New Insights into Chromogenic Mechanism and the Genesis of Blue Jadeite from Guatemala
Abstract
1. Introduction
2. Materials and Methods
3. Geological Background
4. Results
4.1. Microstructure
4.2. XRD Analysis
4.3. Jadeite Phase
4.4. Omphacite Phase
5. Discussion
5.1. The Chromogenic Mechanism of Blue Jadeite
5.2. Composition Analysis of Blue Jadeite
5.3. Speculation on the Cause of Formation of Guatemalan Blue Jadeite
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsujimori, T.; Harlow, G.E. Petrogenetic relationships between jadeitite and associated high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: A review. Eur. J. Mineral. 2012, 24, 371–390. [Google Scholar] [CrossRef]
- Harlow, G.E.; Tsujimori, T.; Sorensen, S.S. Jadeitites and plate tectonics. Annu. Rev. Earth Planet. Sci. 2015, 43, 105–138. [Google Scholar] [CrossRef]
- Franz, L.; Sun, T.T.; Hänni, H.A.; De Capitani, C.; Thanasuthipitak, T.; Atichat, W. A comparative study of jadeite, omphacite and kosmochlor jades from Myanmar, and suggestions for a practical nomenclature. J. Gemmol. 2014, 34, 210–229. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, G. Origin of blue-water jadeite jades from Myanmar and Guatemala: Differentiation by non-destructive spectroscopic techniques. Crystals 2022, 12, 1448. [Google Scholar] [CrossRef]
- Harlow, G.E.; Quinn, E.P.; Rossman, G.R.; Rohtert, W.R. Blue omphacite from Guatemala. Gems Gemol. 2004, 40, 68–70. [Google Scholar]
- Ouyang, Q.M. Characteristics of Purple Jadeite and Its Coloring Mechanism. Master’s Thesis, University of Hong Kong, Hong Kong, China, 2001. [Google Scholar]
- Li, T.; Zhang, C.; Lv, L.; Zhang, H.; Chen, Y.; Li, Z.; Liu, Y. Color-Causing Mechanisms of Guatemala Jadeite Jade: Constraints from Spectroscopy and Chemical Compositions. Crystals 2023, 13, 1535. [Google Scholar] [CrossRef]
- Harlow, G.E.; Sorensen, S.S.; Sisson, V.B.; Shi, G.H. The geology of jade deposits. In Geology of Gem Deposits, 2nd ed.; Groat, L.A., Ed.; Mineralogical Association of Canada: Quebec City, QC, Canada, 2014; pp. 305–374. [Google Scholar]
- Hughes, R.W.; Galibert, O.; Bosshart, G.; Ward, F.; Oo, T.; Smith, M.; Sun, T.T.; Harlow, G.E. Burmese jade: The inscrutable gem. Gems Gemol. 2000, 36, 2–25. [Google Scholar] [CrossRef]
- McBirney, A.; Aoki, K.I.; Bass, M.N. Eclogites and jadeite from the Motagua fault zone, Guatemala. Am. Mineral. 1967, 52, 908–918. [Google Scholar]
- Harlow, G.E. Jade: Occurrence and metasomatic origin. Aust. Gemmol. 2001, 21, 7–10. [Google Scholar]
- Oberhänsli, R.; Bousquet, R.; Moinzadeh, H.; Moazzen, M.; Arvin, M. The field of stability of blue jadeite: A new occurrence of jadeitite at Sorkhan, Iran, as a case study. Can. Mineral. 2007, 45, 1501–1509. [Google Scholar] [CrossRef]
- Rossman, G.R. Lavender jade: The optical spectrum of Fe3+ and Fe2+→Fe3+ intervalence charge transfer in jadeite from Burma. Am. Mineral. 1974, 59, 868–870. [Google Scholar]
