Copper Isotope Constraints on the Genesis of the Keweenaw Peninsula Native Copper District, Michigan, USA
Abstract
:1. Introduction
2. Geologic Setting
2.1. Native Copper Deposits
2.2. Model of Native Copper Deposition
3. Analytical Methods
4. Copper Isotopic Composition of Keweenaw Native Copper
5. Discussion
5.1. Initial δ65Cu Composition of Source Rocks
5.2. Copper Oxidation State in the Source Rocks
5.3. Constraint on the δ65Cu Composition of the Ore-Forming Fluids
5.4. Derivation of the δ65Cu in the Ore-Forming Fluids
5.5. Anomalous δ65Cu
5.6. Keweenaw Copper Derivation Model
6. Conclusions
- (1)
- The δ65Cu of native copper is visually a single population, normally distributed, similar between mines spread along a strike length of about 120 km, and limited in variation of 1.1‰. This favors a regionally consistent process to derive copper from source rocks and is compatible with the well-established genetic hypothesis wherein copper was leached from the rift-filling basalt-dominated stratigraphic section during burial metamorphism.
- (2)
- The reduction of native copper from the ore-forming hydrothermal fluids constrains the δ65Cu of the fluids to a value of δ65Cu +0.80‰ or higher. This supports the hypothesis that the dissolution of copper from rift-filling basalt source rocks with magmatic copper isotopic composition involved the oxidation of copper into the fluids.
- (3)
- The contribution of copper to the ore-forming hydrothermal fluids by the reductive dissolution of copper from red-bed sedimentary rocks (overlying rift-filling basalt dominated stratigraphic section) by evolved meteoric water, as described by Brown [45,48], is limited to small amounts or else it is difficult to explain the copper isotopic data. A hybrid evolved meteoric and metamorphogenic water model is not supported by the copper isotope data or by geologic arguments and inferences.
- (4)
- The dissolution of copper by oxidation strongly suggests that the oxidation state of copper in the rift-filling basalt source rocks was magmatic Cu0 (native copper). Magmatic native copper crystallized in the rift-filling basalt magmas and provided a large volume of relatively uniform source rocks. The restricted range of δ65Cu for native copper from the native copper ore deposits is consistent with progressive batches of metamorphogenic ore-forming fluids with similar copper isotopic composition generated over an extended period of time from source rocks, in which generally uniformly distributed native copper had a magmatic isotopic composition. It is likely that the magmas were low in sulfur prior to eruption as this would have been necessary for magmatic native copper to be stable.
- (5)
- As the ore-forming fluids moved upwards they did not acquire sulfur, as they were moving through the same stratigraphic section as the low sulfur source rocks. At depth beneath the surface, reductive precipitation of native copper from the metamorphogenic ore-forming hydrothermal fluids was facilitated by the mixing with meteoric waters, water-rock reactions, and other physicochemical changes. It is likely that a local variation of the native copper δ65Cu was mostly controlled by the efficiency of reductive precipitation.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shields, W.R.; Goldich, S.S.; Garner, E.L.; Murphy, T.J. Natural variations in the abundance ratio and the atomic weight of copper. J. Geophys. Res. 1963, 70, 479–491. [Google Scholar] [CrossRef]
- Maréchal, C.N.; Telouk, P.; Albarede, F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem. Geol. 1999, 156, 251–273. [Google Scholar] [CrossRef]
- Gale, N.H.; Woodhead, A.P.; Stoc-Gale, Z.A.; Walder, A.; Bowen, I. Natural variations detected in the isotopic composition of copper: Possible applications to archaeology and geochemistry. Int. J. Mass Spectrom. 1999, 184, 1–9. [Google Scholar] [CrossRef]
- Albarede, F. The stable isotope geochemistry of copper and zinc. Rev. Mineral. Geochem. 2004, 55, 409–427. [Google Scholar] [CrossRef]
