Sustainable Use of Taveiro (Portugal) Red Clays for Structural Ceramic Applications: Mineralogical and Technological Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Geological Context
2.2. Samples Collection
2.3. Samples Preparation and Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vasić, M.; Velasco, P.; Bueno-Rodríguez, S.; Grubeša, I.; Dondi, M.; Villarejo, L.; Eliche-Quesada, D.; Zanelli, C. State and perspectives of sustainable production of traditional silicate ceramics. Open Ceram. 2024, 17, 100537. [Google Scholar] [CrossRef]
- La Noce, M.; Lo Faro, A.; Sciuto, G. Clay-Based Products Sustainable Development: Some Applications. Sustainability 2021, 13, 1364. [Google Scholar] [CrossRef]
- Rotondi, C.; Gironi, C.; Ciufo, D.; Diana, M.; Lucibello, S. Bioreceptive Ceramic Surfaces: Material Experimentations for Responsible Research and Design Innovation in Circular Economy Transition and “Ecological Augmentation”. Sustainability 2024, 16, 3208. [Google Scholar] [CrossRef]
- Javed, S.; Conte, S.; Molinari, C.; Rosa, R.; Ferrari, A.; Dondi, M.; Zanelli, C. Strategies and pathways to improve circularity in ceramic tile production. J. Clean. Prod. 2025, 517, 145788. [Google Scholar] [CrossRef]
- Vasić, M.V.; Muñoz Velasco, P.; Mijatović, N.; Radormirović, M.; Radojević, Z. Sustainable approach to raw clays for ceramic and refractory applications: Insights from updated traditional ternary diagrams. Clay Miner. 2024, 59, 202–212. [Google Scholar] [CrossRef]
- Santos, K.; Santos, S.; Vieira, M.; Santos Silva, A.; Pederneiras, C. Promoting Sustainability in the Cement Industry: Evaluating the Potential of Portuguese Calcined Clays as Clinker Substitutes for Sustainable Cement Production. Sustainability 2024, 16, 10365. [Google Scholar] [CrossRef]
- PNEC 2030. Ministério do Ambiente e da Ação Climática, Plano Nacional Energia e Clima 2030. República Portuguesa. 2020. Available online: https://apambiente.pt/sites/default/files/_Clima/PNEC/PNEC_Estrategia_PT2030.pdf (accessed on 15 June 2025).
- RNC2050. Ministério do Ambiente e da Transição Energética, Roteiro para a Neutralidade Carbónica 2050. República Portuguesa. 2019. Available online: https://apambiente.pt/_zdata/RNC2050/RNC2050_Resumo_Executivo.pdf (accessed on 15 June 2025).
- Coroado, J.; Ferraz, E.; Gomes, C.; Rocha, F. Clays from Vila Nova da Rainha (Portugal): Appraisal of their relevant properties in order to be used in construction ceramics. Acta Geodyn. Geomater. 2010, 7, 189–200. [Google Scholar]
- Lisboa, J.; Carvalho, J.; Cunha, P.; Oliveira, A. Typological classification of clayey raw materials for ceramics manufacture, in the Tábua region (central Portugal). Bull. Eng. Geol. Environ. 2013, 72, 225–232. [Google Scholar] [CrossRef]
- Candeias, C.; Santos, I.; Rocha, F. Characterization and Suitability for Ceramics Production of Clays from Bustos, Portugal. Minerals 2025, 15, 503. [Google Scholar] [CrossRef]
- Cunha, P.; Reis, R. Cretaceous sedimentary and tectonic evolution of the northern sector of the Lusitanian Basin (Portugal). Cretac. Res. 1995, 16, 155–170. [Google Scholar] [CrossRef]
- Pinheiro, L.; Wilson, R.; Reis, R. Western Iberia margin: A geophysical and geological overview. In Proceeding of the Ocean Drilling Program Scientific Results; National Science Foundation: Arlington, VA, USA, 1996; pp. 3–26. [Google Scholar]
