Dating Ore Deposit Using Garnet U–Pb Geochronology: Example from the Xinqiao Cu–S–Fe–Au Deposit, Eastern China
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. Ore Deposit Geology
3. Sample Descriptions
4. Analytical Methods
5. Results
5.1. Trace Element Geochemistry
5.2. U–Pb Dating
6. Discussion
6.1. Occurrence of Uranium in the Garnet
6.2. Timing of the Garnets and Mineralization
6.3. Origin of the Garnet
7. Conclusions
- (1)
- Garnets from the Xinqiao stratiform orebody can be divided into early garnet (Grt1) and late garnet (Grt2) generations. Grt1 and Grt2 yielded weighted average 207Pb-correction 206Pb/238U ages of 137.0 ± 7.8 Ma (MSWD = 4.9) and 129.6 ± 7.1 Ma (MSWD = 1.6), respectively, close to the zircon U–Pb age of the Jitou stock, indicating that they formed in the Early Cretaceous.
- (2)
- The Xinqiao garnet and stratiform mineralization may have formed from Early Cretaceous magmatic–hydrothermal fluids associated with the Jitou stock, and were generated by the Early Cretaceous tectono-thermal event in Eastern China.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Meinert, L.D. Skarns and skarn deposits. Geosci. Can. 1992, 19, 145–162. [Google Scholar]
- Meinert, L.D.; Dipple, G.M.; Nicolescu, S. World Skarn Deposits. In Economic Geology 100th Anniversary Volume 1905–2005; Elsevier: Amsterdam, The Netherlands, 2005; pp. 299–336. [Google Scholar]
- Porter, S.J.; Selby, D. Rhenium–Osmium (Re–Os) molybdenite systematics and geochronology of the Cruachan Granite skarn mineralization, Etive Complex: Implications for emplacement chronology. Scott. J. Geol. 2010, 46, 17–21. [Google Scholar] [CrossRef]
- Xia, R.; Wang, C.M.; Qing, M.; Deng, J.; Carranza, E.J.M.; Li, W.L.; Guo, X.D.; Ge, L.S.; Yu, W.Q. Molybdenite Re–Os, zircon U–Pb dating and Hf isotopic analysis of the Shuangqing Fe–Pb–Zn–Cu skarn deposit, East Kunlun Mountains, Qinghai Province, China. Ore Geol. Riv. 2015, 66, 114–131. [Google Scholar] [CrossRef]
- Li, J.W.; Deng, X.D.; Zhou, M.F.; Liu, Y.S.; Zhao, X.F.; Guo, J.L. Laser ablation ICP-MS titanite U–Th–Pb dating of hydrothermal ore deposits: A case study of the Tonglushan Cu–Fe–Au skarn deposit, SE Hubei Province, China. Chem. Geol. 2010, 270, 56–67. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, X.M.; Zhou, H.Y.; Lin, H.; Yang, T.J. In-situ LA-ICP-MS U–Pb geochronology and trace elements analysis of polygenetic titanite from the giant Beiya gold–polymetallic deposit in Yunnan Province, Southwest China. Ore Geol. Rev. 2016, 77, 43–56. [Google Scholar] [CrossRef]
- Oyman, T. Geochemistry, mineralogy and genesis of the Ayazmant Fe–Cu skarn deposit in Ayvalik, (Balikesir), Turkey. Ore Geol. Rev. 2010, 37, 175–201. [Google Scholar] [CrossRef]
- Lieben, F.; Moritz, R.; Fontbote, L. Mineralogy, Geochemistry, and Age Constraints on the Zn–Pb Skarn Deposit of Maria Cristina, Quebrada Galena, Northern Chile. Econ. Geol. 2000, 95, 1185–1196. [Google Scholar] [CrossRef]
- Li, H.; Yonezu, K.; Watanabe, K.; Tindell, T. Fluid origin and migration of the Huangshaping W–Mo polymetallic deposit, South China: Geochemistry and 40Ar/39Ar geochronology of hydrothermal K-feldspars. Ore Geol. Rev. 2017, 86, 117–129. [Google Scholar] [CrossRef]
- Li, H.Q.; Xie, C.F.; Chang, H.L. Geochronology of Mineralization of Nonferrous and Precious Metallic Deposits in Northern Xinjiang; Geological Publishing House: Beijing, China, 1998; 264p. (In Chinese) [Google Scholar]
- Gaspar, M.; Knaack, C.; Meinert, L.D.; Moretti, R. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochim. Cosmochim. Acta 2008, 72, 185–205. [Google Scholar] [CrossRef]
- Yardley, B.W.; Rochelle, C.A.; Barnicoat, A.C.; Lloyd, G.E. Oscillatory zoning in metamorphic minerals: An indicator of infiltration metasomatism. Mineral. Mag. 1991, 55, 357–365. [Google Scholar] [CrossRef]
- Jamtveit, B.; Wogelius, R.A.; Fraser, D.G. Zonation patterns of skarn garnets: Records of hydrothermal system evolution. Geology 1993, 21, 113–116. [Google Scholar] [CrossRef]
- Crowe, D.E.; Riciputi, L.R.; Bezenek, S.; Ignatiev, A. Oxygen isotope and trace element zoning in hydrothermal garnets: Windows into large-scale fluid flow behavior. Geology 2001, 29, 479–482. [Google Scholar] [CrossRef]
- Fernando, G.; Hauzenberger, C.A.; Baumgartner, L.P.; Hofmeister, W. Modeling of retrograde diffusion zoning in garnet: Evidence for slow cooling of granulites from the Highland Complex of Sri Lanka. Mineral. Petrol. 2003, 78, 53–71. [Google Scholar] [CrossRef]