- Zhu, X.K.; O’Nions, R.K.; Guo, Y.; Belshaw, N.S.; Rickard, D. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers. Chem. Geol. 2000, 163, 139–149. [Google Scholar] [CrossRef]
- Larson, P.B.; Maher, K.; Ramos, F.C.; Chang, Z.; Gaspar, M.; Meinert, L.D. Copper isotope ratios in magmatic and hydrothermal processes. Chem. Geol. 2003, 201, 337–350. [Google Scholar] [CrossRef]
- Graham, S.; Pearson, N.; Jackson, S.; Griffin, W.; O’Reilly, S.Y. Tracing Cu and Fe from source to porphyry: In situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit. Chem. Geol. 2004, 207, 147–169. [Google Scholar] [CrossRef]
- Markl, G.; Lahaye, Y.; Schwinn, G. Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochem. Cosmochim. Acta 2006, 70, 4215–4228. [Google Scholar] [CrossRef]
- Asael, D.; Matthews, A.; Bar-Matthews, M.; Halicz, L. Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel). Chem. Geol. 2007, 243, 238–254. [Google Scholar] [CrossRef]
- Maher, K.C.; Larson, P.B. Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralization at Coroccohuayco and Tintaya, Peru. Econ. Geol. 2007, 102, 225–237. [Google Scholar] [CrossRef]
- Asael, D.; Matthews, A.; Oszczepalski, S.; Bar-Matthews, M.; Halicz, L. Fluid speciation controls of low temperature copper isotope fractionation applied to Kupferschiefer and Timna ore deposits. Chem. Geol. 2009, 262, 147–158. [Google Scholar] [CrossRef]
- Li, W.; Jackson, S.E.; Pearson, N.J.; Graham, S. Copper isotope zonation in Northparkes porphyry Cu-Au deposit, SE Australia. Geochem. Cosmochim. Acta 2010, 74, 4078–4096. [Google Scholar] [CrossRef]
- Ikehata, K.; Notsu, K.; Hirata, T. Copper isotope characteristics of copper-rich minerals from Besshi-type volcanogenic massive sulfide deposits, Japan, determined using a femtosecond LA-MC-ISP-MS. Econ. Geol. 2011, 106, 307–316. [Google Scholar] [CrossRef]
- Mathur, R.; Fantle, M.S. Copper isotopic perspectives on supergene processes: Implications for the global Cu cycle. Elements 2015, 11, 323–329. [Google Scholar] [CrossRef]
- Baggio, S.B.; Hartmann, L.A.; Lazarov, M.; Massonne, H.-J.; Opitz, J.; Theye, T.; Viefhaus, T. Origin of native copper in Paraná Volcanic Province, Brazil, integrating Cu stable isotopes in a multi-analytical approach. Miner. Deposita 2017. [Google Scholar] [CrossRef]
- Mathur, R.; Titley, S.; Barra, F.; Brantley, S.; Wilson, M.; Phillips, A.; Munizaga, F.; Maksaev, V.; Vervoort, J.; Hart, G. Exploration potential of Cu isotope fractionation in porphyry copper deposits. J. Geochem. Explor. 2009, 102, 1–6. [Google Scholar] [CrossRef]
- Weege, R.J.; Pollack, J.P. Recent developments in native-copper district of Michigan. In Proceedings of the Society of Economic Geologists Field Conference, Michigan Copper District, MI, USA, 30 September–2 October 1971; pp. 18–43. [Google Scholar]
- Martin, S.R. Wonderful Power: The Story of Ancient Copper Working in the Lake Superior Basin; Wayne State University Press: Detroit, MI, USA, 1999; pp. 1–298. [Google Scholar]
- Rapp, G.; Allert, J.; Vitali, V.; Jing, Z.; Henrickson, E. Determining Geologic Sources of Artifact Copper; University Press America: New York, NY, USA, 2000; pp. 1–156. [Google Scholar]
- Mathur, R.; Wilson, M.; Parra, M.L. Challenges of using copper isotope ratios to trace the origin of native copper artifacts: An example from the Keweenaw Peninsula. Ann. Carnegie Mus. 2014, 82, 241–245. [Google Scholar] [CrossRef]
- Mathur, R.; Titley, S.; Hart, G.; Wilson, M.; Davignon, M.; Zlatos, C. The history of the United States cent revealed through copper isotope fractionation. J. Archaeol. Sci. 2009, 36, 430–433. [Google Scholar] [CrossRef]
- Cannon, W.F.; Green, A.G.; Hutchinson, D.R.; Lee, M.W.; Milkereit, B.; Behrendt, J.C.; Halls, H.C.; Green, J.C.; Dickas, A.B.; Morey, G.B.; et al. The North American mid-continent rift beneath Lake Superior from Glimpse seismic reflection profiling. Tectonics 1989, 8, 305–332. [Google Scholar] [CrossRef]
- Nicholson, S.W. Geochemistry, Petrography, and Volcanology of Rhyolites of the Portage Lake Volanics, Keweenaw Peninsula, Michigan, U.S. Geological Survey Bulletin 1970B; U.S. Government Printing Office: Washington, DC, USA, 1992; pp. B1–B57.