- Wilson, R.; Hiscott, R.N.; Willis, M.; Gradstein, F. Lusitanian Basin of west-central Portugal: Mesozoic and Tertiary tectonic, stratigraphic and subsidence history. In Extensional Tectonics and Stratigraphy of the North Atlantic Margins; Tankard, A., Balkwill, B., Eds.; American Association of Petroleum Geologists Bulletin: McLean, VA, USA, 1990; Volume 46, pp. 341–361. [Google Scholar]
- Callapez, P.; Barroso-Barcenilla, F.; Berrocal-Casero, M.; Cunha, P.; Dinis, P.; Lopes, F.; Juanas, S.; Mendes, M.; Pimentel, R.; Santos, V.; et al. The Cretaceous post-rift series from the Portuguese onshore ranges of the West Iberian Margin and their history of research. Geol. Soc. Spec. Publ. 2024, 545, 157–196. [Google Scholar] [CrossRef]
- Pena dos Reis, R. A Sedimentologia de Depósitos Continentais—Dois Exemplos do Cretácico Superior—Miocénico de Portugal. Ph.D. Thesis, University of Coimbra, Coimbra, Portugal, 1983. (In Portuguese). [Google Scholar]
- Santos, H. Potencialidades de Argilas Portuguesas Para o Uso Como Materiais de Selagem em Sistemas Geoambientais de Confinamento de Resíduos. Master’s Thesis, University of Aveiro, Aveiro, Portugal, 1998. (In Portuguese). [Google Scholar]
- Brown, G.; Brindley, G. X-ray diffraction procedures for clay mineral identification. In Crystal Structures of Clay Minerals and Their X-Ray Identification; Brindley, G., Brown, G., Eds.; Mineralogical Society: London, UK, 1984. [Google Scholar]
- Biscaye, P. Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans. GSA Bull. 1965, 76, 803–832. [Google Scholar] [CrossRef]
- Candeias, C.; Novo, S.; Rocha, F. Exploring Residual Clays for Low-Impact Ceramics: Insights from a Portuguese Ceramic Region. Appl. Sci 2025, 15, 8761. [Google Scholar] [CrossRef]
- Candeias, C.; Novo, S.; Rocha, F. Clay Schists from Barrancos (Portugal): An Approach Toward Sustainable Ceramic Raw Material Use. Minerals 2025, 15, 852. [Google Scholar] [CrossRef]
- Ćirić, V.; Prekop, N.; Šeremešić, S.; Vojnov, B.; Pejić, B.; Radovanović, D.; Marinković, D. The implication of cation exchange capacity (CEC) assessment for soil quality management and improvement. Agric. For. 2023, 69, 113–133. [Google Scholar] [CrossRef]
- Tejeogue, J.; Djakba, R.; Fotsop, C.; Dobe, N.; Mouhamadou, S.; Wangmene, B.; Harouna, M. Systematic metronidazole ad-sorption performance onto montmorillonite clay: Parametric study, process modelling and RSM optimisation. Results Chem. 2025, 14, 102153. [Google Scholar] [CrossRef]
- LNEC E200-67; Determinação da Retração por Secagem de Argamassas e Betões. Laboratório Nacional de Engenharia Civil: Lisboa, Portugal, 1967.
- LNEC E202-67; Determinação da Massa Volúmica Aparente Seca de Uma Amostra Indeformada. Laboratório Nacional de Engenharia Civil: Lisboa, Portugal, 1967.
- NP 143; Determinação da Massa Volúmica Aparente e da Porosidade Aparente das Matérias Cerâmicas. Instituto Português da Qualidade: Lisboa, Portugal, 1969. (In Portuguese)
- ASTM C326-82; Standard Test Method for Drying and Firing Shrinkages of Ceramic Whiteware Clays. ASTM International: West Conshohocken, PA, USA, 1982.
- ASTM C689-97; Standard Test Method for Thermal Conductivity of Refractory Brick. ASTM International: West Conshohocken, PA, USA, 1997.