- Harlow, G.E.; Hemming, S.R.; Avé Lallemant, H.G.; Sisson, V.B.; Sorensen, S.S. Two high-pressure–low-temperature serpentine-matrix mélange belts, Motagua Fault Zone, Guatemala: A record of Aptian and Maastrichtian collisions. Geology 2004, 32, 17–20. [Google Scholar] [CrossRef]
- Abduriyim, A.; Saruwatari, K.; Katsurada, Y. Japanese jadeite: History, characteristics, and comparison with other sources. Gems Gemol. 2017, 53, 48–67. [Google Scholar] [CrossRef]
- Shinno, I.; Oba, T. Absorption and photo-luminescence spectra of Ti3+ and Fe3+ in jadeites. Mineral. J. 1993, 16, 378–386. [Google Scholar] [CrossRef]
- Yuan, X.Q.; Qi, L.J.; Du, G.P.; Li, J.Z. Characteristics and significance of UV-Vis-NIR spectra of Myanmar jadeite. J. Gems Gemmol. 2003, 5, 11–16. [Google Scholar]
- Tsujimori, T.; Liou, J.G.; Coleman, R.G. Coexisting retrograde jadeite and omphacite in a jadeite-bearing lawsonite eclogite from the Motagua Fault Zone, Guatemala. Am. Mineral. 2005, 90, 836–842. [Google Scholar] [CrossRef]
- Schertl, H.P.; Maresch, W.V.; Stanek, K.P.; Hertwig, A.; Krebs, M.; Baese, R.; Sergeev, S.S. New occurrences of jadeitite, jadeite quartzite and jadeite–lawsonite quartzite in the Dominican Republic, Hispaniola. Eur. J. Mineral. 2012, 24, 199–216. [Google Scholar] [CrossRef]
- Flores, K.; Harlow, G.E.; Martens, U.; Brueckner, H.K.; Pearson, N. Jadeitite formed during subduction: Zircon geochronology constraints for two different tectonic events in the Guatemala suture zone. Earth Planet. Sci. Lett. 2013, 371–372, 67–81. [Google Scholar] [CrossRef]
- Harlow, G.E. Jadeitites, albitites and related rocks from the Motagua Fault Zone, Guatemala. J. Metamorph. Geol. 1994, 12, 49–68. [Google Scholar] [CrossRef]
- Brueckner, H.K.; Avé Lallemant, H.G.; Sisson, V.B.; Harlow, G.E.; Hemming, S.R.; Martens, U.; Tsujimori, T.; Sorensen, S.S. Metamorphic reworking of a high pressure-low temperature mélange along the Motagua fault, Guatemala: A record of Neocomian and Maastrichtian transpressional tectonics. Earth Planet. Sci. Lett. 2009, 284, 228–235. [Google Scholar] [CrossRef]
- Harlow, G.E.; Flores, K.E.; Marschall, H.R. Fluid-mediated mass transfer from a paleosubduction channel to its mantle wedge. Lithos 2016, 258–259, 15–36. [Google Scholar] [CrossRef]
- Harlow, G.E.; Sisson, V.B.; Sorensen, S.S. Jadeitite from Guatemala: Distinctions among multiple occurrences. Geol. Acta 2011, 9, 363–387. [Google Scholar] [CrossRef]
- Bonnet, G.; Flores, K.E.; Martin, C.; Harlow, G.E. Unraveling the polymetamorphic history of garnet-bearing metabasites: Insights from the North Motagua Mélange (Guatemala Suture Zone). Presented at the Fall Meeting, AGU, San Francisco, CA, USA, 15–19 December 2014; p. V43B-4882. [Google Scholar]