- Bornhorst, T.J.; Lankton, L.D. Copper mining: A billion years of geologic and human history. In Michigan Geography and Geology; Schaetzl, R., Darden, J., Brandt, D., Eds.; Pearson Custom Publishing: New York, NY, USA, 2009; pp. 150–173. [Google Scholar]
- Cannon, W.F. Closing of the Midcontinent Rift—A far field effect of Grenvillian contraction. Geology 1994, 22, 155–158. [Google Scholar] [CrossRef]
- Broderick, T.M. Fissure vein and lode relations in Michigan copper deposits. Econ. Geol. 1931, 26, 40–856. [Google Scholar] [CrossRef]
- Bornhorst, T.J. Tectonic context of native copper deposits of the North American Midcontinent Rift system. Geol. Soc. Am. Spec. Pap. 1997, 312, 127–136. [Google Scholar]
- Butler, B.S.; Burbank, W.S. The copper deposits of Michigan. U.S. Geol. Surv. Prof. Pap. 1929, 144, 1–238. [Google Scholar]
- Broderick, T.M.; Hohl, C.D.; Eidenmiller, H.N. Recent contributions to the geology of the Michigan copper district. Econ. Geol. 1946, 41, 675–725. [Google Scholar] [CrossRef]
- Weege, R.J.; Pollock, J.P. The Calumet Division Geological Staff. The geology of two new mines in the native copper district. Econ. Geol. 1972, 67, 622–633. [Google Scholar]
- Bornhorst, T.J.; Barron, R.J.; Whiteman, R.C. Caledonia Mine, Keweenaw Peninsula native copper district, Ontonagon County, Michigan. Inst. Lake Super. Geol. Proc. 2013, 59 Pt 2, 43–57. [Google Scholar]
- Mauk, J.L.; Kelly, W.C.; van der Pluijm, B.A.; Seasor, R.W. Relations between deformation and sediment-hosted copper mineralization: Evidence from the White Pine portion of the Midcontinent Rift system. Geology 1992, 20, 427–430. [Google Scholar] [CrossRef]
- Stoiber, R.E.; Davidson, E.S. Amygdule mineral zoning in the Portage Lake Lava Series, Michigan copper district. Econ. Geol. 1959, 54, 1250–1277. [Google Scholar] [CrossRef]
- Jolly, W.T.; Smith, R.E. Degradation and metamorphic differentiation of the Keweenawan tholeiitic lavas of northern Michigan, USA. J. Petrol. 1972, 13, 273–309. [Google Scholar] [CrossRef]
- Püeschner, U.R. Very low-grade metamorphism in the Portage Lake Volcanics on the Keweenaw Peninsula, Michigan, USA. Ph.D. Dissertation, University of Basel, Basel, Switzerland, 2001; pp. 1–81. [Google Scholar]
- Cornwall, H.R. A summary of ideas on the origin of native copper deposits. Econ. Geol. 1956, 51, 615–631. [Google Scholar] [CrossRef]
- White, W.S. The native-copper deposits of northern Michigan. In Ore Deposits of the United States, 1933–1967 (Graton Sales Volume); Ridge, J.D., Ed.; American Institute of Mining, Metallurgical, and Petroleum Engineers: New York, NY, USA, 1968; pp. 303–325. [Google Scholar]
- Cannon, W.F. The Midcontinent Rift in the Lake Superior region with emphasis on its geodynamic evolution. Tectonophysics 1992, 213, 41–48. [Google Scholar] [CrossRef]
- Davis, D.W.; Paces, J.B. Time resolution of geologic events on the Keweenaw Peninsula and implications for development of the Midcontinent rift system. Earth Planet. Sci. Lett. 1990, 97, 54–64. [Google Scholar] [CrossRef]