- Trindade, M.J.; Rocha, F.; Dias, M.I.; Prudêncio, M.I. Mineralogy and grain-size distribution of clay-rich rock units of the Algarve Basin (South Portugal). Clay Miner. 2013, 48, 59–83. [Google Scholar] [CrossRef]
- Dondi, M.; Raimondo, M.; Zanelli, C. Clays and bodies for ceramic tiles: Reappraisal and technological classification. Appl. Clay Sci. 2014, 96, 91–109. [Google Scholar] [CrossRef]
- Jacques, S.; González-Saborido, A.; Leynaud, O.; Bensted, J.; Tyrer, M.; Greaves, R.; Barnes, P. Structural evolution during the dehydration of gypsum materials. Miner. Magaz 2009, 73, 421–432. [Google Scholar] [CrossRef]
- López-Delgado, A.; López-Andrés, S.; Padilla, I.; Alvarez, M.; Galindo, R.; Vázquez, A. Dehydration of Gypsum Rock by Solar Energy: Preliminary Study. Geomaterials 2014, 4, 82–91. [Google Scholar] [CrossRef]
- Ferrari, S.; Gualtieri, A. The use of illitic clays in the production of stoneware tile ceramics. Appl. Clay Sci. 2006, 32, 73–81. [Google Scholar] [CrossRef]
- Dias, M.; Prudencio, M.; Rocha, F.; Jorge, A.; Ramos, A.; Albergaria, J.; Melro, S. Ceramic production from Monte da Pata 1 and Castelo das Juntas Late Iron Age sites (Guadiana Basin, Portugal): Some archaeometric results. In Proceedings of the 7th European Meeting on Ancient Ceramics (EMAC’03), Lisbon, Portugal, 27–31 October 2003; pp. 51–59, ISBN 972-8662254. Available online: https://abdn.elsevierpure.com/en/publications/ceramic-production-from-monte-da-pata-1-and-castelo-das-juntas-la (accessed on 15 June 2025).
- Kagonbé, B.; Tsozué, D.; Nzeukou, A.; Ngos, S., III. Mineralogical, Geochemical and Physico-Chemical Characterization of Clay Raw Materials from Three Clay Deposits in Northern Cameroon. J. Geos. Environ. Protec. 2021, 9, 86–99. [Google Scholar] [CrossRef]
- El Halim, M.; Daoudi, L.; El Ouahabi, M.; Amakrane, J.; Fagel, N. Mineralogy and firing characteristics of clayey materials used for ceramic purposes from Sale region (Morocco). J. Mater. Environ. Sci. 2018, 9, 1–13. [Google Scholar]
- Diko-Makia, L.; Ligege, R. Composition and Technological Properties of Clays for Structural Ceramics in Limpopo (South Africa). Minerals 2020, 10, 700. [Google Scholar] [CrossRef]
- Ramos, S.; Dantas, G.; Lira, H.; Pimentel, P.; Marciano, J. Characterization of clays of deposits new located in Parelhas/RN, Brazil, aiming for application in the ceramic industry. Matéria 2019, 24, e12352. [Google Scholar] [CrossRef]
- Mostafa, G.; Hayatullah, B.; Biswas, P.; Rahman, A.; Rana, S.; Alam, S.; Nuruzzaman, M.; Uddin, R.; Zaman, M.; Shahriar, S.; et al. Physico-chemical and Thermal behavior of Barind Red Clay from Naogaon, Bangladesh: Implications for Ceramic Industries as a Raw Material. Next Mater. 2025, 9, 101080. [Google Scholar] [CrossRef]
- Schackow, A.; Correia, S.; Effting, C. Influence of microstructural and morphological properties of raw natural clays on the reactivity of clay brick wastes in a cementitious blend matrix. Cerâmica 2020, 66, 154–163. [Google Scholar] [CrossRef]
- M’barek-Jemaï, M.; Sdiri, A.; Ben Saad, A.; Boughalmi, S.; Ouerghi, S.; Themri, M.; Chalouati, Y. Geochemical characterization and ceramic properties of Aptian clays from Bargou–Bou Arada (North West of Tunisia). Euro-Mediterr. J. Environ. Integr. 2025. [Google Scholar] [CrossRef]
