Gems and Placers—A Genetic Relationship Par Excellence
Abstract
:1. Introduction—Coupling Gemstones and Placer Deposits
2. Placer—Environments of Formation and Sedimentary Processes
2.1. Subdivision of Placer Deposits
2.2. Depositional Environments of Gemstone Placers
2.2.1. Residual-Eluvial Placers
2.2.2. Colluvial Placers
2.2.3. Alluvial-Fluvial Placers
2.2.4. Deltaic Placers
2.2.5. Nearshore Marine and Aeolian Placers
2.3. The Physical-Chemical Regime of Gemstone Placer Deposits
2.3.1. Physical Parameters
2.3.2. Chemical Parameters
3. Gemstone Placers from Beryl to Zircon
3.1. Beryllium-Bearing Gemstone Placers—Beryl and Chrysoberyl
3.2. Boron-Bearing Gemstone Placers-Tourmaline
3.3. Fluorine-Bearing Gemstone Placers—Topaz
3.4. Phosphate-Bearing Gemstone Placers—Apatite-Group Minerals
3.5. Zirconium-Bearing Gemstone Placers—Zircon
3.6. Garnet-Bearing Gemstone Placers
3.7. Corundum and Spinel-Bearing Gemstone Placers
3.8. Diamond-Bearing Gemstone Placers
3.9. Quartz-, Diopside-, Titanite-, Olivine-, Epidote- and Spodumene-Bearing Gemstone Placers
3.10. Amber Placer Deposits
4. Synopsis and Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. See Text for Reference
- (1)
- Metaultrabasic rocks (14b A)
- (2)
- Metapelites (14b J)
- (1)
- Alluvial placers of apatite possessing gem-quality (38a l)
- (2)
- Nb–P–Ti laterites and bauxites (38a H)
- (3)
- Phoscretes
- (1)
- Apicretes (38c H)
- (2)
- APS-mineral bearing duricusts (38b H)
- (4)
- Lacustrine phoscretes
- (1)
- (Fluvial-) lacustrine and bog iron ores (38g H–38g K)
- (2)
- Perennial or organic lakes (38a JK)
- (3)
- Ephemeral lakes (38b I)
- (1)
- Guano deposits (38a M)
- (2)
- Carbonate-hosted phosphorites (38e K)
- (3)
- Siliciclastic-hosted phosphorites (38e J)
- (4)
- Phosphate sandstones (38e l)
- (5)
- Marine phosphate-bearing ironstones
- (1)
- Phosphatic bonebeds in oolithic ironstones (Minette-/Wabana types) (38f IJ)
- (2)
- Phosphatic bonebeds in detrital iron ore deposits (38g l)
- (1)
- Mg-enriched garnet s.s.s. in basic volcanic rocks (47a B)
- (2)
- Fe-enriched garnet s.s.s. in dacite and andesite (47a C)
- (3)
- Mn–Fe-enriched garnet s.s.s. in rhyolite (47a D)
- (1)
- Mg–Cr-enriched garnet s.s.s. in meta(ultra)basic igneous rocks (47c A)
- (2)
- Fe–Al-enriched garnet s.s.s. in metapelites (47a IJ)
- (3)
- Ca–Mn-enriched garnet s.s.s. in calcsilicate rocks (47cd K)
- (4)
- Mn-enriched garnet s.s.s. in manganiferous BIF ore deposits (47b J)
- (5)
- V-enriched garnet s.s.s. in carbonaceous slates/schists (47d J)
- (1)
- Ruby metaultrabasites-serpentinites (50a A)
- (2)
- Ruby in zoisite amphibolite (50c B)
- (1)
- Corundum-diaspore-spinel metabauxite in marble (50b K)
- (2)
- Sillimanite-corundum metapalaeosol (49c H)
- (3)
- Corundum-spinel metabauxite (50a H)
- (1)
- Alluvial-fluvial and near-shore-marine modern diamond placer deposits (51a I)
- (2)
- Palaeoplacer diamond deposits (51b I)
- (3)
- Alluvial-fluvial carbonado placer (51c I)
- (1)
- Hypogene agate-amethyst-rock crystal-opal deposits in basic magmatic rocks (40a B)
- (2)
- Thundereggs in felsic magmatic rocks (40a D)
- (3)
- Supergene opal deposits on top of basic and felsic magmatic rocks (40b B–40b H)
- (4)
- Hypogene zeolite-celadonite-bearing opal deposits in basic to acidic magma tic rocks (40f BCD)
- (1)
- Pumice (40g CDE)
- (2)
- Scoria (40g B)
- (3)
- Perlite (40h CD)
- (1)
- Quartz (40a H)
- (2)
- Chalcedony (40c H)
- (3)
- Opal (40d H)
- (1)
- Diatomite (40c J)