- Heaman, L.M.; Easton, R.M.; Hart, T.M.; MacDonald, C.A.; Hollings, P.; Smyk, M. Further refinement to the timing of Mesoproterozoic magmatism, Lake Nipigon region, Ontario. Can. J. Earth Sci. 2007, 44, 1055–1086. [Google Scholar] [CrossRef]
- Bornhorst, T.J.; Paces, J.B.; Grant, N.K.; Obradovich, J.D.; Huber, N.K. Age of native copper mineralization, Keweenaw Peninsula, Michigan. Econ. Geol. 1988, 83, 619–625. [Google Scholar] [CrossRef]
- Woodruff, L.G.; Daines, M.J.; Cannon, W.F.; Nicholson, S.W. The Thermal History of the Midcontinent Rift in the Lake Superior Region: Implications for Mineralization and Partial Melting. In Proceedings of the International Geological Correlation Program Field Conference and Symposium on the Petrology and Metallogeny of Volcanic and Intrusive Rocks of the Midcontinent Rift System, Duluth, MN, USA, 19 August–1 September 1995; Volume 336, pp. 213–214. [Google Scholar]
- Jolly, W.T. Behavior of Cu, Zn, and Ni during prehnite-pumpellyite rank metamorphism of the Keweenawan basalts, northern Michigan. Econ. Geol. 1974, 69, 1118–1125. [Google Scholar] [CrossRef]
- Livnat, A. Metamorphism and Copper Mineralization of the Portage Lake Lava Series, Northern Michigan. Ph.D. Dissertation, University of Michigan, Ann Arbor, MI, USA, 1983; pp. 1–292. [Google Scholar]
- Brown, A.C. Genesis of native copper lodes in the Keweenaw Peninsula, Norther Michigan: A hybrid evolved meteoric and metamorphogenic model. Econ. Geol. 2006, 101, 1437–1444. [Google Scholar] [CrossRef]
- Bornhorst, T.J.; Barron, R.J. Copper deposits of the western Upper Peninsula of Michigan. Inst. Lake Super. Geol. Proc. 2011, 59 Pt 2, 1–42. [Google Scholar]
- Bornhorst, T.J.; Barron, R.J. Geologic overview of the Keweenaw Peninsula, Michigan. Geol. Soc. Am. Field Guide 2013, 24, 1–42. [Google Scholar]
- Brown, A.C. District-scale concentration of native copper lodes from a tectonically induced thermal plume of ore fluids on the Keweenaw Peninsula, Northern Michigan. Econ. Geol. 2008, 103, 1691–1694. [Google Scholar] [CrossRef]
- Bornhorst, T.J.; Woodruff, L.G. Native copper precipitation by fluid-mixing Keweenaw Peninsula, Michigan. Inst. Lake Super. Geol. Proc. 1997, 43 Pt 1, 9–10. [Google Scholar]
- Mathur, R.; Ruiz, J.; Titley, S.; Liermann, L.; Buss, H.; Brantley, S. Cu isotopic fractionation in the supergene environment with and without bacteria. Geochem. Cosmochim. Acta 2005, 69, 5233–5246. [Google Scholar] [CrossRef]
- Yao, J.; Mathur, R.; Sun, W.; Song, W.; Chen, H.; Mutti, L.; Xiang, X.; Luo, X. Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field. Geochem. Geophys. Geosyst. 2016, 17, 1725–1739. [Google Scholar] [CrossRef]
- Wilson, M.; Wilson, D.L.; Mathur, R. Tracing the source of native copper specimens with copper isotope values. Rocks Miner. 2016, 91, 352–356. [Google Scholar] [CrossRef]