- Smith, M.P.; Henderson, P.; Jeffries, T.E.R.; Long, J.; Williams, C.T. The rare earth elements and uranium in garnets from the Beinn and Dubhaich Aureole, Skye, Scotland, UK: Constraints on processes in a dynamic hydrothermal system. J. Petrol. 2004, 45, 457–484. [Google Scholar] [CrossRef]
- Martin, L.A.J.; Ballèvre, M.; Boulvais, P.; Halfpenny, A.; Vanderhaeghe, O.; Duchêne, S.; Deloule, E. Garnet re-equilibration by coupled dissolution-reprecipitation: Evidence from textural, major element and oxygen isotope zoning of ‘cloudy’ garnet. J. Metamorph. Geology 2011, 29, 21–231. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Y.J.; Wu, C.D.; Chen, H.Y. LA-ICP-MS trace element geochemistry of garnets: Constraints on hydrothermal fluid evolution and genesis of the Xinqiao Cu–S–Fe–Au deposit, eastern China. Ore Geol. Rev. 2017, 86, 426–439. [Google Scholar] [CrossRef]
- Smit, M.A.; Scherer, E.E.; Mezger, K. Lu–Hf and Sm–Nd garnet geochronology: Chronometric closure and implications for dating petrological processes. Earth Planet. Sci. Lett. 2013, 381, 222–233. [Google Scholar] [CrossRef]
- Blichert-Toft, J. On the Lu–Hf isotope geochemistry of silicate rocks. Geostand. Geoanal. Res. 2001, 25, 41–56. [Google Scholar] [CrossRef]
- Jamtveit, B.; Hervig, R.L. Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals. Science 1994, 263, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.D.; Li, J.W.; Luo, T.; Wang, H.Q. Dating magmatic and hydrothermal processes using andradite-rich garnet U–Pb geochronometry. Contrib. Mineral. Petrol. 2017, 172. [Google Scholar] [CrossRef]
- DeWolf, C.; Zeissler, C.J.; Halliday, A.; Mezger, K.; Essene, E. The role of inclusions in U–Pb and Sm–Nd garnet geochronology: Stepwise dissolution experiments and trace uranium mapping by fission track analysis. Geochim. Cosmochim. Acta 1996, 60, 121–134. [Google Scholar] [CrossRef]
- Yudintsev, S.V.; Lapina, M.I.; Ptashkin, A.G.; Ioudintseva, T.S.; Utsunomiya, S.; Wang, L.M.; Ewing, R.C. Accommodation of Uranium Into the Garnet structure. In Proceedings of the Materials Research Society Symposium, San Francisco, CA, USA, 2–5 April 2002; Cambridge University Press: Cambridge, UK, 2002; p. JJ11. [Google Scholar]
- Seman, S.; Stockli, D.F.; McLean, N.M. U–Pb geochronology of grossular-andradite garnet. Chemical Geology 2017, 460, 106–116. [Google Scholar] [CrossRef]
- Mao, J.W.; Xie, G.Q.; Duan, C.; Franco, P.; Dazio, I.; Chen, Y.C. A tectono-genetic model for porphyry–skarn–stratabound Cu–Au–Fe and magnetite–apatite deposit along the Middle–Lower Yangtze river valley, Eastern China. Ore Geol. Rev. 2011, 43, 294–314. [Google Scholar] [CrossRef]
- Chang, Y.F.; Liu, X.P.; Wu, Y.Z. Metallogenic Belt of the Middle–Lower Yangtze River; Geological Publishing House: Beijing, China, 1991; 379p. (In Chinese) [Google Scholar]
- Fu, S.G.; Yan, X.Y.; Yuan, C.X. Geologic feature of submarine volcanic eruption- sedimentary pyrite type deposit in Carboniferous in the Middle–Lower Yangtze River Valley metallogenic belt, Eastern China. J. Nanjing Univ. Nat. Sci. Ed. 1977, 4, 43–67. (In Chinese) [Google Scholar]
- Gu, L.X.; Xu, K.Q. On the carboniferous submarine massive sulfide deposit in the lower reaches of the Yangtze River. Acta Geol. Sin. 1986, 60, 176–188. (In Chinese) [Google Scholar]
- Gu, L.X.; Hu, W.X.; He, J.X. Regional variations in ore composition and fluid features of massive sulfide deposits in South China: Implications for genetic modeling. Episodes 2000, 23, 110–118. [Google Scholar]
- Xu, W.Y.; Yang, Z.S.; Meng, Y.F.; Zeng, P.S.; Shi, D.N.; Tian, S.H.; Li, H.Y. Genetic Model and Dynamic Migration of Ore-forming Fluids in Carboniferous Exhalation-Sedimentary Massive Sulfide Deposits in Tongling District, Anhui Province. Miner. Depos. 2004, 23, 353–364. (In Chinese) [Google Scholar]
- Chang, Y.F.; Liu, X.G. Layer control type skarn type deposit—some deposits in the Middle-Lower Yangtze Depression in Anhui Province as an example. Miner. Depos. 1983, 2, 11–20. (In Chinese) [Google Scholar]
- Pan, Y.; Done, P. The lower Changjiang (Yangtzi/Yangtze River) metallogenic belt, east–center China: Intrusion and wall rock hosted Cu–Fe–Au, Mo, Zn, Pb, Ag deposits. Ore. Geol. Rev. 1999, 15, 177–242. [Google Scholar] [CrossRef]
- Mao, J.W.; Shao, Y.J.; Xie, G.Q.; Zhang, J.D.; Chen, Y.C. Mineral deposit model for porphyry–skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt. Miner. Depos. 2009, 28, 109–119. (In Chinese) [Google Scholar]
- Zhang, Y.; Shao, Y.J.; Chen, H.Y.; Liu, Z.F.; Li, D.F. A hydrothermal origin for the large Xinqiao Cu–S–Fe deposit, Eastern China: Evidence from sulfide geochemistry and sulfur isotopes. Ore Geol. Rev. 2017, 88, 534–549. [Google Scholar] [CrossRef]