- (2)
- Radiolarite (40d J)
- (3)
- Chert (40g J)
- (4)
- Rottenstone/ tripolite (40c K)
- (1)
- Ultrabasic volcanic rocks (451r A)
- (2)
- Basic volcanic rocks (45b B)
- (3)
- Forsterite Skarn (45d CD)
- (1)
- Geothermal waters and oil-field formation waters
- (2)
- Li brines within playas in Chile
References
- Dill, H.G. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth Sci. Rev. 2010, 100, 1–420. [Google Scholar] [CrossRef]
- Buck, S.G.; Minter, W.E.L. Placer formation by fluvial degradation of an alluvial fan sequence: The Proterozoic Carbon Leader placer, Witwatersrand Supergroup, South Africa. J. Geol. Soc. 1985, 142, 757–764. [Google Scholar] [CrossRef]
- Roy, P.S. Heavy mineral beach placers in southeastern Australia: Their nature and genesis. Econ. Geol. 1999, 94, 567–588. [Google Scholar] [CrossRef]
- Lalomov, A.V.; Tabolitch, S.E. Age determination of coastal submarine placer, Val’cumey, northern Siberia. Creat. Ex Nihilo Tech. J. 2000, 14, 83–90. [Google Scholar]
- Burton, J.P.; Fralick, P. Depositional placer accumulations in coarse-grained alluvial braided river systems. Econ. Geol. 2003, 98, 985–1001. [Google Scholar] [CrossRef]
- Corbett, I.; Burrell, B. The earliest Pleistocene (?) Orange River fan-delta: An example of successful exploration delivery aided by applied Quaternary research in diamond placer sedimentology and paleontology. Quat. Int. 2003, 82, 63–73. [Google Scholar] [CrossRef]
- Dill, H.G.; Khishigsuren, S.; Majigsuren, Yo.; Bulgamaa, J.; Hongor, O.; Hofmeister, W. The diamondiferous peridot olivine-garnet deposit Shavryn Tsaram, Central Mongolia, with special reference to its placer deposits. Z. Gemmol. 2004, 53, 87–104. [Google Scholar]
- Dill, H.G.; Melcher, F.; Fuessl, M.; Weber, B. The origin of rutile-ilmenite aggregates (“nigrine”) in alluvial-fluvial placers of the Hagendorf pegmatite province, NE Bavaria, Germany. Mineral. Petrol. 2007, 89, 133–158. [Google Scholar] [CrossRef]
- Dill, H.G. A review of mineral resources in Malawi: With special reference to aluminum variation in mineral deposits. J. Afr. Earth Sci. 2007, 47, 153–173. [Google Scholar] [CrossRef]
- Dill, H.G. Grain morphology of heavy minerals from marine and continental placer deposits, with special reference to Fe–Ti oxides. Sediment. Geol. 2007, 198, 1–27. [Google Scholar] [CrossRef]
- Gujar, A.R.; Ambre, N.V.; Mislankar, P.G. Onshore Heavy Mineral Placers of South Maharashtra, Central West Coast of India National Seminar on Exploration, Exploitation, Enrichment and Environment of Coastal Placer Minerals (PLACER-2007); Macmillan India: New Delhi, India, 2007. [Google Scholar]
- Dill, H.G.; Ludwig, R.-R. Geomorphological–sedimentological studies of landform types and modern placer deposits in the savanna (Southern Malawi). Ore Geol. Rev. 2008, 33, 411–434. [Google Scholar] [CrossRef]
- Jones, G.; O’Brien, V. Aspects of resources estimation fro mineral sands deposits Transactions of the Institutions of Mining and Metallurgy, Section B. Appl. Earth Sci. 2014, 123, 86–94. [Google Scholar] [CrossRef]
- Abzalov, M. Mineral Sands. In Modern Approaches in Solid Earth Sciences; Springer: Heidelberg, Germany, 2016; Volume 12, pp. 427–433. [Google Scholar]
- Bern, C.R.; Shah, A.K.; Benzel, W.M.; Lowers, H.A. The distribution and composition of REE-bearing minerals in placers of the Atlantic and Gulf coastal plains, USA. J. Geochem. Explor. 2016, 162, 50–61. [Google Scholar] [CrossRef]