- Ikehata, K.; Chida, K.; Bornhorst, T.J.; Ishibashi, J.; Hirata, T. Using copper isotopic composition to distinguish native copper formation mechanisms. Geol. Soc. Am. Abstr. Prog. 2015, 47, 518. [Google Scholar]
- Liu, S.A.; Huang, J.; Liu, J.; Worner, G.; Yang, W.; Tang, Y.J.; Chen, Y.; Tang, L.; Zheng, J.; Li, S. Copper isotopic composition of silicate Earth. Earth Planet. Sci. Lett. 2015, 427, 95–103. [Google Scholar] [CrossRef]
- Maher, K.C.; Jackson, S.; Mountain, B. Experimental evaluation of the fluid-mineral fractionation of Cu isotopes at 250 °C and 300 °C. Chem. Geol. 2011, 286, 229–239. [Google Scholar] [CrossRef]
- Seo, J.H.; Lee, S.K.; Lee, I. Quantum chemical calculations of equilibrium copper (I) isotope fractionations in ore-forming fluids. Chem. Geol. 2007, 243, 225–237. [Google Scholar] [CrossRef]
- Liu, S.A.; Li, D.; Li, S.; Teng, F.Z.; Ke, S.; He, Y.; Lu, Y. High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS. J. Anal. At. Spectrom. 2014, 29, 122–133. [Google Scholar] [CrossRef]
- Ikehata, K.; Hirata, T. Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, Northern Japan. Econ. Geol. 2012, 107, 1489–1497. [Google Scholar] [CrossRef]
- Savage, P.S.; Moynier, F.; Chen, H.; Shofner, G.; Siebert, J.; Badro, J.; Puchtel, I.S. Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation. Geochem. Perspect. Lett. 2015, 1, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Fellows, S.A.; Canil, D. Experimental study of the partitioning of Cu during partial melting of Earth’s mantle. Earth Planet. Sci. Lett. 2012, 337–338, 133–143. [Google Scholar] [CrossRef]
- Pearce, C.I.; Pattrick, R.A.D.; Vaughan, D.J.; Henderson, C.M.B.; van der Laan, G. Copper oxidation state in chalcopyrite: Mixed Cu d9 and d10 characteristics. Geochem. Cosmochim. Acta 2006, 70, 4635–4642. [Google Scholar] [CrossRef]
- Cornwall, H.R. Ilmentite, magnetite, hematite, and copper in lavas of the Keweenawan series. Econ. Geol. 1951, 46, 51–67. [Google Scholar] [CrossRef]
- Yund, R.A.; Kullerud, G. Stable mineral assemblages of anhydrous copper and iron oxides. Am. Mineral. 1964, 49, 689–696. [Google Scholar]
- Scofield, N. Mineral Chemistry Applied to Interrelated Albitization, Pumpellyitization, and Native Copper Distribution in Some Portage Lake Basalts, Michigan. Ph.D. Dissertation, Michigan Technological University, Houghton, MI, USA, 1976; pp. 1–144. [Google Scholar]
- Zhu, X.; Guo, Y.; Williams, R.; O’Nions, K.; Matthews, A.; Belshaw, N.; Canters, G.; de Waal, E.; Weser, U.; Burgess, B.; et al. Mass fractionation process of transition metal isotopes. Earth Planet. Sci. Lett. 2002, 200, 47–62. [Google Scholar] [CrossRef]
- Ehrlich, S.; Butler, I.; Halicz, L.; Rickard, D.; Oldroyd, A.; Matthews, A. Experimental study of copper isotope fractionation between aqueous Cu(II) and covellite, CuS. Chem. Geol. 2004, 209, 259–270. [Google Scholar] [CrossRef]
- Huber, N.K. The Geologic Story Of Isle Royale National Park, U.S. Geological Survey Bulletin 1309; U.S. Government Printing Office: Washington, DC, USA, 1975; pp. 1–66.