- Medhioub, M.; Hajjaji, W.; Hachani, M.; Lopez-Galindo, A.; Rocha, F.; Labrincha, J.; Jamoussi, F. Ceramic Tiles Based on Central Tunisian Clays (Sidi Khalif Formation); Clay Minerals: Boulder, CO, USA, 2012. [Google Scholar] [CrossRef]
- Milošević, M.; Dabić, P.; Gulicovski, J.; Dodevski, V.; Rosić, M. Mineralogical Characterization of Raw Clay from Rujište (Serbia) Used in Traditional Pottery Manufacture. Minerals 2024, 14, 469. [Google Scholar] [CrossRef]
- Assunção, A.R.S.; Correia, G.S.; Vasconcelos, N.d.S.L.S.; Cabral, A.A.; Angélica, R.S.; da Costa, F.P.; Menezes, R.R.; de Araújo Neves, G.; Rodrigues, A.M.; Rivas-Mercury, J.M. New Clayey Deposit and Their Potential as Raw Material for Red or Structured Ceramics: Technological Characterization. Materials 2021, 14, 7672. [Google Scholar] [CrossRef]
- Weil, R.; Brady, N. The Nature and Properties of Soils, 15th ed.; Pearson: England, UK, 2017. [Google Scholar]
- Kaur, H. Forms of Potassium in Soil and their Relationship with Soil Properties—A Review. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 1580–1586. [Google Scholar] [CrossRef]
- Slade, P.; Quirk, J.; Norrish, K. Crystalline Swelling of Smectite Samples in Concentrated NaCl Solutions in Relation to Layer Charge. Clays Clay Miner. 1991, 39, 234–238. [Google Scholar] [CrossRef]
- Castro, J.; Asta, M.P.; Galve, J.P.; Azañón, J.M. Formation of Clay-Rich Layers at The Slip Surface of Slope Instabilities: The Role of Groundwater. Water 2020, 12, 2639. [Google Scholar] [CrossRef]
- Mondol, N.; Bjørlykke, K.; Jahren, J. Experimental compaction of clays: Relationship between permeability and petrophysical properties in mudstones. Pet. Geosci. 2008, 14, 319–337. [Google Scholar] [CrossRef]
- Zhang, L.; Min, F.; Wang, L.; Shu, Q. Polymeric flocculants based on the interfacial characteristics of fine clay minerals: A review. Physicochem. Probl. Miner. Process. 2022, 58, 149652. [Google Scholar] [CrossRef]
- Bhavya, K.; Nagaraj, H.B. Influence of soil structure and clay mineralogy on Atterberg limits. Sci. Rep. 2025, 15, 15459. [Google Scholar] [CrossRef] [PubMed]
- Ilyina, V.; Klimovskaya, E.; Bubnova, T. Ceramic Materials Based on Clay and Soapstone Waste: Thermo-Mechanical Properties and Application. Minerals 2023, 13, 1376. [Google Scholar] [CrossRef]
- Akintola, G.; Amponsah-Dacosta, F.; Mhlongo, S.; Matsiketa, K. Mechanical evaluation of soil and artisanal bricks for quality masonry product management, Limpopo South Africa. Sci. Rep. 2024, 14, 13921. [Google Scholar] [CrossRef] [PubMed]
- Salah, M.; Hammad, M.; Fayed, A.; Ebid, A. The influence of Bentonite content on the properties of its mixture with Kaolinite. Sci. Rep. 2025, 15, 10982. [Google Scholar] [CrossRef]
- Spagnoli, G.; Sridharan, A. Liquid limit of mixtures of smectite, kaolinite and quartz powder with water and NaCl solution. Int. J. Geotech. Eng. 2012, 6, 117–123. [Google Scholar] [CrossRef]
- Ihekweme, G.; Obianyo, I.; Orisekeh, K.; Kalu-Uka, G.; Nwuzor, I.; Onwualu, A. Plasticity characterization of certain Nigeria clay minerals for their application in ceramic water filters. Sci. Prog. 2021, 104, 368504211012148. [Google Scholar] [CrossRef]