- Tsujimori, T.; Sisson, V.B.; Liou, J.G.; Harlow, G.E.; Sorensen, S.S. Petrologic characterization of Guatemalan lawsonite eclogite: Eclogitization of subducted oceanic crust in a cold subduction zone. In Ultrahigh-Pressure Metamorphism: Deep Continental Subduction; Hacker, B.R., McClelland, W.C., Liou, J.G., Eds.; Geological Society of America Special Paper 403; Geological Society of America: Boulder, CO, USA, 2006; pp. 147–168. [Google Scholar] [CrossRef]
- Tsujimori, T.; Sisson, V.B.; Liou, J.G.; Harlow, G.E.; Sorensen, S.S. Very low-temperature record in subduction process: A review of worldwide lawsonite eclogites. Lithos 2006, 92, 609–624. [Google Scholar] [CrossRef]
- Endo, S.; Wallis, S.R.; Tsuboi, M.; Torres de León, R.; Solari, L.A. Metamorphic evolution of lawsonite eclogites from the southern Motagua fault zone, Guatemala: Insights from phase equilibria and Raman spectroscopy. J. Metamorph. Geol. 2011, 30, 143–164. [Google Scholar] [CrossRef]
- Fu, B.; Valley, J.W.; Kita, N.T.; Spicuzza, M.J.; Paton, C.; Tsujimori, T.; Bröcker, M.; Harlow, G.E. Origin of zircons in jadeitite. Contrib. Mineral. Petrol. 2010, 159, 769–780. [Google Scholar] [CrossRef]
- Yui, T.-F.; Maki, K.; Usuki, T.; Lan, C.-Y.; Martens, U.; Wu, C.-M.; Wu, T.-W.; Liou, J.G. Genesis of Guatemala jadeitite and related fluid characteristics: Insight from zircon. Chem. Geol. 2010, 270, 45–55. [Google Scholar] [CrossRef]
- Yui, T.-F.; Maki, K.; Wang, K.L.; Lan, C.Y.; Usuki, T.; Iizuka, Y.; Wu, C.M.; Wu, T.W.; Nishiyama, T.; Martens, U.; et al. Hf isotope and REE composition of zircon from jadeitite (Tone, Japan and north of the Motagua fault, Guatemala): Implications on jadeitite genesis and possible protoliths. Eur. J. Mineral. 2012, 24, 263–275. [Google Scholar] [CrossRef]
- Sorensen, S.S.; Harlow, G.E.; Rumble, D. The origin of jadeitite-forming subduction-zone fluids: CL-guided SIMS oxygen-isotope evidence. Am. Mineral. 2006, 91, 979–996. [Google Scholar] [CrossRef]
- Lin, C.; He, X.; Lu, Z.; Yao, Y. Phase composition and genesis of pyroxenic jadeite from Guatemala: Insights from cathodoluminescence. RSC Adv. 2020, 10, 15937–15946. [Google Scholar] [CrossRef]
- Dopfel, E.C. The Chemical Activators of Cathodoluminescence in Jadeite. Bachelor’s Thesis, Mount Holyoke College, South Hadley, MA, USA, 2006. [Google Scholar]
- Takahashi, N.; Tsujimori, T.; Kayama, M.; Nishido, H. Cathodoluminescence petrography of P-type jadeitites from the New Idria serpentinite body, California. J. Mineral. Petrol. Sci. 2017, 112, 291–299. [Google Scholar] [CrossRef]
- Morimoto, N. Nomenclature of Pyroxenes. Mineral. Petrol. 1988, 39, 55–76. [Google Scholar] [CrossRef]
- Coleman, R.G. Ophiolites and accretion of the North American Cordillera. Bull. Soc. Géol. Fr. 1986, 8, 961–968. [Google Scholar] [CrossRef]
- Droop, G.T.R. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 1987, 51, 431–435. [Google Scholar] [CrossRef]