- Zhang, Z.; Mao, J.; Wang, F.; Pirajno, F. Native gold and native copper grains enclosed by olivine phenocrysts in a picrite lava of the Emeishan large igneous province, SW China. Am. Mineral. 2006, 91, 1178–1183. [Google Scholar] [CrossRef]
Deposit or Mine | Millions lbs Produced Refined Copper | Location Number on Figure 2 |
---|---|---|
Calumet & Hecla conglomerate | 4229 | 1 |
Kearsarge flow top | 2263 | 2 |
Baltic flow top | 1845 | 3 |
Pewabic flow top | 1077 | 4 |
Osceola flow top | 578 | 5 |
Isle Royale flow top | 341 | 6 |
Atlantic mine flow top | 143 | 7 |
Allouez conglomerate | 73 | 8 |
Central fissure | 52 | 9 |
Houghton conglomerate | 38 | 10 |
Copper Falls fissure and flow top | 26 | 11 |
Kingston conglomerate | 20 | 12 |
Winona flow top | 18 | 13 |
Phoenix fissure | 17 | 14 |
North Cliff fissure | <1 | 15 |
Greenland-Mass Subdistrict | ||
Mass mine Evergreen flow tops | 53 | 16 |
Minesota fissure | 35 | 17 |
Michigan mine Evergreen flow tops | 21 | 18 |
Adventure mine Evergreen flow tops | 11 | 19 |
Caledonia mine Evergreen flow tops | 7 | 20 |
Other deposits/mines | 182 | |
District Total | 11,029 |
Sample | Deposit | Mine | δ65Cu ‰ | Data Source |
---|---|---|---|---|
WAS1736 | C&H conglomerate | C&H | 0.22 | this study |
CM32627 | C&H conglomerate | Centennial | 0.06 | this study |
CM32631 | C&H conglomerate | Centennial | 0.26 | this study |
CM32632 | C&H conglomerate | Centennial | 0.39 | this study |
CM32634 | C&H conglomerate | Centennial | −0.05 | this study |
CM32731 | C&H conglomerate | Centennial | 0.20 | [52] |
LS-12 | C&H conglomerate | Centennial | 0.26 | [6] |
PCH0008 | C&H conglomerate | Centennial | 0.20 | this study |
CHJV01 | C&H conglomerate | Hecla | 0.36 | this study |
CHJV04 | C&H conglomerate | Hecla | −0.05 | this study |
DM2282 | Kearsarge flow top | Ahmeek Mine | 0.36 | this study |
CHDM1120 | Kearsarge flow top | Seneca Mine | 0.71 | this study |
CM32738 | Kearsarge flow top | Seneca Mine | 0.22 | [52] |
FC0007 | Kearsarge flow top | Seneca Mine | 0.22 | this study |
CM32681 | Kearsarge flow top | Wolverine | 0.16 | [52] |
CM32682 | Kearsarge flow top | Wolverine | 0.20 | [52] |
CM32684 | Kearsarge flow top | Wolverine | 0.59 | [52] |
CM32685 | Kearsarge flow top | Wolverine | 0.46 | [52] |
LS-48 | Kearsarge flow top | Wolverine | 0.30 | [6] |
WAS883 | Kearsarge flow top | Wolverine | 0.43 | this study |
CM32706 | Baltic flow top | Baltic | 0.44 | this study |
CM32710 | Baltic flow top | Baltic | 0.35 | this study |
LS-10 | Baltic flow top | Baltic | 0.36 | [6] |
LS-10a | Baltic flow top | Baltic | 0.30 | [6] |
LS-10b | Baltic flow top | Baltic | 0.27 | [6] |
LS-10c | Baltic flow top | Baltic | 0.30 | [6] |
LS-10d | Baltic flow top | Baltic | 0.29 | [6] |
LS-10e | Baltic flow top | Baltic | 0.27 | [6] |
LS-10f | Baltic flow top | Baltic | 0.22 | [6] |
LS-10g | Baltic flow top | Baltic | 0.34 | [6] |
CM32719 | Baltic flow top | Champion | 0.58 | this study |
LS-7 | Baltic flow top | Trimountain | 0.27 | [6] |
CM32614 | Pewabic flow top | Quincy | 0.27 | this study |
WAS506 | Pewabic flow top | Quincy | 0.16 | this study |