- Sitdikova, L.M.; Ibragimov, E.A.; Badrutdinov, O.R.; Khasanova, N.M.; Mukhamatdinov, I.I. Material composition of coastal marine placer deposits of the Arabian Sea Coast (Kollam, Kerala, India). Int. Multidiscip. Sci. GeoConf. Surv. Geol. Min. Ecol. Manag. SGEM 2016, 1, 361–368. [Google Scholar]
- Hou, B.; Keeling, J.; Van Gosen, B.S. Geological and exploration models of beach placer deposits, integrated from case-studies of Southern Australia. Ore Geol. Rev. 2017, 80, 437–459. [Google Scholar] [CrossRef]
- Milesi, J.P.; Ledru, P.; Marcoux, E.; Mougeot, R.; Johan, V.; Lerouge, C.; Sabate, P.; Bailly, L.; Respaut, J.P.; Skipwith, P. The Jacobina Paleoproterozoic gold-bearing conglomerates, Bahia, Brazil: A hydrothermal shear-reservoir model. Ore Geol. Rev. 2002, 19, 95–136. [Google Scholar] [CrossRef]
- Malitc, K.N.; Merkle, R.K.W. Ru-Os-Ir-Pt and Pt-Fe alloys from the Evander Goldfield, Witwatersrand Basin, South Africa: Detrital origin inferred from compositional and osmium-isotope data. Can. Mineral. 2004, 42, 631–650. [Google Scholar] [CrossRef]
- Frimmel, H.E. Archean atmospheric evolution: Evidence from the Witwatersrand gold fields, South Africa. Earth Sci. Rev. 2005, 70, 1–46. [Google Scholar] [CrossRef]
- Stanaway, K.J. Heavy mineral placers. Min. Eng. 1992, 44, 352–358. [Google Scholar]
- Summerfield, M.A. Global Geomorphology; John Wiley & Sons Inc.: New York, NY, USA, 1991; p. 537. [Google Scholar]
- Dill, H.G.; Melcher, F.; Fuessl, M.; Weber, B. Accessory minerals in cassiterite: A tool for provenance and environmental analyses of colluvial-fluvial placer deposits (NE Bavaria, Germany). Sediment. Geol. 2006, 191, 171–189. [Google Scholar] [CrossRef]
- Dill, H.G.; Techmer, A.; Weber, B.; Fuessl, M. Mineralogical and chemical distribution patterns of placers and ferricretes in Quaternary sediments in SE Germany: The impact of nature and man on the unroofing of pegmatites. J. Geochem. Explor. 2008, 96, 1–24. [Google Scholar] [CrossRef]
- Dill, H.G. Geogene and anthropogenic controls on the mineralogy and geochemistry of modern alluvial-(fluvial) gold placer deposits in man-made landscapes in France, Switzerland and Germany. J. Geochem. Explor. 2008, 99, 29–60. [Google Scholar] [CrossRef]
- Dill, H.G.; Klosa, D.; Steyer, G. The “Donauplatin”: Source rock analysis and origin of a distal fluvial Au-PGE (gold-platinum-group-element) placer in Central Europe. Mineral. Petrol. 2009, 96, 141–161. [Google Scholar] [CrossRef]
- Dill, H.G.; Steyer, G.; Weber, B. Morphological studies of PGM grains in alluvial-fluvial placer deposits from the Bayerischer Wald, SE Germany: Hollingworthite and ferroan platinum. Neues Jahrb. Mineral. Abh. 2010, 187, 101–110. [Google Scholar] [CrossRef]
- Miall, A.D. Principles of Sedimentary Basin Analysis, 3rd ed.; Springer: Berlin, Germany, 1999; p. 616. [Google Scholar]
- Galloway, W.E.; Hobday, D.K. Terrigenous Clastic Depositional Systems: Applications to Fossil Fuel and Groundwater Resources; Springer: Berlin, Germany, 1996; p. 489. [Google Scholar]
- Panin, N.; Panin, S. Sur la genèse des accumulations des mineraux lourds dans le delta du Danube. Rev. Géogr. Phys. Géol. Dyn. 1969, 11, 511–522. [Google Scholar]
- Boyd, R.; Dalrymple, R.; Zaitlin, B.A. Classification of clastic coastal depositional environments. Sediment. Geol. 1992, 80, 139–150. [Google Scholar] [CrossRef]
- Dalrymple, R.W. Tidal depositional systems. In Facies Models 4; James, N.P., Dalrymple, R.W., Eds.; Geological Association of Canada: St. John′s, NL, Canada, 2010; pp. 201–232. [Google Scholar]