- Yang, D.F.; Fu, D.X.; Wu, N.X. Genesis of pyrite type copper in Xinqiao and its neighboring region according to ore composition and structure. Issue Nanjing Inst. Geol. Miner. Resour. Chin. Acad. Geol. Sci. 1982, 3, 59–68. (In Chinese) [Google Scholar]
- Xie, H.G.; Wang, W.B.; Li, W.D. The genesis and metallogenetic of Xinqiao Cu–S–Fe deposit, Anhui Province. Volcanol. Miner. Resour. 1995, 16, 101–107. (In Chinese) [Google Scholar]
- Zhou, T.F.; Zhang, L.J.; Yuan, F.; Fang, Y.; Cooke, D.R. LA-ICP-MS in situ trace element analysis of pyrite from the Xinqiao Cu–Au–S Deposit in Tongling, Anhui, and its constrains on the ore genesis. Earth Sci. Front. 2010, 17, 306–319. (In Chinese) [Google Scholar]
- Guo, W.M.; Lu, J.J.; Jiang, S.Y.; Zhang, R.Q.; Qi, L. Re–Os isotope dating of pyrite from the footwall mineralization zone of the Xinqiao deposit, Tongling, Anhui Province: Geochronological evidence for submarine exhalative sedimentation. Chin. Sci. Bull. 2011, 56, 3860–3865. (In Chinese) [Google Scholar] [CrossRef]
- Einaudi, M.T.; Burt, D.M. Introduction-terminology, classification, and composition of skarn deposits. Econ. Geol. 1982, 77, 745–754. [Google Scholar] [CrossRef]
- Doyle, M.G.; Allen, R.L. Subseafloor replacement in volcanic-hosted massive sulfide deposits. Ore Geol. Rev. 2003, 23, 183–222. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Y.J.; Chen, H.Y.; Liu, Z.F.; Li, D.F. Fingerprinting the hydrothermal fluid characteristics from LA-ICP-MS Ttrace element geochemistry of garnet in the Yongping Cu deposit, SE China. Minerals 2017, 7, 199. [Google Scholar] [CrossRef]
- Xu, G.; Zhou, J. The Xinqiao Cu–S–Fe–Au deposit in the Tongling mineral district, China: Synorogenetic remobilization of a stratiform sulfide deposit. Ore Geol. Rev. 2001, 18, 77–94. [Google Scholar] [CrossRef]
- Tang, Y.C.; Wu, Y.Z.; Cu, G.Z.; Xing, F.M.; Wang, Y.M.; Cao, F.Y.; Chang, Y.F. Copper Gold Polymetallic Ore Deposit Geology in the Region along Yangtze River in Anhui Province; Geological Publishing House: Beijing, China, 1998; 351p. (In Chinese) [Google Scholar]
- Wu, C.L.; Dong, S.W.; Robinson, P.T.; Frost, B.R.; Gao, Y.H.; Lei, M.; Chen, Q.L.; Qin, H.P. Petrogenesis of high-K, calc-alkaline and shoshonitic intrusive rocks in the Tongling area, Anhui Province (eastern China), and their tectonic implications. Geol. Soc. Am. Bull. 2014, 126, 78–102. [Google Scholar] [CrossRef]
- Zhai, Y.S.; Yao, S.Z.; Lin, X.D.; Jin, F.Q.; Zhou, X.R.; Wan, T.F.; Zhou, Z.G. Metallogenic regularity of iron and copper deposits in the Middle–Lower valley of the Yangtze River. Miner. Depos. 1992, 11, 1–235. (In Chinese) [Google Scholar]
- Cao, Y.; Zheng, Z.J.; Du, Y.L.; Gao, F.P.; Qin, X.L.; Yang, H.M.; Lu, Y.H.; Du, Y.S. Ore geology and fluid inclusions of the Hucunnan deposit, Tongling, Eastern China: Implications for the separation of copper and molybdenum in skarn deposits. Ore Geol. Rev. 2017, 81, 925–939. [Google Scholar] [CrossRef]
- Du, Y.L.; Deng, J.; Cao, Y.; Li, D.D. Petrology and geochemistry of Silurian–Triassic sedimentary rocks in the Tongling region of Eastern China: Their roles in the genesis of large stratabound skarn ore deposits. Ore Geol. Rev. 2015, 67, 255–263. [Google Scholar] [CrossRef]
- Wang, S.W.; Zhou, T.F.; Yuan, F.; Fan, Y.; Zhang, L.J.; Song, Y.L. Petrogenesis of Dongguashan skarn–porphyry Cu–Au deposit related intrusion in the Tongling district, eastern China: Geochronological, mineralogical, geochemical and Hf isotopic evidence. Ore Geol. Rev. 2015, 64, 53–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Y.J.; Li, H.B.; Liu, Z.F. Genesis of the Xinqiao Cu–S–Fe–Au deposit in the Middle–Lower Yangtze River Valley metallogenic belt, Eastern China: Constraints from U–Pb–Hf, Rb–Sr, S, and Pb isotopes. Ore Geol. Rev. 2017, 86, 100–116. [Google Scholar] [CrossRef]
- Zang, W.S.; Wu, G.G.; Zhang, D.; Liu, A.H. Geological and geochemical characteristics and genetic analyses of Xinqiao Iron Orefield, Tongling. Geotecton. Metallog. 2004, 28, 187–193. (In Chinese) [Google Scholar]
- Wang, Y.; Zhu, X.L.; Mao, J.W.; Li, Z.H.; Cheng, Y.B. Iron isotope fractionation during skarn-type metallogeny: A case study of Xinqiao Cu–S–Fe–Au Deposit in the Middle–Lower Yangtze Valley. Ore Geol. Rev. 2011, 43, 194–202. [Google Scholar] [CrossRef]
- Zhai, D.G.; Liu, J.J.; Zhang, H.Y.; Wang, J.P.; Su, L.; Yang, X.A.; Wu, S.H. Origin of oscillatory zoned garnets from the Xieertala Fe–Zn skarn deposit, northern China: In situ LA-ICP-MS evidence. Lithos 2014, 190–191, 279–291. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Ludwig, K.R. Use’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel; Special Publication, 4; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; 70p. [Google Scholar]
