isot. Sediment. Geol. 1983, 10, 3–100. [Google Scholar]
- Choquette, P.W.; James, N.; McIlreath, I.; Morrow, D. Diagenesis. Geosci. Can. 1990, 10, 75–112. [Google Scholar]
- Brand, U.; Veizer, J. Chemical diagenesis of a multicomponent carbonate system; 2, Stable isotopes. J. Sediment. Petrol. 1980, 51, 987–997. [Google Scholar]
- Morse, J.W.; Mackenzie, F.T. Geochemistry of Sedimentary Carbonates; Elsevier: Amsterdam, The Netherlands, 1990; 706p. [Google Scholar]
- Machel, H.G. Concepts and models of dolomitization: A critical reappraisal. Geol. Soc. Lond. Spec. Publ. 2004, 235, 7–63. [Google Scholar] [CrossRef]
- Yang, L.; Xu, T.; Liu, K.; Peng, B.; Yu, Z.; Xu, X. Fluid–rock interactions during continuous diagenesis of sandstone reservoirs and their effects on reservoir porosity. Sedimentology 2017, 64, 1303–1321. [Google Scholar] [CrossRef]
- Hales, B. Respiration, dissolution, and the lysocline. Paleoceanography 2003, 18. [Google Scholar] [CrossRef]
- Davies, G.R.; Smith, L.B., Jr. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bull. 2006, 90, 1641–1690. [Google Scholar] [CrossRef]
- Warren, J. Dolomite: Occurrence, evolution and economically important associations. Earth-Sci. Rev. 2000, 52, 1–81. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, W.; Wang, X.; Lu, Y.; Wang, L.; Liao, Z.; Li, W. Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: Outlook of Mg isotopes as geothermometer and seawater proxy. Geochim. Cosmochim. Acta 2017, 208, 24–40. [Google Scholar] [CrossRef]
- Mazzullo, S.; Bischoff, W.; Lobitzer, H. Diagenesis of radiaxial fibrous calcites in a subunconformity, shallow-burial setting: Upper Triassic and Liassic, Northern Calcareous Alps, Austria. Sedimentology 1990, 37, 407–425. [Google Scholar] [CrossRef]
- Pitman, J.K.; Steinshouer, D.; Lewan, M.D. Petroleum generation and migration in the Mesopotamian Basin and Zagros Fold Belt of Iraq: Results from a basin-modeling study. GeoArabia 2004, 9, 41–72. [Google Scholar] [CrossRef]
- Arosi, H.A.; Wilson, M.E. Diagenesis and fracturing of a large-scale, syntectonic carbonate platform. Sediment. Geol. 2015, 326, 109–134. [Google Scholar] [CrossRef]
- Pas, D.; Da Silva, A.-C.; Dhital, M.R.; Boulvain, F. Sedimentology of a Mid-Late Ordovician carbonate mud-mound complex from the Kathmandu nappe in Central Nepal. J. Asian Earth Sci. 2011, 42, 452–467. [Google Scholar] [CrossRef]
- Budd, D. Cenozoic dolomites of carbonate islands: Their attributes and origin. Earth-Sci. Rev. 1997, 42, 1–47. [Google Scholar] [CrossRef]
- Travé, A.; Roca, E.; Playà, E.; Parcerisa, D.; Gómez-Gras, D.; Martín-Martín, J.D. Migration of Mn-rich fluids through normal faults and fine-grained terrigenous sediments during early development of the Neogene Vallès-Penedès half-graben (NE Spain). Geofluids 2009, 9, 303–320. [Google Scholar] [CrossRef]
- Xu, D.; Qu, Y.; Huang, L.; Dai, C.; Hu, R.; Kang, X. Authigenic calcite as a record of geologic fluids in siliciclastic rocks: Evidences from the Upper Permian Wuerhe Formation, Junggar basin, NW China. Front. Earth Sci. 2023, 10, 1007902. [Google Scholar] [CrossRef]
- Ferrill, D.A.; Sims, D.W.; Waiting, D.J.; Morris, A.P.; Franklin, N.M.; Schultz, A.L. Structural framework of the Edwards Aquifer recharge zone in south-central Texas. Geol. Soc. Am. Bull. 2004, 116, 407–418. [Google Scholar] [CrossRef]
- Wang, P.L.; Wu, J.J.; Yeh, E.C.; Song, S.R.; Chen, Y.G.; Lin, L.H. Isotopic constraints of vein carbonates on fluid sources and processes associated with the ongoing brittle deformation within the accretionary wedge of Taiwan. Terra Nova 2010, 22, 251–256. [Google Scholar] [CrossRef]