- Dalrymple, R.W.; Choi, K. Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation. Earth Sci. Rev. 2007, 81, 135–174. [Google Scholar] [CrossRef]
- Davis, R.A., Jr.; Dalrymple, R.W. Principles of Tidal Sedimentology; Springer: New York, NY, USA, 2011; p. 621. [Google Scholar]
- Longhitano, S.G.; Mellere, D.; Steel, R.J.; Ainsworth, R.B. Tidal depositional systems in the rock record: A review and new insights. Sediment. Geol. 2012, 279, 2–22. [Google Scholar] [CrossRef]
- Hayes, M.O.; FitzGerald, D.M. Origin, Evolution, and Classification of Tidal Inlets. J. Coast. Res. 2013, 69, 14–33. [Google Scholar] [CrossRef]
- Fielding, C.R. Upper flow regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies. Sediment. Geol. 2006, 190, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.M. Ore Geology and Industrial Minerals—An Introduction; Blackwell: Oxford, UK, 1993; p. 358. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Slingerland, R. The effects of entrainment on the hydraulic equivalence relationships of light and heavy minerals in sands. J. Sediment. Petrol. 1977, 47, 753–770. [Google Scholar] [CrossRef]
- Reid, I.; Frostick, L.E. Role of settling entrainment and dispersive equivalence and of interstice trapping in placer formation. J. Geol. Soc. Lond. 1985, 142, 739–746. [Google Scholar] [CrossRef]
- Hughes, M.G.; Keene, J.B.; Joseph, R.G. Hydraulic sorting of heavy-mineral grains by swash on a medium-sand beach. J. Sediment. Res. 2000, 70, 994–1004. [Google Scholar] [CrossRef]
- Morton, A.C. Stability of detrital heavy-minerals in Tertiary Sandstones from the North Sea Basin. Clay Miner. 1984, 19, 287–308. [Google Scholar] [CrossRef]
- Lång, L.-O. Heavy mineral weathering under acidic soil conditions. Appl. Geochem. 2000, 15, 415–423. [Google Scholar] [CrossRef]
- Dill, H.G. Kaolin: Soil, rock and ore: From the mineral to the magmatic, sedimentary, and metamorphic environments. Earth Sci. Rev. 2016, 161, 16–129. [Google Scholar] [CrossRef]
- Dill, H.G. An overview of the pegmatitic landscape from the pole to the equator—Applied geomorphology and ore guides. Ore Geol. Rev. 2017, 91, 795–823. [Google Scholar] [CrossRef]
- Dill, H.G. Residual clay deposits on basement rocks: The impact of climate and the geological setting on supergene argillitization in the Bohemian Massif (Central Europe) and across the globe. Earth Sci. Rev. 2017, 165, 1–58. [Google Scholar] [CrossRef]
- Günther, B. Bestimmungstabellen für Edelsteine, Synthesen, Imitationen; Lenzen: Kirchweiler, Germany, 1988; p. 162. [Google Scholar]
- Dill, H.G.; Weber, B. Gemstones and geosciences in space and time. Digital maps to the “Chessboard classification scheme of mineral deposits”. Earth Sci. Rev. 2013, 127, 262–299. [Google Scholar] [CrossRef]
- Besaire, H. Gites Mineraux de Madagascar; Fascicule; Annales Geologique de Madagascar: Tananarive, Madagascar, 1966; Volume XXXIV, p. 135. [Google Scholar]
- Cairncross, B.; Campbell, I.C.; Huizenga, J.M. Topaz, aquamarine, and other beryls from Klein Spitzkoppe, Namibia. Gems Gemol. 1998, 34, 114–125. [Google Scholar] [CrossRef]
- Pezzotta, F. Madagaskar Ein Paradies voll mit Mineralien und Edelsteinen; Weise: München, Germany, 1999; Volume 17, pp. 1–96. [Google Scholar]
- Grundmann, G. Die Smaragde der Welt. ExtraLapis 2001, 21, 26–37. [Google Scholar]
- Kievlenko, E.Y. Geology of Gems; Ocean Publications Ltd.: Littleton, CO, USA, 2003; p. 432. [Google Scholar]