- Stern, R.A. The GSC sensitive high resolution ion microprobe (SHRIMP): Analytical techniques of zircon U–Th–Pb age determinations and performance evaluation. Radiogenic age and isotopic studies: Report 10. Geol. Surv. Can. Curr. Res. 1997, 1997-F, 1–31. [Google Scholar]
- Aleinikoff, J.N.; Wintsch, R.P.; Fanning, C.M.; Dorais, M.J. U–Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: An integrated SEM, EMPA, TIMS, and SHRIMP study. Chem. Geol. 2002, 188, 125–147. [Google Scholar] [CrossRef]
- Vance, D.; Meier, M.; Oberli, F. The infuence of high U–Th inclusions on the U–Th–Pb systematics of almandine-pyrope garnet: Results of a combined bulk dissolution, stepwise-leaching, and SEM study. Geochim. Cosmochim. Acta 1998, 62, 3527–3540. [Google Scholar] [CrossRef]
- Lima, S.M.; Corfu, F.; Neiva, A.M.R.; Ramos, J.M.F. U–Pb IDTIMS dating applied to U-rich inclusions in garnet. Am. Mineral. 2012, 97, 800–806. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Dziggel, A.; Wulff, K.; Kolb, J.; Meyer, F.M.; Lahaye, Y. Oscillatory zoning in metamorphic minerals: An indicator of infiltration metasomatism. Chem. Geol. 2009, 262, 262–276. [Google Scholar] [CrossRef]
- Xie, J.C.; Yang, X.Y.; Du, J.G.; Du, X.W.; Xiao, Y.L.; Qu, W.J.; Sun, W.D. Re–Os precise dating of pyrite from the Xinqiao Cu–Au–Fe–S Deposit in Tongling, Anhui and its implications for mineralization. Geol. Sci. 2009, 44, 183–192. (In Chinese) [Google Scholar]
- Ravizza, G.; Martin, C.E.; German, C.R.; Thompson, G. Os isotopes as tracers in seafloor hydrothermal system: Metalliferous deposits from the TAG hydrothermal area, 26° N Mid-Atlantic Ridge. Earth Plant. Sci. Lett. 1996, 138, 105–119. [Google Scholar] [CrossRef]
- Huang, G.H. Mineralization Characteristics and Genesis of Xinqiao Cu–S–Au Polymetallic Deposit, Tongling, Anhui Province, China. Master’s Thesis, China University of Geosciences, Wuhan, China, 2011. (In Chinese). [Google Scholar]
- Mao, J.W.; Wang, Y.T.; Lehmann, B.; Du, A.D.; Mei, Y.X.; Li, Y.F.; Zang, W.S.; Stein, H.J.; Zhou, T.F. Molybdenite Re–Os and albite 40Ar–39Ar dating of Cu–Au–Mo and magnetite systems in the Yangtze River valley and metallogenic implications. Ore Geol. Rev. 2006, 29, 307–324. [Google Scholar] [CrossRef]
- Gemmell, J.B.; Zantop, H.; Meinert, L.D. Genesis of the Aguilar zinc-lead-silver deposit, Argentina; contact metasomatic vs. sedimentary exhalative. Econ. Geol. 1992, 87, 2085–2112. [Google Scholar] [CrossRef]
- Burton, K.W.; Bourdon, B.; Birck, J.L.; Allègre, C.J.; Hein, J.R. Osmium isotope variations in the oceans recorded by Fe–Mn crusts. Earth Planet. Sci. Lett. 1999, 171, 185–197. [Google Scholar] [CrossRef]
- Ling, Q.C.; Cheng, H.L. Discussion on forming process and geological characteristics of magmatic skarn in Tongling area, Anhui Province. J. Changchun Univ. Sci. Technol. 1998, 28, 366–371. (In Chinese) [Google Scholar]
- Xiao, C.D.; Liu, X.W. REE geochemistry and origin of skarn garnets from eastern Inner Mongolia. Geol. China 2002, 29, 311–316. (In Chinese) [Google Scholar]
- Zheng, Z.; Du, Y.S.; Cao, Y.; Cao, Z.W.; Yang, S.; Dong, Q. The composition characteristics and origin of garnets in the Dongguashan skarn copper deposit, Anhui Province, China. Acta Petrol. Mineral. 2012, 31, 235–242. (In Chinese) [Google Scholar]
- Zhang, Y. Genesis of Xinqiao Cu–S–Fe deposit, Tongling, Anhui Province, China. Ph.D. Thesis, Central South University, Changsha, China, 2015. (In Chinese). [Google Scholar]
- Bau, M.; Dulski, P. Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet. Sci. Lett. 1996, 143, 245–255. [Google Scholar] [CrossRef]
- Anders, M.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Liu, X.B. Geological characteristics and ore-controlling factor analysis of Xinqiao S–Fe deposit. Express Inf. Min. Ind. 2002, 19, 13–15. (In Chinese) [Google Scholar]
- Wang, Y.; Zhu, X.K.; Cheng, Y.B. Ore microscopy & Fe isotope of the Xinqiao deposit and their constraints on the ore genesis. J. Jilin Univ. Earth Sci. Ed. 2013, 43, 1787–1798. (In Chinese) [Google Scholar]
- Graham, S.; Pearson, N.; Jackson, S.; Griffin, W.; O’Reilly, S.Y. Tracing Cu and Fe from source to porphyry: In situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu–Au deposit. Chem. Geol. 2004, 207, 147–169. [Google Scholar] [CrossRef]
No. | Sample | Type | SiO2 (wt %) | Y | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | XQ37-1 | Grt1 | 38.38 | 110.56 | 1.07 | 6.34 | 2.02 | 15.60 | 7.12 | 1.98 | 9.62 | 1.71 | 11.21 | 2.68 | 7.55 | 1.05 | 8.16 | 1.13 | 2.83 |