- Guzlena, S.; Sakale, G.; Certoks, S.; Grase, L. Sand size particle amount influence on the full brick quality and technical properties. Constr. Build. Mater. 2019, 220, 102–109. [Google Scholar] [CrossRef]
- Salah, I.; Jemai, M.; Sdiri, A.; Slim, N.; Boughdiri, M. Technological Characterization and Industrial Application of Tunisian Clays from Makthar Area (Central Tunisia) in the Ceramic Industry. Open J. Geol. 2016, 6, 626–639. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Bennour, A. Characterisation and ceramic application of clays from North Africa. Appl. Earth Sci. 2022, 131, 15–26. [Google Scholar] [CrossRef]
- El Ouahabi, M.; Daoudi, L.; Hatert, F.; Fagel, N. Modified Mineral Phases During Clay Ceramic Firing. Clays Clay Miner. 2015, 63, 404–413. [Google Scholar] [CrossRef]
- Nodari, L.; Conte, S.; Casini, L.; Sisti, M.; Fantini, R.; Gualtieri, A.; Molinari, C.; Zanelli, C.; Giordano, D.; Dondi, M.; et al. Role of iron-rich clays on sintering of porcelain stoneware tiles. J. Eur. Ceram. Soc. 2025, 45, 16947. [Google Scholar] [CrossRef]
- Plevová, E.; Vaculíková, L. Thermal Behavior of Ceramic Bodies Based on Fly Ash and Smectites. Minerals 2024, 14, 334. [Google Scholar] [CrossRef]
- Fiori, C.; Fabbri, B.; Donati, G.; Venturi, I. Mineralogical composition of the clay bodies used in the Italian tile industry. Appl. Clay Sci. 1989, 4, 461–473. [Google Scholar] [CrossRef]
- Gu, X.; Ling, Y. Characterization and properties of Chinese red clay for use as ceramic and construction materials. Sci. Prog. 2024, 107, 00368504241232534. [Google Scholar] [CrossRef] [PubMed]
ID | Coordinates | Color | Associated Activity | |
---|---|---|---|---|
M | P | |||
RF1 | 169,250 | 359,250 | grayish | Ceramic industry (not active nowadays) |
RF2 | reddish | |||
RF3 | silty reddish with gray nodules | |||
RF4 | light silty reddish | |||
TV1 | 165,000 | 358,850 | grayish to reddish | Ceramic industry (not active nowadays) |
TV2 | reddish with silt | |||
TV3 | reddish | |||
RV1 | 168,050 | 357,950 | grayish | Ceramic industry |
RV2 | reddish | |||
RV3 | dark reddish (darker tone) | |||
SP1 | 168,125 | 356,500 | reddish | Ceramic industry |
SP2 | reddish | |||
SP3 | dark reddish |
ID | MgO | Al2O3 | SiO2 | CaO | TiO2 | Fe2O3 | MnO | Na2O | K2O | LOI |
---|---|---|---|---|---|---|---|---|---|---|
RF1 | 2.45 | 15.62 | 67.92 | 0.51 | 0.92 | 5.12 | 0.01 | 0.27 | 2.90 | 5.01 |
RF2 | 2.23 | 16.57 | 67.02 | 0.49 | 0.91 | 4.82 | 0.04 | 0.29 | 5.12 | 5.00 |
RF3 | 3.42 | 21.91 | 61.93 | 0.50 | 0.66 | 2.65 | 0.04 | 0.35 | 2.95 | 5.33 |
RF4 | 3.76 | 19.16 | 62.43 | 0.66 | 0.85 | 3.04 | 0.04 | 0.42 | 2.55 | 5.30 |
TV1 | 3.47 | 17.79 | 62.90 | 0.69 | 0.69 | 6.29 | 0.05 | 0.19 | 2.69 | 5.27 |
TV2 | 3.48 | 18.10 | 63.10 | 1.08 | 0.93 | 6.14 | 0.15 | 2.12 | 2.53 | 5.83 |
TV3 | 3.48 | 18.10 | 63.10 | 1.08 | 0.93 | 6.14 | 0.15 | 2.12 | 2.53 | 5.83 |
RV1 | 1.03 | 14.48 | 73.22 | 0.65 | 1.08 | 3.63 | 0.01 | 0.07 | 2.31 | 4.09 |
RV2 | 1.74 | 15.59 | 66.96 | 1.03 | 0.87 | 3.05 | 0.01 | 0.02 | 1.78 | 5.21 |
RV3 | 1.10 | 13.54 | 72.48 | 0.61 | 1.17 | 5.55 | 0.05 | 0.10 | 2.20 | 3.91 |