- Fontana, S.; Nader, F.H.; Morad, S.; Ceriani, A.; Al-Aasm, I.S.; Daniel, J.M.; Mengus, J.M. Fluid–rock interactions associated with regional tectonics and basin evolution. Sedimentology 2014, 61, 660–690. [Google Scholar] [CrossRef]
- Budai, J.; Martini, A.; Walter, L.M.; Ku, T. Fracture-fill calcite as a record of microbial methanogenesis and fluid migration: A case study from the Devonian Antrim Shale, Michigan Basin. Geofluids 2002, 2, 163–183. [Google Scholar] [CrossRef]
- Baqués, V.; Ukar, E.; Laubach, S.E.; Forstner, S.R.; Fall, A. Fracture, dissolution, and cementation events in Ordovician carbonate reservoirs, Tarim Basin, NW China. Geofluids 2020, 2020, 9037429. [Google Scholar] [CrossRef]
- Alonso-Zarza, A.M.; Martín-Pérez, A. Dolomite in caves: Recent dolomite formation in oxic, non-sulfate environments. Castañar Cave, Spain. Sediment. Geol. 2008, 205, 160–164. [Google Scholar] [CrossRef]
- Land, L.S. The origin of massive dolomite. J. Geol. Educ. 1985, 33, 112–125. [Google Scholar] [CrossRef]
- Adua Awejori, G.; Doughty, C.; Xiong, F.; Paronish, T.; Spycher, N.; Radonjic, M. Integrated experimental and modeling study of geochemical reactions of simple fracturing fluids with Caney Shale. Energy Fuels 2022, 36, 10064–10081. [Google Scholar] [CrossRef]
- Banner, J.L. Application of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentology 1995, 42, 805–824. [Google Scholar] [CrossRef]
- Bourg, I.C. Sealing shales versus brittle shales: A sharp threshold in the material properties and energy technology uses of fine-grained sedimentary rocks. Environ. Sci. Technol. Lett. 2015, 2, 255–259. [Google Scholar] [CrossRef]
- Salih, N.; Mansurbeg, H.; Préat, A. Geochemical and Dynamic Model of Repeated Hydrothermal Injections in Two Mesozoic Successions, Provençal Domain, Maritime Alps, SE-France. Minerals 2020, 10, 775. [Google Scholar] [CrossRef]
- Salih, N.; Mansurbeg, H.; Muchez, P.; Gerdes, A.; Préat, A. Hydrothermal Fluids and Cold Meteoric Waters along Tectonic-Controlled Open Spaces in Upper Cretaceous Carbonate Rocks, NE-Iraq: Scanning Data from In Situ U-Pb Geochronology and Microthermometry. Water 2021, 13, 3559. [Google Scholar] [CrossRef]
- Tomas, C.; Jensen, A.; Farres, A.; Ho, C.K. Minding the gap in vertebroplasty: Vertebral body fracture clefts and cement nonunion. Pain Physician 2021, 24, E221. [Google Scholar] [CrossRef] [PubMed]
- Agard, P.; Omrani, J.; Jolivet, L.; Whitechurch, H.; Vrielynck, B.; Spakman, W.; Monié, P.; Meyer, B.; Wortel, R. Zagros orogeny: A subduction-dominated process. Geol. Mag. 2011, 148, 692–725. [Google Scholar] [CrossRef]
- Salih, N.M.; Thannoun, R.G.; Bety, A.K. Hydrocarbon seepage detection by integrating remotely sensed and geochemical data: Scanning the lithological alteration. Arab. J. Geosci. 2023, 16, 153. [Google Scholar] [CrossRef]
- English, J.M.; Lunn, G.A.; Ferreira, L.; Yacu, G. Geologic evolution of the Iraqi Zagros, and its influence on the distribution of hydrocarbons in the Kurdistan region. AAPG Bull. 2015, 99, 231–272. [Google Scholar] [CrossRef]
- Beydoun, Z.; Clarke, M.H.; Stoneley, R. Petroleum in the Zagros Basin: A late Tertiary foreland basin overprinted onto the outer edge of a vast hydrocarbon-rich Paleozoic-Mesozoic passive-margin shelf. Am. Assoc. Pet. Geol. 1992, 55, 9–46. [Google Scholar]
- Al-Aasm, I.; Ghazban, F.; Ranjbaran, M. Dolomitization and related fluid evolution in the Oligocene–Miocene Asmari Formation, Gachsaran area, SW Iran: Petrographic and isotopic evidence. J. Pet. Geol. 2009, 32, 287–304. [Google Scholar] [CrossRef]