- Huang, E.; Chen, C.H.; Huang, T.; Lin, E.H.; Xu, J.A. Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes. Am. Mineral. 2000, 85, 473–479. [Google Scholar] [CrossRef]
- Götze, J. Application of cathodoluminescence in geosciences. Microsc. Microanal. 2012, 18, 1270–1284. [Google Scholar] [CrossRef]
- Shi, G.H.; Stöckhert, B.; Cui, W.Y. Kosmochlor and chromian jadeite aggregates from the Myanmar jadeitite area. Miner. Mag. 2005, 69, 1059–1075. [Google Scholar] [CrossRef]
- Götze, J.; Krbetschek, M.R.; Habermann, D.; Wold, D. High-resolution cathodoluminescence of feldspar minerals. In Cathodoluminescence in Geosciences; Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D., Eds.; Springer: Berlin, Germany, 2000; pp. 245–270. [Google Scholar]
- Harlow, G.E.; Sorensen, S.S. Jade (nephrite and jadeitite) and serpentinite: Metasomatic connections. Int. Geol. Rev. 2005, 47, 113–146. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Gao, L.L. Theoretical basis and research status of optical and magnetic properties of 3d transition metal ions in crystals. J. Sichuan Norm. Univ. (Nat. Sci.) 2011, 34, 569–582. [Google Scholar]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
Comment | Lig.B-1 | Lig.B-2 | Lig.B-3 | Maz.B-1 | Maz.B-2 | Maz.B-3 | Mot.B-1 | Mot.B-2 | Mot.B-3 |
---|---|---|---|---|---|---|---|---|---|
SiO2 | 58.39 | 59.70 | 59.22 | 58.48 | 59.44 | 57.94 | 57.32 | 57.79 | 57.79 |
TiO2 | 0.21 | 0.27 | 0.16 | 0.04 | 0.00 | 0.06 | 0.15 | 0.07 | 0.11 |
Al2O3 | 22.04 | 23.40 | 25.77 | 25.78 | 25.56 | 25.97 | 20.49 | 25.02 | 21.61 |
Cr2O3 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.04 | 0.07 | 0.00 |
Fe2O3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
FeO | 1.63 | 1.38 | 0.55 | 0.27 | 0.18 | 0.22 | 1.91 | 0.24 | 2.18 |
MnO | 0.00 | 0.00 | 0.00 | 0.04 | 0.07 | 0.06 | 0.10 | 0.00 | 0.04 |
MgO | 2.24 | 1.35 | 0.46 | 0.23 | 0.36 | 0.20 | 2.27 | 0.12 | 1.81 |
CaO | 2.82 | 1.83 | 0.58 | 0.37 | 0.33 | 0.23 | 3.42 | 0.31 | 2.87 |
Na2O | 13.61 | 14.27 | 14.78 | 14.43 | 14.28 | 15.08 | 12.63 | 14.49 | 13.09 |
K2O | 0.00 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.00 | 0.01 |
Total | 100.94 | 102.21 | 101.53 | 99.69 | 100.24 | 99.77 | 98.34 | 98.11 | 99.49 |
End- members | |||||||||
Q(quartz) | 10.75 | 7.59 | 2.98 | 1.70 | 1.85 | 0.93 | 14.55 | 1.23 | 12.22 |
Jd(jadeite) | 82.90 | 90.45 | 97.02 | 98.30 | 98.15 | 94.94 | 84.39 | 98.76 | 86.01 |
Ae(aegirine) | 6.34 | 1.96 | 0.00 | 0.00 | 0.00 | 4.13 | 1.06 | 0.01 | 1.76 |
Name | Jd | Jd | Jd | Jd | Jd | Jd | Jd | Jd | Jd |
Comment | Lak.B-1 | Lak.B-2 | Lak.B-3 | Opa.B-2 | Opa.B-5 | Opa.B-6 | |||
SiO2 | 57.48 | 58.39 | 58.42 | 57.77 | 59.33 | 58.71 | |||
TiO2 | 0.07 | 0.08 | 0.23 | 0.02 | 0.00 | 0.06 | |||
Al2O3 | 24.04 | 24.96 | 22.54 | 21.92 | 24.90 | 25.20 | |||
Cr2O3 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.01 | |||
Fe2O3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |||