WAS1417 | Pewabic flow top | Quincy | 0.60 | this study |
CM32671 | Osceola flow top | La Salle | 0.06 | [52] |
CM32672 | Osceola flow top | La Salle | 0.09 | [52] |
CM32672 | Osceola flow top | La Salle | 0.18 | this study |
CM32673 | Osceola flow top | La Salle | 0.13 | [52] |
CM32675 | Osceola flow top | La Salle | 0.51 | [52] |
CM32678 | Osceola flow top | La Salle | 0.17 | [52] |
CM32678 | Osceola flow top | La Salle | 0.20 | [52] |
CM32679 | Osceola flow top | La Salle | −0.18 | [52] |
CM32680 | Osceola flow top | La Salle | 0.02 | [52] |
CM32666 | Osceola flow top | Laurium | 0.37 | [52] |
CM32667 | Osceola flow top | Laurium | 0.07 | [52] |
CM32669 | Osceola flow top | Laurium | 0.22 | [52] |
CM32670 | Osceola flow top | Laurium | 0.80 | [52] |
CM32689 | Osceola flow top | Osceola | 0.20 | this study |
CM32690 | Osceola flow top | Osceola | 0.61 | this study |
CM32693 | Osceola flow top | Osceola | 0.12 | this study |
CM32694 | Osceola flow top | Osceola | 0.24 | this study |
CM32695 | Osceola flow top | Osceola | 0.39 | this study |
CM32660 | Isle Royale flow top | Isle Royale | 0.14 | [52] |
CM32662 | Isle Royale flow top | Isle Royale | 0.29 | [52] |
CM32664 | Isle Royale flow top | Isle Royale | 0.31 | [52] |
CM32665 | Isle Royale flow top | Isle Royale | 0.69 | [52] |
CM32739 | Isle Royale flow top | Isle Royale | 0.50 | [52] |
CM32740 | Isle Royale flow top | Isle Royale | 0.21 | [52] |
FC0008 | Isle Royale flow top | Isle Royale | 0.50 | this study |
FC0009 | Isle Royale flow top | Isle Royale | 0.21 | this study |
LS-45 | Isle Royale flow top | Isle Royale | 0.34 | [6] |
CM32705 | Atlantic flow top | Atlantic | 0.43 | this study |
CH41860A | Allouez Conglomerate | Allouez | 0.23 | this study |
CH41860B | Allouez Conglomerate | Allouez | 0.28 | this study |
CM32730 | Keweenaw County fissure | Central | 0.58 | [52] |
PCH0007 | Keweenaw County fissure | Central | 0.58 | this study |
CH960level23 | Houghton Conglomerate | Allouez | 0.37 | this study |
CH960level29 | Houghton Conglomerate | Allouez | 0.33 | this study |
CM29818 | Keweenaw County fissure | Copper Falls | −0.32 | [52] |
CM29819 | Keweenaw County fissure | Copper Falls | 0.17 | [52] |
CM29820 | Keweenaw County fissure | Copper Falls | −0.10 | [52] |
CM29821 | Keweenaw County fissure | Copper Falls | 2.29 | this study |
CM29822 | Keweenaw County fissure | Copper Falls | 0.25 | [52] |
LS-51a | Keweenaw County fissure | Copper Falls | 0.03 | [6] |
LS-51b | Keweenaw County fissure | Copper Falls | 0.01 | [6] |
CM29823 | Kingston conglomerate | Kingston | −0.13 | [52] |
CM29824 | Kingston conglomerate | Kingston | 0.07 | [52] |
CM29825 | Kingston conglomerate | Kingston | −0.18 | [52] |
CM29826 | Kingston conglomerate | Kingston | 0.38 | [52] |
CM29827 | Kingston conglomerate | Kingston | 0.17 | [52] |
CM32658 | Winona flow top | Winona | 0.33 | [52] |
CM239 | Keweenaw County fissure | Phoenix | 0.62 | this study |
CM32724 | Keweenaw County fissure | Phoenix | 0.26 | [52] |
CM29489 | Keweenaw County fissure | Phoenix | −0.09 | [52] |
CM29233.2 | Keweenaw County fissure | Phoenix | 0.69 | this study |
CM29491 | Keweenaw County fissure | Phoenix | 0.30 | [52] |