- Hessami, K.; Koyi, H.A.; Talbot, C.J.; Tabasi, H.; Shabanian, E. Progressive unconformities within an evolving foreland fold–thrust belt, Zagros Mountains. J. Geol. Soc. 2001, 158, 969–981. [Google Scholar] [CrossRef]
- Khadivi, S.; Mouthereau, F.; Larrasoaña, J.C.; Vergés, J.; Lacombe, O.; Khademi, E.; Beamud, E.; Melinte-Dobrinescu, M.; Suc, J.P. Magnetochronology of synorogenic Miocene foreland sediments in the Fars arc of the Zagros Folded Belt (SW Iran). Basin Res. 2010, 22, 918–932. [Google Scholar] [CrossRef]
- Koshnaw, R.I.; Stockli, D.F.; Schlunegger, F. Timing of the Arabia-Eurasia continental collision—Evidence from detrital zircon U-Pb geochronology of the Red Bed Series strata of the northwest Zagros hinterland, Kurdistan region of Iraq. Geology 2019, 47, 47–50. [Google Scholar] [CrossRef]
- Homke, S.; Vergés, J.; Van Der Beek, P.; Fernàndez, M.; Saura, E.; Barbero, L.; Badics, B.; Labrin, E. Insights in the exhumation history of the NW Zagros from bedrock and detrital apatite fission-track analysis: Evidence for a long-lived orogeny. Basin Res. 2010, 22, 659–680. [Google Scholar] [CrossRef]
- Vergés, J.; Saura, E.; Casciello, E.; Fernàndez, M.; Villasenor, A.; Jimenez-Munt, I.; García-Castellanos, D. Crustal-scale cross-sections across the NW Zagros belt: Implications for the Arabian margin reconstruction. Geol. Mag. 2011, 148, 739–761. [Google Scholar] [CrossRef]
- Lacombe, O.; Bellahsen, N.; Mouthereau, F. Fracture patterns in the Zagros Simply Folded Belt (Fars, Iran): Constraints on early collisional tectonic history and role of basement faults. Geol. Mag. 2011, 148, 940–963. [Google Scholar] [CrossRef]
- Abdulnaby, W.; Mahdi, H.; Numan, N.M.; Al-Shukri, H. Seismotectonics of the Bitlis–Zagros fold and thrust belt in northern Iraq and surrounding regions from moment tensor analysis. Pure Appl. Geophys. 2014, 171, 1237–1250. [Google Scholar] [CrossRef]
- Sasmaz, A.; Kryuchenko, N.; Zhovinsky, E.; Suyarko, V.; Konakci, N.; Akgul, B. Major, trace and rare earth element (REE) geochemistry of different colored fluorites in the Bobrynets region, Ukraine. Ore Geol. Rev. 2018, 102, 338–350. [Google Scholar] [CrossRef]
- Jemmali, N.; Carranza, E.J.M.; Zemmel, B. Isotope geochemistry of Mississippi Valley Type stratabound F-Ba-(Pb-Zn) ores of Hammam Zriba (Province of Zaghouan, NE Tunisia). Geochemistry 2017, 77, 477–486. [Google Scholar] [CrossRef]
- Somrani, C.; Souissi, F.; Souissi, R.; De Giudici, G.; Ferreira da Silva, E.; Fancello, D.; Podda, F.; Santos, J.F.; Abu-Alam, T.; Ribeiro, S. The Geochemical Characteristics of Ore-Forming Fluids in the Jebel Stah Fluorite Deposit in Northeast Tunisia: Insights from LA-ICP-MS and Sr Isotope Analyses. Minerals 2025, 15, 331. [Google Scholar] [CrossRef]
- Allen, P.A.; Allen, J.R. Basin Analysis: Principles and Application to Petroleum Play Assessment; John Wiley & Sons: Hoboken, NJ, USA, 2013; 549p. [Google Scholar]
- Bouhlel, S.; Fortuné, J.-P.; Guilhaumou, N.; Touray, J.-C. Les minéralisations stratiformes à F-Ba de Hammam Zriba, Jebel Guébli (Tunisie nord orientale): L’apport des études d’inclusions fluides à la modélisation génétique. Miner. Depos. 1988, 23, 166–173. [Google Scholar] [CrossRef]
- Nader, F.H.; Swennen, R.; Keppens, E. Calcitization/dedolomitization of Jurassic dolostones (Lebanon): Results from petrographic and sequential geochemical analyses. Sedimentology 2008, 55, 1467–1485. [Google Scholar] [CrossRef]
- Swennen, R.; Vandeginste, V.; Ellam, R. Genesis of zebra dolomites (Cathedral Formation: CanadianCordillera Fold and Thrust Belt, British Columbia). J. Geochem. Explor. 2003, 78, 571–577. [Google Scholar] [CrossRef]