SP1 | 0.10 | 31.06 | 71.32 | 0.61 | 0.89 | 5.97 | 0.02 | 0.13 | 4.44 | 9.44 |
SP2 | 0.10 | 30.48 | 54.48 | 0.22 | 0.32 | 2.24 | 0.03 | 0.07 | 1.90 | 9.96 |
SP3 | 0.65 | 14.59 | 69.95 | 0.52 | 1.16 | 5.33 | 0.05 | 0.23 | 2.98 | 4.22 |
ID | SiO2/Al2O3 | MgO/Al2O3 | Na2O/Al2O3 | K2O/Al2O3 | CaO/Al2O3 | Fe2O3/Al2O3 |
---|---|---|---|---|---|---|
RF1 | 4.34 | 0.16 | 0.02 | 0.21 | 0.02 | 0.33 |
RF2 | 4.05 | 0.13 | 0.02 | 0.31 | 0.03 | 0.29 |
RF3 | 2.90 | 0.16 | 0.02 | 0.22 | 0.02 | 0.24 |
RF4 | 3.36 | 0.20 | 0.02 | 0.14 | 0.04 | 0.16 |
TV1 | 3.24 | 0.21 | 0.01 | 0.16 | 0.04 | 0.19 |
TV2 | 3.56 | 0.24 | 0.01 | 0.18 | 0.05 | 0.35 |
TV3 | 3.49 | 0.21 | 0.01 | 0.16 | 0.04 | 0.34 |
RV1 | 5.04 | 0.07 | 0.01 | 0.16 | 0.04 | 0.25 |
RV2 | 4.30 | 0.06 | 0.00 | 0.14 | 0.04 | 0.20 |
RV3 | 5.35 | 0.08 | 0.01 | 0.16 | 0.05 | 0.41 |
SP1 | 2.30 | 0.00 | 0.00 | 0.14 | 0.00 | 0.19 |
SP2 | 1.79 | 0.00 | 0.00 | 0.06 | 0.01 | 0.07 |
SP3 | 4.79 | 0.04 | 0.02 | 0.20 | 0.04 | 0.37 |
ID | CEC | Exchangeable Cations | SSA | Exp | Den | pH | PI | LL | PL | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | |||||||||
RF1 | 44.2 | 22.2 | 13.8 | 1.9 | 2.2 | 71.1 | 25.0 | 2.5 | 7.2 | 41.1 | 59.2 | 18.1 |
RF2 | 36.0 | 19.0 | 13.0 | 1.5 | 1.8 | 49.6 | 39.2 | 2.5 | 7.8 | - | - | - |
RF3 | 37.0 | 19.3 | 14.1 | 1.3 | 1.7 | 47.0 | 33.0 | 2.6 | 7.7 | - | - | - |
RF4 | 35.0 | 18.6 | 27.8 | 3.8 | 0.8 | 74.7 | 20.2 | 2.4 | 6.8 | - | - | - |
TV1 | 42.0 | 16.6 | 24.1 | 1.9 | 1.6 | 69.7 | 27.4 | 2.4 | 6.9 | - | - | - |
TV2 | 39.0 | 14.6 | 21.0 | 1.9 | 1.4 | 77.5 | 40.0 | 2.5 | 7.2 | - | - | - |
TV3 | 46.0 | 16.6 | 24.1 | 1.9 | 1.6 | 82.7 | 53.0 | 2.4 | 7.9 | 39.6 | 56.8 | 17.2 |
RV1 | 28.4 | 13.3 | 10.9 | 1.0 | 1.1 | 59.2 | 22.5 | 2.6 | 8.2 | - | - | - |
RV2 | 49.2 | 27.2 | 21.2 | 1.5 | 1.9 | 75.9 | 38.0 | 2.5 | 8.0 | 30.2 | 43.9 | 13.7 |
RV3 | 28.8 | 13.6 | 12.4 | 1.0 | 1.2 | 58.0 | 20.0 | 2.6 | 8.1 | - | - | - |
SP1 | 6.4 | 5.2 | 1.2 | 0.1 | 0.4 | 25.3 | 11.0 | 2.8 | 7.0 | - | - | - |
SP2 | 10.0 | 5.6 | 2.1 | 0.0 | 0.3 | 26.0 | 15.0 | 2.7 | 6.9 | - | - | - |
SP3 | 22.4 | 10.5 | 8.3 | 1.5 | 1.3 | 42.2 | 25.0 | 2.7 | 8.0 | 29.1 | 42.2 | 13.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candeias, C.; Santos, H.; Rocha, F. Sustainable Use of Taveiro (Portugal) Red Clays for Structural Ceramic Applications: Mineralogical and Technological Assessment. Minerals 2025, 15, 910. https://doi.org/10.3390/min15090910
Candeias C, Santos H, Rocha F. Sustainable Use of Taveiro (Portugal) Red Clays for Structural Ceramic Applications: Mineralogical and Technological Assessment. Minerals. 2025; 15(9):910. https://doi.org/10.3390/min15090910
Chicago/Turabian StyleCandeias, Carla, Helena Santos, and Fernando Rocha. 2025. "Sustainable Use of Taveiro (Portugal) Red Clays for Structural Ceramic Applications: Mineralogical and Technological Assessment" Minerals 15, no. 9: 910. https://doi.org/10.3390/min15090910
APA StyleCandeias, C., Santos, H., & Rocha, F. (2025). Sustainable Use of Taveiro (Portugal) Red Clays for Structural Ceramic Applications: Mineralogical and Technological Assessment. Minerals, 15(9), 910. https://doi.org/10.3390/min15090910