Contaminants Removal from Construction and Demolition Waste (CDW) with Water Jigs
Abstract
1. Introduction
1.1. CDW Processing
1.2. Jig Process
2. Materials and Methods
2.1. Sample Preparation
2.2. Materials Characterization
- Form Factor
2.2.1. Granulometric and Densimetric Distribution
2.2.2. Specific Density (OD), Saturated Specific Density (SSD), Apparent Density (OD), and Water Absorption
2.3. Jigging Equipment
2.4. Concentration Tests
3. Results and Discussion
3.1. Physical Characterization of Materials
3.1.1. Physical Properties Analysis
3.1.2. Granulometric Distribution
3.1.3. Densimetric Distribution
3.2. Jig Concentration Tests
Generated Material Analysis
4. Future Trends
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. Waste Statistics in Europe. 2023. Available online: http://epp.eurostat.ec.europa.eu/ (accessed on 5 January 2024).
- European Environment Agency, EU as a Recycling Society—Present Recycling Levels of Municipal Waste and Construction & Demolition Waste in the EU. 2009. Available online: https://ec.europa.eu/eurostat/web/main/home (accessed on 8 January 2024).
- European Commission—Waste Statistics. 2023. Available online: http://ec.europa.eu/environment/waste/pdf/2011_CDW_Report.pdf (accessed on 5 January 2024).
- Directive, E. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Off. J. Eur. Union 2008, 312, 3. [Google Scholar]
- Reis, G.S.; Quattrone, M.; Ambrós, W.M.; Cazacliu, B.G.; Sampaio, C.H. Current Applications of Recycled Aggregates from Construction and Demolition: A Review. Materials 2021, 14, 1700. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.; de Brito, J. Environmental analysis of a construction and demolition waste recycling plant in Portugal—Part II: Environmental sensitivity analysis. Waste Manag. 2013, 33, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.; de Brito, J. Environmental analysis of a construction and demolition waste recycling plant in Portugal—Part I: Energy consumption and CO2 emissions. Waste Manag. 2013, 33, 1258–1267. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.A.L.; Ramon, X.R.; Mercedes, C.M.L.; Domingo, S.G. Multicriteria analysis of the environmental and economic performance of circularity strategies for concrete waste recycling in Spain. Waste Manag. 2022, 144, 387–400. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, A.T.W.; Shen, L.; Liu, G. Quantifying construction and demolition waste: An analytical review. Waste Manag. 2014, 34, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Hua, K.; Chen, Y.; Naz, F.; Zeng, C.; Cao, S. Separation studies of concrete and brick from construction and demolition waste. Waste Manag. 2019, 85, 396–404. [Google Scholar] [CrossRef] [PubMed]
- WoollacottL, C.; Silwamba, M. An experimental study of size segregation in a batch jig. Miner. Eng. 2016, 94, 41–50. [Google Scholar] [CrossRef]
- Crespo, E.F. Modeling segregation and dispersion in jigging beds in terms of the bed porosity distribution. Miner. Eng. 2016, 85, 38–48. [Google Scholar] [CrossRef]
- Ambrós, W.M.; Sampaio, C.H.; Cazacliu, B.G.; Miltzarek, G.L.; Miranda, L.R. Usage of air jigging for multi-component separation of construction and demolition waste. Waste Manag. 2017, 60, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, A.; Bravo, M.; Iezzi, G.; Cruciani, G.; Paris, E.; Brito, J.d. Physico-Mechanical Performances of Cement Pastes Prepared with Sorted Earthquake Rubble: The Role of CDW Type and Contained Crystalline Phases. Materials 2023, 16, 2855. [Google Scholar] [CrossRef]
- Galderisi, A.; Iezzi, G.; Bianchini, G.; Paris, E.; Brito, E. Petrography of construction and demolition waste (CDW) from the Abruzzo region (Central Italy). Waste Manag. 2022, 137, 61–71. [Google Scholar] [CrossRef]
- Agrela, F.; Sánchez de Juan, M.; Ayuso, J.; Geraldes, V.L.; Jiménez, J.R. Limiting properties in the characterization of mixed recycled aggregates for use in the manufacture of concrete. Constr. Build. Mater. 2011, 25, 3950–3955. [Google Scholar] [CrossRef]
- BS EN 1744-1:2009+A1:2012; Tests for Chemical Properties of Aggregates. British Standards Institution: London, UK, 2012. Available online: https://www.en-standard.eu/bs-en-1744-1-2009-a1-2012-tests-for-chemical-properties-of-aggregates-chemical-analysis/?gad_source=1&gclid=Cj0KCQjwztOwBhD7ARIsAPDKnkDtSqMI-EmuUeYnaH3e74kTHqz3qP2t2ZjUC8RV7Sm-in3z8cW7qu4aAvaoEALw_wcB (accessed on 9 January 2024).