PCH0001 | Keweenaw County fissure | Phoenix | 0.26 | this study |
CM32699 | Keweenaw County fissure | North Cliff | 0.44 | [52] |
CM32700 | Keweenaw County fissure | North Cliff | 0.54 | [52] |
CM32701 | Keweenaw County fissure | North Cliff | 0.20 | [52] |
CM32703 | Keweenaw County fissure | North Cliff | 0.21 | [52] |
CM32704 | Keweenaw County fissure | North Cliff | 0.18 | [52] |
Greenland-Mass Subdistrict | ||||
CM287 | Evergreen Series 1 flow top | Mass | 0.20 | [52] |
CM32736 | Evergreen Series 1 flow top | Mass | 0.68 | [52] |
CM32736 | Evergreen Series 1 flow top | Mass | −0.11 | [52] |
FC0005 | Evergreen Series 1 flow top | Mass | 0.68 | this study |
CM32638 | Ontonogan County fissure | Minesota | 0.39 | this study |
CM32639 | Ontonogan County fissure | Minesota | 0.38 | [52] |
CM32641 | Evergreen Series flow top 1 | Michigan | 0.25 | [52] |
CM32642 | Evergreen Series flow top 1 | Michigan | 0.36 | [52] |
CM32644 | Evergreen Series flow top 1 | Michigan | 0.39 | [52] |
CM32645 | Evergreen Series flow top 1 | Michigan | 0.28 | [52] |
CM32648 | Evergreen Series flow top 1 | Michigan | 0.25 | [52] |
CM32649 | Evergreen Series flow top 1 | Michigan | 0.24 | [52] |
CM32732 | Evergreen Series flow top 1 | Adventure | 0.40 | [52] |
CM32733 | Evergreen Series flow top 1 | Adventure | 0.39 | [52] |
CM32734 | Evergreen Series flow top 1 | Adventure | 0.32 | [52] |
CM32735 | Evergreen Series flow top 1 | Adventure | 0.43 | [52] |
FC0001 | Evergreen Series flow top 1 | Adventure | 0.40 | this study |
FC0002 | Evergreen Series flow top 1 | Adventure | 0.39 | this study |
FC0003 | Evergreen Series flow top 1 | Adventure | 0.32 | this study |
FC0004 | Evergreen Series flow top 1 | Adventure | 0.43 | this study |
CM32615 | Evergreen Series flow top 1 | Caledonia | 0.30 | [52] |
CM32616 | Evergreen Series flow top 1 | Caledonia | 0.23 | [52] |
CM32617 | Evergreen Series flow top 1 | Caledonia | 0.22 | [52] |
CM32618 | Evergreen Series flow top 1 | Caledonia | 0.25 | [52] |
FC0006 | Evergreen Series flow top 1 | Caledonia | −0.11 | this study |
Range 2 | Evergreen Series flow top 1 | Caledonia | 0.27 | [53] |
Range 2 | Evergreen Series flow top 1 | Caledonia | 0.35 | [53] |
OUM15120 | unknown | unknown | 0.45 | [5] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bornhorst, T.J.; Mathur, R. Copper Isotope Constraints on the Genesis of the Keweenaw Peninsula Native Copper District, Michigan, USA. Minerals 2017, 7, 185. https://doi.org/10.3390/min7100185
Bornhorst TJ, Mathur R. Copper Isotope Constraints on the Genesis of the Keweenaw Peninsula Native Copper District, Michigan, USA. Minerals. 2017; 7(10):185. https://doi.org/10.3390/min7100185
Chicago/Turabian StyleBornhorst, Theodore J., and Ryan Mathur. 2017. "Copper Isotope Constraints on the Genesis of the Keweenaw Peninsula Native Copper District, Michigan, USA" Minerals 7, no. 10: 185. https://doi.org/10.3390/min7100185
APA StyleBornhorst, T. J., & Mathur, R. (2017). Copper Isotope Constraints on the Genesis of the Keweenaw Peninsula Native Copper District, Michigan, USA. Minerals, 7(10), 185. https://doi.org/10.3390/min7100185