2 | XQ37-1 | Grt1 | 38.58 | 78.84 | 1.92 | 7.18 | 2.40 | 17.52 | 5.67 | 1.55 | 7.27 | 1.22 | 7.84 | 1.82 | 5.21 | 0.76 | 5.62 | 0.85 | 3.84 |
3 | XQ37-1 | Grt1 | 37.56 | 73.37 | 0.49 | 2.41 | 2.77 | 18.46 | 2.01 | 0.69 | 4.09 | 0.89 | 6.67 | 1.65 | 5.04 | 0.67 | 5.82 | 0.76 | 3.42 |
4 | XQ37-1 | Grt1 | 39.11 | 80.31 | 1.33 | 8.28 | 2.73 | 18.97 | 5.48 | 1.57 | 7.21 | 1.17 | 8.36 | 1.78 | 5.57 | 0.77 | 6.32 | 0.90 | 2.92 |
5 | XQ37-1 | Grt1 | 37.80 | 71.85 | 0.50 | 2.76 | 2.88 | 16.38 | 2.39 | 0.69 | 4.77 | 0.87 | 6.55 | 1.60 | 5.04 | 0.74 | 5.53 | 0.71 | 3.51 |
6 | XQ37-1 | Grt1 | 38.59 | 69.72 | 0.55 | 2.47 | 2.90 | 17.17 | 2.16 | 0.74 | 4.00 | 0.79 | 6.17 | 1.46 | 4.71 | 0.71 | 5.13 | 0.75 | 3.59 |
7 | XQ37-1 | Grt1 | 36.81 | 74.62 | 0.58 | 2.62 | 2.85 | 20.28 | 2.52 | 0.71 | 4.52 | 0.97 | 6.68 | 1.72 | 5.76 | 0.75 | 6.06 | 0.75 | 3.64 |
8 | XQ37-1 | Grt1 | 37.86 | 68.43 | 0.52 | 2.44 | 2.66 | 17.34 | 2.10 | 0.63 | 4.16 | 0.82 | 6.53 | 1.54 | 4.70 | 0.78 | 5.80 | 0.71 | 4.23 |
9 | XQ37-1 | Grt1 | 36.86 | 72.40 | 0.98 | 3.26 | 3.38 | 20.67 | 1.74 | 0.65 | 3.93 | 0.90 | 6.70 | 1.61 | 4.80 | 0.71 | 5.53 | 0.78 | 4.57 |
10 | XQ37-1 | Grt1 | 37.95 | 68.89 | 0.54 | 2.43 | 2.76 | 17.89 | 1.77 | 0.58 | 3.95 | 0.80 | 5.98 | 1.53 | 4.79 | 0.67 | 5.48 | 0.69 | 4.20 |
11 | XQ37-1 | Grt1 | 38.97 | 50.15 | 1.50 | 10.32 | 3.68 | 28.73 | 8.64 | 2.00 | 8.05 | 1.03 | 5.83 | 1.16 | 3.19 | 0.44 | 3.01 | 0.38 | 5.35 |
12 | XQ37-1 | Grt1 | 38.63 | 57.99 | 2.66 | 10.05 | 3.29 | 19.31 | 5.82 | 1.56 | 6.84 | 0.91 | 6.64 | 1.46 | 4.12 | 0.51 | 3.83 | 0.52 | 5.23 |
13 | XQ37-1 | Grt1 | 35.91 | 70.27 | 0.47 | 2.32 | 2.79 | 22.34 | 1.96 | 0.72 | 4.17 | 0.89 | 6.55 | 1.61 | 5.08 | 0.78 | 6.11 | 0.75 | 3.91 |
14 | XQ37-1 | Grt1 | 38.77 | 72.28 | 0.68 | 3.08 | 2.91 | 22.09 | 2.49 | 0.77 | 4.49 | 1.04 | 6.73 | 1.64 | 4.93 | 0.80 | 5.13 | 0.74 | 3.63 |
15 | XQ37-1 | Grt1 | 37.98 | 38.07 | 2.52 | 13.61 | 3.58 | 21.32 | 5.39 | 1.13 | 5.06 | 0.64 | 4.24 | 0.95 | 2.49 | 0.34 | 2.37 | 0.36 | 4.43 |
16 | XQ37-1 | Grt1 | 38.07 | 70.82 | 0.83 | 4.93 | 3.41 | 22.92 | 2.58 | 0.88 | 4.51 | 0.86 | 6.42 | 1.59 | 4.82 | 0.71 | 5.69 | 0.75 | 5.31 |
17 | XQ37-1 | Grt1 | 37.78 | 44.06 | 2.25 | 15.28 | 4.31 | 28.16 | 7.06 | 1.33 | 7.13 | 0.93 | 5.46 | 1.13 | 2.91 | 0.34 | 2.75 | 0.41 | 6.85 |
18 | XQ37-1 | Grt1 | 38.49 | 96.25 | 1.96 | 15.41 | 4.88 | 30.23 | 8.42 | 2.65 | 9.08 | 1.52 | 9.74 | 2.32 | 6.56 | 0.97 | 6.68 | 1.03 | 7.65 |
19 | XQ37-1 | Grt1 | 38.37 | 104.11 | 1.91 | 11.04 | 3.03 | 20.75 | 7.23 | 1.89 | 9.42 | 1.51 | 10.40 | 2.31 | 7.09 | 1.02 | 7.61 | 0.93 | 5.49 |
20 | XQ37-1 | Grt1 | 37.96 | 282.27 | 1.48 | 10.00 | 3.22 | 25.82 | 14.89 | 4.37 | 23.38 | 4.29 | 30.50 | 7.32 | 21.04 | 3.23 | 22.85 | 3.17 | 6.26 |
21 | XQ37-1 | Grt1 | 39.60 | 39.04 | 2.63 | 15.71 | 5.87 | 30.30 | 3.92 | 1.26 | 3.84 | 0.62 | 4.00 | 0.87 | 2.51 | 0.37 | 2.76 | 0.40 | 13.93 |
22 | XQ37-1 | Grt1 | 39.91 | 63.47 | 2.14 | 14.47 | 4.21 | 27.06 | 6.04 | 1.72 | 6.26 | 0.86 | 5.79 | 1.57 | 4.11 | 0.61 | 3.76 | 0.63 | 10.08 |
23 | XQ37-1 | Grt1 | 37.75 | 62.74 | 0.82 | 4.91 | 3.37 | 21.32 | 2.49 | 0.80 | 4.00 | 0.75 | 5.78 | 1.39 | 4.33 | 0.62 | 4.91 | 0.67 | 5.20 |
24 | XQ37-1 | Grt1 | 38.09 | 57.05 | 1.28 | 5.40 | 3.46 | 19.99 | 3.16 | 0.92 | 3.95 | 0.71 | 5.46 | 1.28 | 3.74 | 0.53 | 4.26 | 0.61 | 5.22 |
25 | XQ39-1 | Grt1 | 39.38 | 68.77 | 1.56 | 5.98 | 3.37 | 27.90 | 2.53 | 0.83 | 4.05 | 0.80 | 6.24 | 1.50 | 4.84 | 0.75 | 5.20 | 0.71 | 6.88 |
26 | XQ39-1 | Grt1 | 36.99 | 97.96 | 2.16 | 11.98 | 3.84 | 23.41 | 6.30 | 1.87 | 9.19 | 1.57 | 10.49 | 2.36 | 6.67 | 0.97 | 6.96 | 0.95 | 5.52 |
27 | XQ39-1 | Grt1 | 39.09 | 66.43 | 2.53 | 15.14 | 4.39 | 25.09 | 6.42 | 1.68 | 7.21 | 1.08 | 7.13 | 1.58 | 4.57 | 0.63 | 4.66 | 0.70 | 5.56 |
28 | XQ39-1 | Grt1 | 38.61 | 141.16 | 1.21 | 7.63 | 2.92 | 20.85 | 8.35 | 2.41 | 12.03 | 1.92 | 14.81 | 3.41 | 10.88 | 1.58 | 12.17 | 1.62 | 4.91 |
29 | XQ39-1 | Grt1 | 39.36 | 125.33 | 1.68 | 6.10 | 2.30 | 18.17 | 7.46 | 1.96 | 12.36 | 1.91 | 13.42 | 3.09 | 8.39 | 1.16 | 9.25 | 1.28 | 2.57 |
30 | XQ39-1 | Grt1 | 38.98 | 94.80 | 1.22 | 8.37 | 2.90 | 19.64 | 5.99 | 1.68 | 7.67 | 1.42 | 9.62 | 2.10 | 6.48 | 0.96 | 7.07 | 0.97 | 3.56 |
31 | XQ39-1 | Grt1 | 38.66 | 58.77 | 1.23 | 9.04 | 2.84 | 19.99 | 5.50 | 1.43 | 6.30 | 1.03 | 6.38 | 1.36 | 4.00 | 0.54 | 4.04 | 0.58 | 3.34 |
32 | XQ39-1 | Grt1 | 37.88 | 296.84 | 1.59 | 10.55 | 3.30 | 27.47 | 14.89 | 4.73 | 25.61 | 4.51 | 32.37 | 8.04 | 22.67 | 3.29 | 23.49 | 3.33 | 6.85 |