- Jiménez, J.R.; Ayuso, J.; Agrela, F.; López, M.; Galvín, A.P. Utilisation of unbound recycled aggregates from selected CDW in unpaved rural roads. Resour. Conserv. Recycl. 2012, 58, 88–97. [Google Scholar] [CrossRef]
- Neville, A. The confused world of sulfate attack on concrete. Cem. Concr. Res. 2004, 34, 1275–1296. [Google Scholar] [CrossRef]
- Cazacliu, B.; Sampaio, C.H.; Petter, C.O.; Miltzarek, G.L.; Guen, L.L.; Paranhos, R.S.; Huchet, F.; Kirchheim, A.P. The potential of using air jigging to sort recycled aggregates. J. Clean. Prod. 2014, 66, 46–53. [Google Scholar] [CrossRef]
- Ambrós, W.M. Jigging: A Review of Fundamentals and Future Directions. Minerals 2020, 10, 998. [Google Scholar] [CrossRef]
- Mayer, F. A new theory concerning the mechanism of settling with its consequences for the rational shape of the diagram of the washing stroke and development of the corresponding regulator of a non-plunger jig. In Proceedings of the 1st International Coal Preparation Conference, Paper A7, Paris, France, 12–17 June 1950; pp. 316–322. [Google Scholar]
- Mayer, F. Fundamentals of a potential theory of the jigging process. In Proceedings of the 7th International Mineral Processing Congress, New York, NY, USA, 20–24 September 1964; pp. 75–86. [Google Scholar]
- Royal Decree 1247; (EHE-08): Structural Concrete Instruction. 2008. Available online: https://www.boe.es/boe/dias/2008/08/22/pdfs/C00001-00304.pdf (accessed on 12 January 2024).
- Spanish Normative-EN 13279-1:2008; Gypsum Binders and Gypsum Plasters—Part 1: Definitions and Requirements. European Committee for Standardization: Brussels, Belgium, 2008. Available online: https://standards.iteh.ai/catalog/standards/cen/3330e92c-2203-4118-934c-da6b441a6cb3/en-13279-1-2008 (accessed on 12 January 2024).
- British Standard-EN 933-4; Tests for Geometrical Properties of Aggregates. Part 4: Determination of Particle Shape—Shape Index. European Committee for Standardization: Brussels, Belgium, 2008. Available online: https://www.en-standard.eu/une-en-933-4-2008-tests-for-geometrical-properties-of-aggregates-part-4-determination-of-particle-shape-shape-index (accessed on 8 January 2024).
- ASTM C127-07; Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. ASTM: West Conshohocken, PA, USA, 2009.
- Brito, J.; Saikia, N. Recycled Aggregate in Concrete—Use of Industrial, Construction, and Demolition Waste; Springer: London, UK, 2013; Chapter 3; p. 81. [Google Scholar]
- Teixeira, A.B.; Sampaio, C.H.; Moncunill, J.O.; Cortina Palas, J.L.; Lima, M.M.D.; La Rosa, G.T.H. Analysis of Physical Properties of Coarse Aggregates Recovered from Demolished Concrete with a Two-Stage Water Jigs Process for Reuse as Aggregates in Concrete. Buildings 2024, 14, 2226. [Google Scholar] [CrossRef]
Materials | Weight (kg) | Weight (Wt%) | Bulk Volume | Bed Height (cm) |
---|---|---|---|---|
Test—T1 | ||||
Concrete | 21.982 | 90% | 94.0% | 18 |
Brick | 1.221 | 5% | 3.5% | |
Gypsum | 1.221 | 5% | 2.5% | |
Total | 24.424 | 100% | 100% | |
Material ρ > 2.6 g/cm3 | 7.474 | 31% | 31% | |