- Laurs, B.M.; Simmons, W.B.; Rossman, G.R.; Quinn, E.P.; McClure, S.F.; Peretti, A.; Armbruster, T.; Hawthorne, F.C.; Falster, A.U.; Günther, D.; et al. Pezzottaite from Ambatovita, Madagascar: A new gem mineral. Gems Gemol. 2003, 39, 284–301. [Google Scholar] [CrossRef]
- Cairncross, B. Field Guide to Rocks and Minerals of Southern Africa; Struik New Holland Publishing: Cape Town, South Africa, 2004; p. 297. [Google Scholar]
- Seifert, A.V.; Žáček, V.; Vrána, S.; Pecina, V.; Zachariáš, J.; Zwaan, J.C. Emerald mineralization in the Kafubu area, Zambia. Czech Geol. Surv. Bull. Geosci. 2004, 79, 1–40. [Google Scholar]
- Kuo, C.S. The Mineral Industry of Sri Lanka. In U.S. Geological Survey Minerals Yearbook 2005; U.S. Geological Survey: Reston, FL, USA, 2005; pp. 25.1–25.2. [Google Scholar]
- Shigley, J.E.; Laurs, B.M.; Janse, A.J.A.; Elen, S.; Dirlam, D. Gem localities of the 2000s. Gems Gemol. 2010, 46, 188–216. [Google Scholar] [CrossRef]
- Walton, L. Exploration Criteria for Colored Gemstone Deposits in the Yukon; Open File 2004-10; Yukon Geological Survey: Whitehorse, YT, Canada, 2004; p. 184.
- Schumann, W. Gemstones of the World; Sterling Publishing Co.: New York, NY, USA, 1997; p. 280. [Google Scholar]
- Gübelin, E.; Erni, F. Gemstones, Symbols of Beauty and Power; Geoscience Press: Tucson, AZ, USA, 2000; p. 240. [Google Scholar]
- Siebel, W.; Schmitt, A.K.; Danišík, M.; Chen, F.; Meier, S.; Weiß, S.; Ero, S. Prolonged mantle residence of zircon xenocrysts from the western Eger rift. Geosci. Nat. 2009, 2, 886–890. [Google Scholar] [CrossRef]
- Pupin, J.P. Zircon and granite petrology. Contrib. Mineral. Petrol. 1980, 73, 207–220. [Google Scholar] [CrossRef]
- Dill, H.G. Pegmatites and aplites: Their genetic and applied ore geology. In Ore Geol. Rev.; 2015; Volume 69, pp. 417–561. [Google Scholar]
- Proctor, K. Gem pegmatites of Minas Gerais, Brazil: Exploration, occurrence, and aquamarine deposits. Gems Gemol. 1984, 1984, 78–100. [Google Scholar] [CrossRef]
- Proctor, K. Chrysoberyl and alexandrite from the pegmatite districts of Minas Gerais, Brazil. Gems Gemol. 1988, 1988, 16–32. [Google Scholar] [CrossRef]
- Schmetzer, K.; Caucia, F.; Gilg, H.A.; Coldham, T.S. Chrysoberyl from the New England Placer Deposits, New South Wales, Australia. Gems Gemol. 2016, 52. [Google Scholar] [CrossRef]
- Henry, D.J.; Guidotti, C.V. Tourmaline as a petrogenetic indicator mineral: An example from the staurolite—Grade metapelites of NW Maine. Am. Mineral. 1985, 70, 1–15. [Google Scholar]
- Henry, D.J.; Dutrow, B.L. Metamorphic tourmaline and its petrologic applications. Rev. Mineral. 1996, 33, 503–557. [Google Scholar]
- Hawthorne, F.J.; Henry, D.J. Classification of the minerals of the tourmaline group. Eur. J. Mineral. 1999, 11, 201–216. [Google Scholar] [CrossRef]
- Castañeda, C.; César-Mendes, J.; Pedrosa-Soares, A.C. Turmalinas. Soc. Bras. Geol. 2001, 152–179. [Google Scholar]
- Basset, A.M. Nepal gem tourmaline. J. Nepal Geol. Soc. 1987, 4, 31–41. [Google Scholar]
- UN-ESCAP Geology and Mineral Resources of Nepal. Atlas of Mineral resources of the ESCAP region. UN/ESCAP in coordination with DMG; Commission for the Asia and the Pacific: New York, NY, USA, 1993; Volume 9, p. 107. [Google Scholar]
- Aryal, R.K. Current Status of Precious and Semi-Precious Stones of Nepal; Unpublished Report; Ministry of Industry, Department of Mines and Geology: Kathmandu, Nepal, 2001.