33 | XQ39-1 | Grt1 | 39.91 | 127.47 | 0.92 | 4.02 | 1.69 | 13.67 | 6.56 | 2.30 | 9.23 | 1.86 | 13.81 | 3.04 | 8.31 | 1.31 | 9.25 | 1.18 | 1.69 |
34 | XQ39-1 | Grt1 | 38.88 | 230.21 | 1.39 | 8.91 | 2.94 | 25.47 | 10.11 | 3.24 | 15.73 | 3.44 | 24.17 | 6.14 | 17.65 | 2.71 | 19.48 | 2.53 | 4.69 |
35 | XQ39-1 | Grt1 | 39.36 | 121.33 | 0.65 | 4.53 | 1.79 | 13.33 | 6.52 | 2.38 | 11.37 | 1.91 | 12.49 | 2.80 | 8.24 | 1.14 | 8.34 | 1.21 | 1.60 |
36 | XQ39-1 | Grt1 | 38.03 | 73.35 | 1.33 | 10.37 | 3.53 | 20.58 | 6.52 | 1.59 | 6.59 | 1.13 | 7.33 | 1.64 | 4.98 | 0.70 | 5.26 | 0.72 | 4.89 |
37 | XQ39-1 | Grt1 | 39.12 | 63.74 | 1.63 | 9.54 | 2.94 | 19.32 | 5.47 | 1.64 | 5.81 | 0.94 | 6.45 | 1.45 | 4.20 | 0.62 | 4.45 | 0.61 | 5.89 |
38 | XQ37-1 | Grt2 | 35.59 | 3.28 | 12.52 | 77.87 | 13.09 | 34.21 | 2.85 | 4.09 | 0.93 | 0.14 | 0.46 | 0.09 | 0.16 | 0.03 | 0.23 | 0.03 | 11.20 |
39 | XQ37-1 | Grt2 | 35.28 | 17.93 | 9.99 | 68.33 | 11.90 | 34.02 | 2.66 | 4.25 | 2.00 | 0.30 | 2.04 | 0.40 | 1.28 | 0.16 | 1.22 | 0.13 | 10.91 |
40 | XQ37-1 | Grt2 | 36.37 | 5.40 | 9.75 | 69.80 | 9.17 | 23.25 | 2.13 | 2.15 | 1.08 | 0.13 | 0.67 | 0.09 | 0.24 | 0.03 | 0.19 | 0.04 | 10.15 |
41 | XQ37-1 | Grt2 | 35.90 | 13.96 | 4.90 | 30.51 | 3.95 | 10.57 | 1.96 | 1.18 | 2.36 | 0.32 | 1.73 | 0.32 | 0.89 | 0.11 | 0.81 | 0.10 | 3.58 |
42 | XQ37-1 | Grt2 | 36.76 | 11.97 | 5.85 | 38.31 | 5.52 | 16.36 | 2.38 | 1.68 | 2.35 | 0.29 | 1.60 | 0.27 | 0.67 | 0.11 | 0.61 | 0.10 | 4.46 |
43 | XQ37-1 | Grt2 | 36.32 | 18.00 | 5.02 | 33.60 | 4.68 | 14.41 | 3.64 | 1.45 | 3.56 | 0.46 | 2.42 | 0.45 | 0.96 | 0.13 | 0.91 | 0.11 | 4.91 |
44 | XQ37-1 | Grt2 | 36.41 | 10.72 | 7.36 | 44.06 | 7.09 | 26.42 | 2.55 | 3.05 | 2.45 | 0.25 | 1.53 | 0.26 | 0.53 | 0.08 | 0.86 | 0.07 | 7.51 |
45 | XQ37-1 | Grt2 | 35.36 | 11.19 | 6.36 | 47.82 | 7.28 | 21.77 | 2.48 | 2.69 | 2.60 | 0.29 | 1.36 | 0.29 | 0.71 | 0.07 | 0.70 | 0.07 | 7.15 |
46 | XQ37-1 | Grt2 | 35.65 | 11.75 | 14.09 | 65.80 | 8.82 | 23.06 | 2.33 | 2.50 | 2.04 | 0.22 | 1.45 | 0.26 | 0.75 | 0.08 | 0.63 | 0.08 | 10.37 |
47 | XQ37-1 | Grt2 | 36.37 | 11.42 | 7.32 | 45.10 | 6.03 | 16.50 | 1.88 | 1.63 | 2.35 | 0.26 | 1.59 | 0.25 | 0.71 | 0.08 | 0.69 | 0.08 | 6.59 |
48 | XQ37-1 | Grt2 | 35.23 | 16.90 | 5.29 | 55.04 | 8.61 | 21.59 | 1.72 | 2.49 | 2.49 | 0.36 | 2.37 | 0.40 | 1.04 | 0.10 | 1.14 | 0.13 | 6.73 |
49 | XQ37-1 | Grt2 | 35.89 | 4.28 | 11.21 | 70.60 | 10.63 | 28.63 | 1.76 | 2.66 | 1.27 | 0.14 | 0.58 | 0.10 | 0.25 | 0.03 | 0.19 | 0.03 | 9.40 |
50 | XQ37-1 | Grt2 | 34.92 | 18.19 | 7.22 | 59.64 | 9.46 | 27.36 | 3.00 | 3.09 | 2.55 | 0.43 | 2.24 | 0.48 | 1.26 | 0.15 | 1.12 | 0.13 | 8.26 |
51 | XQ37-1 | Grt2 | 36.72 | 4.99 | 12.60 | 77.15 | 12.85 | 34.11 | 2.70 | 4.03 | 1.41 | 0.18 | 0.41 | 0.11 | 0.33 | 0.04 | 0.15 | 0.04 | 12.90 |
52 | XQ39-1 | Grt2 | 38.04 | 4.71 | 10.46 | 66.53 | 9.86 | 27.51 | 1.77 | 2.37 | 1.51 | 0.14 | 0.65 | 0.12 | 0.31 | 0.04 | 0.28 | 0.04 | 9.11 |
53 | XQ39-1 | Grt2 | 35.78 | 4.10 | 10.00 | 64.68 | 9.37 | 25.78 | 1.98 | 1.90 | 1.97 | 0.17 | 0.50 | 0.13 | 0.18 | 0.02 | 0.18 | 0.02 | 9.69 |
54 | XQ39-1 | Grt2 | 34.63 | 17.68 | 4.94 | 46.82 | 7.39 | 24.14 | 3.27 | 2.60 | 2.73 | 0.33 | 1.85 | 0.35 | 0.92 | 0.15 | 0.93 | 0.13 | 5.80 |
55 | XQ39-1 | Grt2 | 34.95 | 16.17 | 8.23 | 67.02 | 9.48 | 23.31 | 2.84 | 2.52 | 2.53 | 0.29 | 1.74 | 0.38 | 0.85 | 0.10 | 0.86 | 0.13 | 8.33 |
56 | XQ39-1 | Grt2 | 36.14 | 2.93 | 10.73 | 65.37 | 9.61 | 22.68 | 1.03 | 1.96 | 0.67 | 0.10 | 0.36 | 0.06 | 0.17 | 0.03 | 0.12 | 0.02 | 8.86 |
57 | XQ39-1 | Grt2 | 36.16 | 4.93 | 16.90 | 94.77 | 12.75 | 30.36 | 1.89 | 2.30 | 1.43 | 0.13 | 0.64 | 0.11 | 0.26 | 0.04 | 0.24 | 0.03 | 15.43 |
58 | XQ39-1 | Grt2 | 35.29 | 18.16 | 5.95 | 46.87 | 7.41 | 21.02 | 2.67 | 2.28 | 3.32 | 0.42 | 2.00 | 0.43 | 1.11 | 0.15 | 1.08 | 0.14 | 5.97 |
59 | XQ39-1 | Grt2 | 35.46 | 3.66 | 11.81 | 73.06 | 10.57 | 26.64 | 1.78 | 2.24 | 0.92 | 0.10 | 0.45 | 0.07 | 0.21 | 0.03 | 0.22 | 0.03 | 10.54 |
60 | XQ39-1 | Grt2 | 35.70 | 12.29 | 5.67 | 36.16 | 5.25 | 16.52 | 2.84 | 1.33 | 2.67 | 0.36 | 1.45 | 0.26 | 0.58 | 0.07 | 0.56 | 0.07 | 5.86 |
61 | XQ39-1 | Grt2 | 36.41 | 3.83 | 11.91 | 73.07 | 11.19 | 33.07 | 1.65 | 2.89 | 0.92 | 0.10 | 0.52 | 0.08 | 0.16 | 0.03 | 0.17 | 0.03 | 10.19 |
62 | XQ39-1 | Grt2 | 37.85 | 7.51 | 12.67 | 75.12 | 11.62 | 33.95 | 2.16 | 3.25 | 2.10 | 0.20 | 0.88 | 0.17 | 0.40 | 0.06 | 0.41 | 0.06 | 11.84 |
63 | XQ39-1 | Grt2 | 36.15 | 21.87 | 4.59 | 30.36 | 5.07 | 14.85 | 2.50 | 2.01 | 3.01 | 0.45 | 2.68 | 0.56 | 1.32 | 0.20 | 1.26 | 0.12 | 5.00 |
64 | XQ39-1 | Grt2 | 35.17 | 6.32 | 11.04 | 68.67 | 9.86 | 27.32 | 1.81 | 2.26 | 1.24 | 0.13 | 0.77 | 0.12 | 0.42 | 0.05 | 0.32 | 0.06 | 9.18 |