Test—T2 | ||||
Concrete | 19.541 | 80% | 87.0% | 18 |
Brick | 2.442 | 10% | 8.0% | |
Gypsum | 2.442 | 10% | 5.0% | |
Total | 24.425 | 100% | 100% | |
Material ρ > 2.6 g/cm3 | 6.644 | 27% | 29% | |
Test—T3 | ||||
Concrete | 17.099 | 70% | 78.0% | 18 |
Brick | 3.663 | 15% | 12.5% | |
Gypsum | 3.663 | 15% | 9.5% | |
Total | 24.425 | 100% | 100% | |
Material ρ > 2.6 g/cm3 | 5.814 | 24% | 26% |
Material | Specific Density (OD) (g/cm3) | Specific Density (SSD) (g/cm3) | Bulk Density (g/cm3) | Water Absorption (%) | Form Factor |
---|---|---|---|---|---|
Concrete | 2.04 ± 0.01 | 2.13 ± 0.01 | 1.37 ± 0.01 | 4.93 ± 0.03 | 2.19 |
Brick | 1.77 ± 0.02 | 2.03 ± 0.02 | 1.03 ± 0.01 | 13.26 ± 0.04 | 3.49 |
Gypsum | 1.11 ± 0.02 | 1.62 ± 0.02 | 0.64 ± 0.01 | 46.92 ± 0.08 | 2.22 |
Test | Component | Feed (%) | Light Product | Middling Product | Dense Product | |||
---|---|---|---|---|---|---|---|---|
Recovery (%) | Ratio (%) | Recovery (%) | Ratio (%) | Recovery (%) | Ratio (%) | |||
T1 | Concrete | 90.0 | 15.3 | 66.0 | 29.0 | 95.4 | 55.7 | 99.6 |
Gypsum | 5.0 | 92.1 | 18.0 | 6.4 | 1.0 | 1.3 | 0.1 | |
Brick | 5.0 | 76.0 | 16.0 | 21.3 | 3.5 | 2.1 | 0.2 | |
>2.6 g/cm3 | 31.0 | 5.0 | 9.2 | 12.7 | 12.9 | 82.3 | 45.9 | |
T2 | Concrete | 80.0 | 18.6 | 46.8 | 32.8 | 90.1 | 48.6 | 99.4 |
Gypsum | 10.0 | 94.1 | 29.5 | 5.4 | 1.8 | 0.6 | 0.1 | |
Brick | 10.0 | 75.1 | 23.7 | 23.4 | 8.0 | 1.5 | 0.3 | |
>2.6 g/cm3 | 27.0 | 2.7 | 2.3 | 17.0 | 15.8 | 80.3 | 55.9 | |
T3 | Concrete | 70.0 | 4.9 | 13.5 | 34.7 | 75.2 | 60.4 | 99.4 |
Gypsum | 15.0 | 98.6 | 58.1 | 1.3 | 0.6 | 0.6 | 0.2 | |
Brick | 15.0 | 47.1 | 28.4 | 51.8 | 23.4 | 1.1 | 0.4 | |
>2.6 g/cm3 | 24.0 | 1.9 | 1.7 | 12.6 | 9.2 | 85.6 | 47.2 |
Sample | Specific Density (SSD) (g/cm3) | Specific Density (OD) (g/cm3) | Bulk Density (OD) (g/cm3) | Water Absorption (%) | Form Factor |
---|---|---|---|---|---|
T1 | 1.66 ± 0.02 | 1.50 ± 0.02 | 1.71 ± 0.02 | 8.08 ± 0.05 | 2.12 |
T2 | 1.76 ± 0.03 | 1.64 ± 0.04 | 2.05 ± 0.05 | 13.01 ± 0.02 | 1.82 |
T3 | 1.84 ± 0.04 | 1.63 ± 0.02 | 2.10 ± 0.03 | 14.67 ± 0.22 | 1.95 |
DP3 | 2.52 ± 0.04 | 2.49 ± 0.06 | 1.44 ± 0.06 | 4.78 ± 0.04 | 2.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barkat, H.; Teixeira, A.B.; Sampaio, C.H.; Moncunill, J.O. Contaminants Removal from Construction and Demolition Waste (CDW) with Water Jigs. Minerals 2025, 15, 981. https://doi.org/10.3390/min15090981
Barkat H, Teixeira AB, Sampaio CH, Moncunill JO. Contaminants Removal from Construction and Demolition Waste (CDW) with Water Jigs. Minerals. 2025; 15(9):981. https://doi.org/10.3390/min15090981
Chicago/Turabian StyleBarkat, Hassan, Artur Bressanelli Teixeira, Carlos Hoffmann Sampaio, and Josep Oliva Moncunill. 2025. "Contaminants Removal from Construction and Demolition Waste (CDW) with Water Jigs" Minerals 15, no. 9: 981. https://doi.org/10.3390/min15090981
APA StyleBarkat, H., Teixeira, A. B., Sampaio, C. H., & Moncunill, J. O. (2025). Contaminants Removal from Construction and Demolition Waste (CDW) with Water Jigs. Minerals, 15(9), 981. https://doi.org/10.3390/min15090981