- Kaphle, K.P.; Einfalt, H.C. Prospects of Precious and Semiprecious stones in Nepal Himalaya and their Mining Opportunities. In Proceedings of the 29th Himalaya-Karakoram-Tibet Workshop, Lucca, Italy, 2–4 September 2014; pp. 77–78. [Google Scholar]
- Henry, D.J.; Novak, M.; Hawthorne, F.C.; Ertl, A.; Dutrow, B.L.; Uher, P.; Pezzotta, F. Nomenclature of the tourmaline-supergroup minerals. Am. Mineral. 2011, 96, 895–913. [Google Scholar] [CrossRef]
- Menzies, M.A. The mineralogy, geology and occurrence of topaz. Mineral. Rec. 1995, 25, 5–53. [Google Scholar]
- Dill, H.G.; Busch, K.; Blum, N. Chemistry and origin of veinlike phosphate mineralization, Nuba Mts. (Sudan). Ore Geol. Rev. 1991, 6, 9–24. [Google Scholar] [CrossRef]
- Dill, H.G. Heavy mineral response to the progradation of an alluvial fan: Implications concerning unroofing of source area, chemical weathering, and paleo-relief (Upper Cretaceous Parkstein fan complex/SE Germany). Sediment. Geol. 1995, 95, 39–56. [Google Scholar] [CrossRef]
- Rozendaal, C.; Philander, A. Mineralogy of heavy mineral placers along the west coast of South Africa. In Proceedings of the 6th International Congress on Applied Mineralogy ICAM 2000, Göttingen, Germany, 17–19 July 2000; pp. 417–420. [Google Scholar]
- Philander, C.; Rozendaal, A. Geology of the Cenozoic Namakwa Sands Heavy Mineral Deposit, West Coast of South Africa: A World-Class Resource of Titanium and Zircon. Econ. Geol. 2015, 110, 1577–1623. [Google Scholar] [CrossRef]
- Pupin, J.P.; Turco, G. Le zircon, minéral commun significatif des roches endogènes et exogènes. Bull. Minéral. 1981, 104, 724–731. [Google Scholar]
- Bossart, P.J.; Meier, M.; Oberli, F.; Steiger, R.H. Morphology versus U-Pb systematics in zircon: A high-resolution isotopic study of a zircon population from a Variscan dyke in the Central Alps. Earth Planet. Sci. Lett. 1986, 78, 339–354. [Google Scholar] [CrossRef]
- Benisek, A.; Finger, F. Factors controlling the development of prism faces in granite zircons: A microprobe study. Contrib. Mineral. Petrol. 1993, 114, 441–451. [Google Scholar] [CrossRef]
- Bingen, B.; Davis, W.J.; Austrheim, H. Zircon U-Pb geochronology in the Bergen arc eclogites and their Proterozoic protoliths, and implications for the pre-Scandian evolution of the Caledonides in western Norway. Geol. Soc. Am. Bull. 2001, 113, 640–649. [Google Scholar] [CrossRef]
- Dill, H.G.; Kaufhold, S.; Lindenmaier, F.; Dohrmann, R.; Ludwig, R.; Botz, R. Joint clay-heavy-light mineral analysis: A tool to investigate the hydrographic-hydraulic regime of the Late Cenozoic deltaic inland fans under changing climatic conditions (Cuvelai-Etosha Basin, Namibia). Int. J. Earth Sci. 2012, 102, 265–304. [Google Scholar] [CrossRef]
- Grew, E.S.; Locock, A.J.; Mills, S.J.; Galuskina, I.O.; Galuskin, E.V.; Hålenius, U. Nomenclature of the garnet supergroup. Am. Mineral. 2013, 98, 785–811. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.S. Colored Gemstones from Canada. Rocks Miner. 2010, 85, 24–43. [Google Scholar] [CrossRef]
- Lind, T.; Henn, U.; Bank, H. Spessartine aus Namibia. Neues Jahrb. Mineral. Monatsh. 1993, 1993, 569–576. [Google Scholar]
- Gent, M.R.; Alvarez, M.M.; Iglesias, J.J.M.G.; Álvarez, J.T. Offshore occurrences of heavy-mineral placers, Northwest Galicia, Spain. Mar. Georesour. Geotechnol. 2005, 23, 39–59. [Google Scholar] [CrossRef]