65 | XQ39-1 | Grt2 | 36.32 | 3.07 | 10.99 | 70.11 | 9.82 | 26.77 | 1.57 | 2.23 | 0.99 | 0.10 | 0.51 | 0.07 | 0.19 | 0.02 | 0.18 | 0.02 | 9.52 |
66 | XQ39-1 | Grt2 | 35.75 | 4.37 | 11.13 | 71.26 | 10.20 | 27.43 | 1.58 | 2.32 | 1.02 | 0.12 | 0.63 | 0.09 | 0.23 | 0.03 | 0.22 | 0.03 | 10.28 |
67 | XQ39-1 | Grt2 | 35.64 | 7.95 | 10.62 | 74.38 | 10.29 | 26.22 | 2.83 | 2.49 | 2.18 | 0.19 | 1.26 | 0.22 | 0.52 | 0.08 | 0.57 | 0.09 | 10.97 |
68 | XQ39-1 | Grt2 | 35.50 | 4.51 | 11.60 | 71.88 | 10.24 | 28.77 | 1.83 | 2.28 | 1.05 | 0.09 | 0.42 | 0.10 | 0.29 | 0.04 | 0.24 | 0.04 | 11.39 |
69 | XQ39-1 | Grt2 | 36.99 | 4.15 | 12.65 | 79.89 | 11.47 | 30.15 | 1.82 | 2.48 | 1.75 | 0.13 | 0.62 | 0.10 | 0.23 | 0.03 | 0.24 | 0.03 | 11.94 |
70 | XQ39-1 | Grt2 | 35.84 | 9.58 | 9.54 | 67.59 | 9.95 | 25.59 | 2.44 | 2.34 | 2.03 | 0.20 | 1.07 | 0.20 | 0.55 | 0.06 | 0.47 | 0.06 | 9.69 |
71 | XQ39-1 | Grt2 | 35.51 | 4.33 | 12.82 | 80.63 | 11.09 | 28.26 | 1.86 | 2.21 | 1.22 | 0.12 | 0.56 | 0.10 | 0.22 | 0.03 | 0.25 | 0.03 | 12.68 |
72 | XQ39-1 | Grt2 | 35.77 | 14.54 | 9.86 | 74.29 | 10.27 | 25.05 | 2.74 | 2.65 | 2.39 | 0.32 | 1.81 | 0.36 | 0.88 | 0.11 | 0.86 | 0.13 | 10.45 |
73 | XQ39-1 | Grt2 | 36.02 | 3.18 | 13.09 | 82.29 | 11.68 | 29.66 | 1.56 | 2.20 | 0.92 | 0.08 | 0.42 | 0.06 | 0.17 | 0.03 | 0.19 | 0.03 | 13.18 |
74 | XQ39-1 | Grt2 | 35.07 | 17.85 | 5.19 | 49.49 | 8.82 | 26.68 | 3.17 | 3.13 | 2.17 | 0.36 | 1.92 | 0.41 | 0.80 | 0.11 | 1.17 | 0.13 | 6.13 |
75 | XQ39-1 | Grt2 | 35.68 | 3.06 | 12.12 | 73.29 | 10.44 | 27.00 | 1.69 | 2.15 | 0.95 | 0.08 | 0.59 | 0.06 | 0.21 | 0.03 | 0.14 | 0.02 | 10.91 |
76 | XQ39-1 | Grt2 | 35.68 | 2.97 | 15.86 | 85.42 | 11.06 | 28.76 | 2.06 | 1.72 | 0.96 | 0.10 | 0.49 | 0.07 | 0.15 | 0.02 | 0.21 | 0.02 | 14.27 |
77 | XQ39-1 | Grt2 | 36.11 | 4.26 | 12.19 | 74.08 | 10.32 | 29.23 | 1.56 | 2.27 | 0.79 | 0.08 | 0.32 | 0.08 | 0.19 | 0.05 | 0.29 | 0.04 | 12.33 |
78 | XQ39-1 | Grt2 | 35.52 | 20.17 | 4.85 | 45.31 | 7.55 | 22.32 | 3.67 | 2.68 | 3.17 | 0.44 | 2.57 | 0.45 | 1.20 | 0.13 | 1.22 | 0.17 | 5.71 |
79 | XQ39-1 | Grt2 | 35.51 | 13.70 | 11.57 | 62.85 | 9.25 | 27.66 | 2.32 | 3.06 | 1.93 | 0.29 | 1.59 | 0.31 | 0.85 | 0.11 | 0.89 | 0.10 | 8.66 |
80 | XQ39-1 | Grt2 | 35.44 | 2.57 | 18.31 | 100.04 | 13.21 | 33.45 | 1.68 | 2.26 | 0.83 | 0.08 | 0.32 | 0.05 | 0.14 | 0.02 | 0.15 | 0.02 | 17.34 |
81 | XQ39-1 | Grt2 | 35.63 | 2.99 | 13.44 | 80.82 | 12.29 | 35.29 | 1.77 | 3.18 | 0.90 | 0.10 | 0.38 | 0.06 | 0.17 | 0.02 | 0.36 | 0.02 | 11.61 |
82 | XQ39-1 | Grt2 | 35.66 | 16.03 | 5.80 | 53.15 | 7.84 | 22.85 | 2.75 | 2.57 | 2.79 | 0.38 | 1.91 | 0.35 | 0.99 | 0.12 | 0.59 | 0.13 | 6.35 |
83 | XQ39-1 | Grt2 | 36.25 | 7.71 | 14.64 | 72.85 | 10.17 | 25.13 | 2.21 | 2.83 | 1.77 | 0.19 | 0.99 | 0.17 | 0.39 | 0.06 | 0.44 | 0.06 | 11.15 |
84 | XQ39-1 | Grt2 | 35.49 | 2.40 | 20.34 | 108.44 | 14.07 | 33.63 | 1.74 | 2.42 | 0.79 | 0.06 | 0.30 | 0.05 | 0.15 | 0.02 | 0.16 | 0.02 | 17.81 |
85 | XQ39-1 | Grt2 | 35.58 | 3.85 | 10.77 | 67.76 | 10.23 | 30.23 | 1.93 | 2.61 | 1.10 | 0.12 | 0.49 | 0.08 | 0.21 | 0.02 | 0.17 | 0.02 | 8.91 |
86 | XQ39-1 | Grt2 | 34.96 | 17.72 | 7.12 | 60.99 | 9.98 | 26.52 | 2.57 | 3.35 | 2.94 | 0.37 | 2.34 | 0.35 | 1.17 | 0.11 | 0.78 | 0.08 | 8.24 |
No. | Type | Pb (ppm) | 204Pb (ppm) | Th (ppm) | U (ppm) | Isotope Ratios | 207Pb-Based Age (Ma) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | 1sigma | 207Pb/235U | 1sigma | 206Pb/238U | 1sigma | rho | 206Pb/238U | 1sigma | ||||||
1 | Grt1 | 0.493 | 0.001 | 0.524 | 2.832 | 1.6060 | 0.3771 | 15.7253 | 1.5263 | 0.1386 | 0.0108 | 0.8025 | 162.6 | 11.9 |
2 | Grt1 | 1.894 | 10.968 | 0.375 | 3.839 | 1.2654 | 0.1586 | 15.5996 | 1.1917 | 0.1360 | 0.0105 | 0.8432 | 151.3 | 11.0 |
3 | Grt1 | 1.846 | 6.736 | 0.822 | 3.417 | 1.1679 | 0.1203 | 11.8480 | 0.6883 | 0.1071 | 0.0057 | 0.9090 | 140.4 | 7.1 |
4 | Grt1 | 0.338 | 6.151 | 0.214 | 2.920 | 0.6358 | 0.1634 | 11.0720 | 1.1073 | 0.1051 | 0.0122 | 0.8365 | 164.6 | 18.2 |
5 | Grt1 | 1.807 | 6.968 | 0.915 | 3.511 | 1.2147 | 0.1674 | 10.5318 | 0.6332 | 0.1035 | 0.0051 | 0.8229 | 180.4 | 8.5 |
6 | Grt1 | 1.740 | 10.284 | 0.931 | 3.589 | 1.0366 | 0.1273 | 10.2757 | 0.8752 | 0.0945 | 0.0063 | 0.7845 | 132.8 | 8.5 |
7 | Grt1 | 1.590 | 1.889 | 1.002 | 3.642 | 0.8259 | 0.0951 | 9.5730 | 1.1702 | 0.0907 | 0.0084 | 0.7536 | 141.6 | 12.5 |
8 | Grt1 | 2.023 | 33.409 | 1.040 | 4.230 | 1.2031 | 0.3023 | 8.3650 | 0.9025 | 0.0784 | 0.0083 | 0.9809 | 118.0 | 12.0 |
9 | Grt1 | 1.810 | 13.725 | 1.581 | 4.574 | 0.9962 | 0.1286 | 7.7180 | 0.6235 | 0.0770 | 0.0056 | 0.9047 | 140.2 | 9.9 |
10 | Grt1 | 1.305 | 10.186 | 1.037 | 4.203 | 1.0495 | 0.1223 | 6.9929 | 0.4145 | 0.0734 | 0.0036 | 0.8167 | 151.2 | 7.1 |