- Spötl, C.; Pitman, J. Saddle (baroque) dolomite in carbonates and sandstones: A reappraisal of a burial-diagenetic concept. In Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998; pp. 437–460. [Google Scholar]
- Radke, B.M.; Mathis, R.L. On the formation and occurrence of saddle dolomite. J. Sediment. Res. 1980, 50, 1149–1168. [Google Scholar] [CrossRef]
- Roure, F.; Swennen, R.; Schneider, F.; Faure, J.; Ferket, H.; Guilhaumou, N.; Osadetz, K.; Robion, P.; Vandeginste, V. Incidence and importance of tectonics and natural fluid migration on reservoir evolution in foreland fold-and-thrust belts. Oil Gas Sci. Technol. 2005, 60, 67–106. [Google Scholar] [CrossRef]
S. NO. | Phase/ Fracture Paragenesis | Mineralogical Composition | CaO (%) | MgO (%) | SiO2 (%) | FeO (%) | Additional Elemental Oxides | U-Pb Dating |
---|---|---|---|---|---|---|---|---|
B17 | FI | Calcite cement | 55.55 n = 25 | 0.21 n = 25 | 0.03 n = 1 | MnO = 0.05 n = 1 SrO = 0.16 n = 1 | ||
B10 | FII | Calcite cement | 56.19 n = 23 | 0.45 n = 23 | 0.12 n = 6 | SrO = 0.15 n = 1 | 28.6 ± 2 Ma | |
FB9A, F4S9, F2S9 | FIII | Calcite cement | 56.09 n = 26 | 0.38 n = 26 | 0.03 n = 3 | 19.83 ± 0.43 Ma | ||
B14 (FA, FB, FC) | FIV | Calcite cement | 56.10 n = 22 | 0.32 n = 22 | 0.03 n = 3 | SrO = 0.07 n = 5 | 12.2 ± 1.5 Ma | |
B14 (FC), B9 (F3), SD (B19) | FV | SD | 32.01 n = 45 | 20.39 n = 45 | 0.03 n = 2 | 0.08 n = 1 | SrO = 0.10 n = 2 | 5.20 ± 0.47 Ma–5.53 ± 0.27 Ma B17 |
Fracture Stage | Sample | Initial207Pb/206Pb | 238U/206Pb | U–Pb Age (Ma) | MSWD | n Spot No. | U Content | Pb Content | Geochronological Event | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Avg (ppm) | 2sd | Avg (ppm) | 2sd | ||||||||
Fracture-filling calcite (FII) | B10 | 0.84 | 1.29–45.45 | 28.6 ± 2 | 0.46 | 14 | 1.22 | 4.02 | 0.391 | 0.966 | Early Oligocene Rupelian |
Fracture-filling calcite (FIII) | B9 | 0.82 | 6.29–296 | 19.83 ± 0.43 | 1.5 | 15 | 0.33 | 6.18 | 0.006 | 14.87 | Early Miocene Burdgalian |
Fracture-filling calcite (FIV) | B14 | 0.73 | 4.94–247.7 | 12.2 ± 1.5 | 1.04 | 11 | 0.13 | 9.7 | 0.023 | 7.27 | Middle Miocene Serreavalian |
Fracture-filling calcite (FV) | B17 | 0.83 | 65.94–731.3 | 5.53 ± 0.27 | 1.8 | 22 | 1.26 | 5.50 | 0.01 | 6.27 | Early Pliocene Zanclean |
Fracture-filling dolomite (FV) | B17 | 0.82 | 102.7–595.9 | 5.20 ± 0.47 | 3.3 | 20 | 2.42 | 4.10 | 0.022 | 4.50 | Early Pliocene Zanclean |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fattah, R.; Salih, N.; Préat, A. Direct Dating of Natural Fracturing System in the Jurassic Source Rocks, NE-Iraq: Age Constraint on Multi Fracture-Filling Cements and Fractures Associated with Hydrocarbon Phases/Migration Utilizing LA ICP MS. Minerals 2025, 15, 907. https://doi.org/10.3390/min15090907
Fattah R, Salih N, Préat A. Direct Dating of Natural Fracturing System in the Jurassic Source Rocks, NE-Iraq: Age Constraint on Multi Fracture-Filling Cements and Fractures Associated with Hydrocarbon Phases/Migration Utilizing LA ICP MS. Minerals. 2025; 15(9):907. https://doi.org/10.3390/min15090907
Chicago/Turabian StyleFattah, Rayan, Namam Salih, and Alain Préat. 2025. "Direct Dating of Natural Fracturing System in the Jurassic Source Rocks, NE-Iraq: Age Constraint on Multi Fracture-Filling Cements and Fractures Associated with Hydrocarbon Phases/Migration Utilizing LA ICP MS" Minerals 15, no. 9: 907. https://doi.org/10.3390/min15090907
APA StyleFattah, R., Salih, N., & Préat, A. (2025). Direct Dating of Natural Fracturing System in the Jurassic Source Rocks, NE-Iraq: Age Constraint on Multi Fracture-Filling Cements and Fractures Associated with Hydrocarbon Phases/Migration Utilizing LA ICP MS. Minerals, 15(9), 907. https://doi.org/10.3390/min15090907