- Angusamy, N.; Rajamanickam, G.V. Depositional environment of sediments along the southern coast of Tamil Nadu, India. Oceanologia 2006, 48, 87–102. [Google Scholar]
- Harben, P.W.; Kužvart, M. Industrial Minerals. A Global Geology; London Industrial Minerals Information Ltd.: London, UK, 1996; p. 462. [Google Scholar]
- Dill, H.G. Placer deposits—Sedimentary, mineralogical and economic aspects. In Material Characterization by Solid State Spectroscopy; Hofmeister, W., Dao, N.Q., Quang, V.X., Eds.; The Minerals of Vietnam: Hanoi, Vietnam, 2001; pp. 105–123. [Google Scholar]
- Laurs, B.M. Update on some Madagascar gem localities. Gems Gemol. 2000, 36, 165–167. [Google Scholar]
- Schwarz, D.; Petsch, E.J.; Kanis, J. Sapphires from Andranondambo region, Madagascar. Gems Gemol. 1996, 32, 80–99. [Google Scholar] [CrossRef]
- Yager, T.R. The mineral industry of Madagascar. In U.S. Geological Survey Minerals Yearbook 2003; U.S. Geological Survey: Reston, FL, USA, 2003; pp. 21.1–21.5. [Google Scholar]
- Rakotondrazafy, A.F.M.; Giuliani, G.; Ohnenstetter, D.; Fallick, A.E.; Rakotosamizanany, S.; Andriamamonjy, A.; Ralantoarison, T.; Razanatseheno, M.; Offant, Y.; Garnier, V.; et al. Gem corundum deposits of Madagascar: A review. Ore Geol. Rev. 2008, 34, 134–154. [Google Scholar] [CrossRef]
- Dill, H.G.; Goldmann, S.; Cravero, F. Zr-Ti-Fe placers along the coast of NE Argentina: Provenance analysis and ore guide for the metallogenesis in the South Atlantic Ocean. Ore Geol. Rev. 2018, 95, 131–160. [Google Scholar] [CrossRef]
- Hall, A.M.; Thomas, M.F.; Thorp, M.B. Late Quaternary alluvial placer development in the humid tropics: The case of the Birim Diamond Placer, Ghana. J. Geol. Soc. 1985, 142, 777–787. [Google Scholar] [CrossRef]
- Thomas, M.F.; Thorp, M.B.; Teeuw, R.M. Palaeogeomorphology and the occurrence of diamondiferous placer deposits in Koidu, Sierra Leone. J. Geol. Soc. 1985, 142, 789–802. [Google Scholar] [CrossRef]
- Boxer, G.L.; Deakin, A.S. Argyle alluvial diamond deposits. AusIMM 1990, 14, 1655–1658. [Google Scholar]
- Fazakerley, V.W. Bow River alluvial Diamond deposit. Geol. Miner. Depos. Aust. Papua New Guinea 1990, 14, 1659–1664. [Google Scholar]
- Thomas, M.F. Landscape sensitivity in time and space—An introduction. Catena 2001, 42, 83–98. [Google Scholar] [CrossRef]
- Teeuw, R.M. Regolith and diamond deposits around Tortiya, Ivory Coast, West Africa. Catena 2002, 46, 111–127. [Google Scholar] [CrossRef]
- Bluck, B.J.; Ward, J.D.; De Wit, M.C.J. Diamond mega-placers: Southern Africa and the Kaapvaal craton in a global context. Geol. Soc. Lond. Spec. Publ. 2005, 248, 213–245. [Google Scholar] [CrossRef]
- Rau, T.K. Incidence of diamonds in the beach sands of the Kanyakumari Coast, Tamil Nadu. J. Geol. Soc. India 2006, 67, 11–16. [Google Scholar]
- Tompkins, L.A.G.; Gonzaga, M. Diamonds in Brazil and a proposed model for the origin and distribution of diamonds in the Coromandel Region, Minas Gerais, Brazil. Econ. Geol. 1989, 84, 591–602. [Google Scholar] [CrossRef]
- Mitchell, R.H. Kimberlites and Lamproites: Primary sources of diamond. Geosci. Can. 1991, 18, 1–16. [Google Scholar]