11 | Grt1 | 0.540 | 1.140 | 0.390 | 5.348 | 1.1069 | 0.2099 | 6.7314 | 0.5120 | 0.0714 | 0.0054 | 0.8103 | 150.5 | 11.1 |
12 | Grt1 | 0.878 | 11.752 | 0.284 | 5.233 | 0.9875 | 0.1405 | 7.2062 | 0.6614 | 0.0689 | 0.0083 | 0.8246 | 111.1 | 12.9 |
13 | Grt1 | 0.988 | 4.978 | 1.032 | 3.907 | 1.1379 | 0.2141 | 6.1846 | 0.5741 | 0.0687 | 0.0067 | 0.8580 | 159.2 | 15.0 |
14 | Grt1 | 1.125 | 12.585 | 0.843 | 3.625 | 1.2107 | 0.2663 | 6.2044 | 0.7496 | 0.0654 | 0.0056 | 0.7035 | 136.2 | 11.2 |
15 | Grt1 | 0.178 | 0.001 | 1.439 | 4.431 | 0.6198 | 0.1430 | 6.1056 | 0.4682 | 0.0631 | 0.0047 | 0.9656 | 125.7 | 9.0 |
16 | Grt1 | 1.573 | 17.494 | 1.641 | 5.311 | 0.9616 | 0.0929 | 5.8652 | 0.4075 | 0.0615 | 0.0029 | 0.6804 | 126.6 | 5.8 |
17 | Grt1 | 0.737 | 4.164 | 1.881 | 6.851 | 0.7704 | 0.1271 | 5.7500 | 1.1872 | 0.0613 | 0.0065 | 0.5160 | 131.1 | 13.6 |
18 | Grt1 | 1.096 | 8.490 | 0.488 | 7.647 | 0.6550 | 0.0733 | 5.1011 | 0.5568 | 0.0603 | 0.0048 | 0.7296 | 155.4 | 12.0 |
19 | Grt1 | 0.610 | 9.061 | 0.572 | 5.485 | 1.1300 | 0.2175 | 5.6147 | 0.4517 | 0.0594 | 0.0038 | 0.7962 | 124.7 | 7.8 |
20 | Grt1 | 0.235 | 0.001 | 6.925 | 6.259 | 0.9177 | 0.3245 | 5.3206 | 0.6277 | 0.0554 | 0.0033 | 0.5058 | 112.7 | 6.5 |
21 | Grt1 | 2.093 | 15.639 | 0.939 | 13.928 | 0.5873 | 0.0550 | 2.7959 | 0.1549 | 0.0449 | 0.0020 | 0.7896 | 164.3 | 7.0 |
22 | Grt1 | 1.551 | 18.505 | 0.747 | 10.075 | 0.6754 | 0.1203 | 3.1180 | 0.4200 | 0.0429 | 0.0041 | 0.7129 | 135.5 | 12.7 |
23 | Grt1 | 0.603 | 0.001 | 1.095 | 5.204 | 0.8704 | 0.1063 | 3.6740 | 0.2442 | 0.0429 | 0.0022 | 0.7758 | 108.6 | 5.5 |
24 | Grt1 | 0.404 | 6.946 | 0.764 | 5.224 | 0.7346 | 0.1142 | 2.6421 | 0.2346 | 0.0412 | 0.0027 | 0.7252 | 147.4 | 9.3 |
25 | Grt1 | 1.965 | 16.677 | 1.050 | 6.878 | 0.5219 | 0.0613 | 2.0284 | 0.1384 | 0.0357 | 0.0013 | 0.5246 | 140.6 | 4.9 |
38 | Grt2 | 0.119 | 2.034 | 0.059 | 11.197 | 0.7552 | 0.1453 | 14.1736 | 1.5552 | 0.1255 | 0.0098 | 0.7113 | 112.9 | 10.7 |
39 | Grt2 | 0.068 | 1.673 | 0.037 | 10.906 | 1.4342 | 0.5034 | 11.8783 | 2.2336 | 0.0989 | 0.0103 | 0.5564 | 115.2 | 7.1 |
40 | Grt2 | 0.085 | 0.001 | 0.191 | 10.154 | 0.9470 | 0.0001 | 7.0769 | 0.6785 | 0.0754 | 0.0059 | 0.8221 | 117.9 | 7.9 |
41 | Grt2 | 0.163 | 5.492 | 0.470 | 3.583 | 0.3452 | 0.0627 | 6.7435 | 1.1027 | 0.0658 | 0.0064 | 0.5968 | 124.6 | 8.5 |
42 | Grt2 | 0.156 | 1.030 | 0.035 | 4.458 | 0.8896 | 0.2493 | 5.0365 | 0.4441 | 0.0537 | 0.0034 | 0.7177 | 130.1 | 7.8 |
43 | Grt2 | 0.232 | 4.699 | 0.096 | 4.914 | 0.3830 | 0.0778 | 3.9199 | 0.5038 | 0.0460 | 0.0032 | 0.5339 | 131.7 | 12.9 |
44 | Grt2 | 0.863 | 20.123 | 1.493 | 7.510 | 0.6869 | 0.1704 | 3.1965 | 0.7070 | 0.0429 | 0.0084 | 0.8868 | 132.5 | 25.4 |
45 | Grt2 | 0.386 | 0.001 | 0.132 | 7.145 | 0.6542 | 0.0769 | 3.0401 | 0.2172 | 0.0422 | 0.0026 | 0.8565 | 133.6 | 7.9 |
46 | Grt2 | 0.712 | 4.035 | 1.471 | 10.371 | 0.6087 | 0.1012 | 2.9120 | 0.4311 | 0.0421 | 0.0058 | 0.9335 | 133.7 | 8.5 |
47 | Grt2 | 0.210 | 1.711 | 0.097 | 6.588 | 0.5874 | 0.1442 | 2.8859 | 0.3456 | 0.0403 | 0.0025 | 0.5125 | 135.0 | 8.1 |
48 | Grt2 | 0.207 | 0.435 | 0.240 | 6.725 | 0.8929 | 0.1710 | 2.9508 | 0.3487 | 0.0400 | 0.0028 | 0.5894 | 137.5 | 12.8 |
49 | Grt2 | 0.218 | 0.001 | 1.212 | 9.396 | 0.6567 | 0.1232 | 1.7524 | 0.1939 | 0.0326 | 0.0020 | 0.5411 | 140.9 | 19.1 |
50 | Grt2 | 0.188 | 0.001 | 1.100 | 8.255 | 0.6584 | 0.1788 | 1.5127 | 0.2153 | 0.0315 | 0.0030 | 0.6664 | 151.2 | 11.1 |
51 | Grt2 | 0.255 | 0.001 | 3.766 | 12.896 | 0.3070 | 0.0832 | 1.3361 | 0.2612 | 0.0293 | 0.0029 | 0.5083 | 160.9 | 12.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Shao, Y.; Zhang, R.; Li, D.; Liu, Z.; Chen, H. Dating Ore Deposit Using Garnet U–Pb Geochronology: Example from the Xinqiao Cu–S–Fe–Au Deposit, Eastern China. Minerals 2018, 8, 31. https://doi.org/10.3390/min8010031
Zhang Y, Shao Y, Zhang R, Li D, Liu Z, Chen H. Dating Ore Deposit Using Garnet U–Pb Geochronology: Example from the Xinqiao Cu–S–Fe–Au Deposit, Eastern China. Minerals. 2018; 8(1):31. https://doi.org/10.3390/min8010031
Chicago/Turabian StyleZhang, Yu, Yongjun Shao, Rongqing Zhang, Dengfeng Li, Zhongfa Liu, and Huayong Chen. 2018. "Dating Ore Deposit Using Garnet U–Pb Geochronology: Example from the Xinqiao Cu–S–Fe–Au Deposit, Eastern China" Minerals 8, no. 1: 31. https://doi.org/10.3390/min8010031
APA StyleZhang, Y., Shao, Y., Zhang, R., Li, D., Liu, Z., & Chen, H. (2018). Dating Ore Deposit Using Garnet U–Pb Geochronology: Example from the Xinqiao Cu–S–Fe–Au Deposit, Eastern China. Minerals, 8(1), 31. https://doi.org/10.3390/min8010031