FeO | 0.66 | 0.72 | 1.27 | 0.66 | 0.26 | 0.56 | |||
MnO | 0.00 | 0.09 | 0.00 | 0.08 | 0.02 | 0.02 | |||
MgO | 0.73 | 0.29 | 1.27 | 2.10 | 0.09 | 0.28 | |||
CaO | 0.75 | 0.41 | 1.37 | 3.02 | 0.28 | 0.69 | |||
Na2O | 14.36 | 14.52 | 13.64 | 12.29 | 14.84 | 14.61 | |||
K2O | 0.01 | 0.00 | 0.00 | 0.03 | 0.02 | 0.00 | |||
Total | 98.10 | 99.46 | 98.77 | 97.88 | 99.73 | 100.13 | |||
End- members | |||||||||
Q(quartz) | 3.28 | 2.56 | 7.73 | 7.56 | 0.64 | 2.71 | |||
Jd(jadeite) | 94.68 | 97.43 | 92.26 | 92.44 | 98.87 | 97.15 | |||
Ae(aegirine) | 2.04 | 0.01 | 0.01 | 0.00 | 0.49 | 0.15 | |||
Name | Jd | Jd | Jd | Jd | Jd | Jd |
Comment | Bla.B-1 | Bla.B-2 | Bla.B-3 | Bla.B-4 | Bla.B-5 | Lak.B-7 | Opa.B-1 | Opa.B-3 | Opa.B-4 |
---|---|---|---|---|---|---|---|---|---|
SiO2 | 58.27 | 59.01 | 57.07 | 58.17 | 59.11 | 57.14 | 57.92 | 57.99 | 55.66 |
TiO2 | 0.07 | 0.23 | 0.11 | 0.22 | 0.20 | 0.06 | 0.03 | 0.07 | 0.00 |
Al2O3 | 18.91 | 19.34 | 17.20 | 19.19 | 20.02 | 20.48 | 10.03 | 13.11 | 6.65 |
Cr2O3 | 0.07 | 0.08 | 0.00 | 0.09 | 0.14 | 0.05 | 0.00 | 0.05 | 0.05 |
Fe2O3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
FeO | 1.19 | 1.39 | 1.35 | 1.73 | 1.33 | 0.87 | 2.26 | 1.05 | 2.05 |
MnO | 0.09 | 0.07 | 0.16 | 0.00 | 0.01 | 0.00 | 0.01 | 0.07 | 0.01 |
MgO | 3.99 | 3.56 | 5.31 | 3.55 | 3.46 | 2.52 | 9.92 | 8.14 | 12.28 |
CaO | 6.56 | 5.33 | 8.52 | 5.54 | 5.08 | 2.84 | 15.48 | 11.91 | 18.50 |
Na2O | 11.37 | 11.95 | 9.83 | 11.33 | 11.98 | 13.59 | 6.42 | 8.01 | 4.14 |
K2O | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 |
Total | 100.52 | 100.96 | 99.54 | 99.82 | 101.31 | 97.56 | 102.08 | 100.38 | 99.34 |
End- members | |||||||||
Q(quartz) | 24.06 | 20.81 | 32.30 | 22.38 | 20.14 | 11.43 | 39.97 | 29.11 | 55.25 |
Jd(jadeite) | 75.94 | 79.19 | 67.70 | 77.62 | 79.86 | 78.72 | 51.75 | 67.07 | 36.67 |
Ae(aegirine) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 9.86 | 8.28 | 3.82 | 8.08 |
Name | Omp | Omp | Omp | Omp | Omp | Omp | Omp | Omp | Omp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xu, B.; Zhao, S.; Zhao, M.; Li, Z.; Hao, W. New Insights into Chromogenic Mechanism and the Genesis of Blue Jadeite from Guatemala. Minerals 2025, 15, 963. https://doi.org/10.3390/min15090963
Liu Y, Xu B, Zhao S, Zhao M, Li Z, Hao W. New Insights into Chromogenic Mechanism and the Genesis of Blue Jadeite from Guatemala. Minerals. 2025; 15(9):963. https://doi.org/10.3390/min15090963
Chicago/Turabian StyleLiu, Yining, Bo Xu, Siyi Zhao, Mengxi Zhao, Zitong Li, and Wenxin Hao. 2025. "New Insights into Chromogenic Mechanism and the Genesis of Blue Jadeite from Guatemala" Minerals 15, no. 9: 963. https://doi.org/10.3390/min15090963
APA StyleLiu, Y., Xu, B., Zhao, S., Zhao, M., Li, Z., & Hao, W. (2025). New Insights into Chromogenic Mechanism and the Genesis of Blue Jadeite from Guatemala. Minerals, 15(9), 963. https://doi.org/10.3390/min15090963