- Nixon, H. The morphology and nature of primary diamondiferous occurrences. J. Geochem. Explor. 1995, 53, 41–71. [Google Scholar] [CrossRef]
- Svisero, D. Distribution and origin of diamonds in Brazil: An overview. J. Geodyn. 1995, 20, 493–514. [Google Scholar] [CrossRef]
- Delaney, P.J.V. Gemstones of Brazil: Geology and Occurrences; Revista Escola de Minas, Praca Tiradentes; REM: Ouro Preto, Brazil, 1996; Volume 20, p. 125. [Google Scholar]
- Tappert, R.; Stachel, T.; Harris, J.W.; Muehlenbachs, K.; Brey, G.P. Placer diamonds from Brazil: Indicators of the Composition of the Earth’s Mantle and the distance to their kimberlitic sources. Econ. Geol. 2006, 101, 453–470. [Google Scholar] [CrossRef]
- Kopylova, M.G.; Russell, J.K.; Stanley, C.; Cookenboo, H. Garnet from Cr- and Ca-saturated mantle: Implications for diamond exploration. J. Geochem. Explor. 2000, 68, 183–199. [Google Scholar] [CrossRef]
- Mafound, R.F. Presence of diamond in the pyrope peridotite, Drekeesh area, Tartous province, NW Syria: A new theory on the origin of diamond. Microchem. J. 2002, 73, 265–271. [Google Scholar]
- Schulz, K.-H.; Adelhardt, W.; Wagner, H. Simbabwe. Rohst. Länderber. 1993, 37, 1–224. [Google Scholar]
- Steiner, L. Angola. Rohst. Länderber. 1992, 35, 1–135. [Google Scholar]
- Green, T. The World of Diamonds; Willian Morrow and Co.: New York, NY, USA, 1981; p. 300. [Google Scholar]
- Erlich, E.I.; Hausel, W.D. Diamond Deposits: Origin, Exploration, and History of Discovery; Society for Mining Metallurgy: Littleton, CO, USA, 2008; p. 374. [Google Scholar]
- Porter GeoConsultancy. Namdeb, Sperrgebiet, SW Namibian On-shore and Marine Placer Diamonds. 2004. Available online: http://www.portergeo.com.au/database/mineinfo.asp?mineid=mn945 (accessed on 15 October 2018).
- Mcdonald, I.; Boyce, A.J.; Butler, I.B.; Herrington, R.T.; Polya, D.A. (Eds.) Mineral Deposits and Earth Evolution; Geological Society: London, UK, 2005; Volume 248, pp. 213–245. [Google Scholar]
- Helmore, R. Diamond mining in Angola. Mineral. Mag. 1984, 7, 530–537. [Google Scholar]
- Bamford, M.K. Cenozoic macroplants. Oxf. Monogr. Geol. Geophys. 2000, 40, 351–356. [Google Scholar]
- Jacob, J.; Ward, J.D.; Bluck, B.J.; Scholz, R.A.; Frimmel, H.E. Some observations on diamondiferous bedrock gully trap sites on Late Cenozoic, marine-cut platforms of the Sperrgebiet, Namibia. Ore Geol. Rev. 2006, 28, 493–506. [Google Scholar] [CrossRef]
- Patyk-Kara, N.G. Placers in the system of sedimentogenesis. Lithol. Miner. Resour. 2002, 37, 429–441. [Google Scholar] [CrossRef]
- Li, X.F.; Chen, Z.Y.; Wang, Y.A.; Zhu, H.P. The primarily study on the genesis of rocked quartz in Donghai, Jiangsu Province: Evidence from fluids inclusions and the Si, O isotope data. Acta Petrol. Sin. 2006, 22, 2018–2028, (In Chinese with English abstract). [Google Scholar]
- Li, X.F.; Watanabe, Y.; Wang, C.; Hirano, H.; Zhang, Y. The age of the Donghai rock crystals (clear quartz), eastern China: Constraint from biotite Ar–Ar geochronology. Bull. Geol. Survey Jpn. 2007, 58, 1–6. [Google Scholar] [CrossRef]
- Anderson, K.B.; LePage, B.A. Analysis of fossil resins from Axel Heiberg Island, Canadian Arctic. In Amber, Resinite and Fossil Resins; Anderson, K.G., Crelling, J.C., Eds.; American Chemical Society Symposium Series; American Chemical Society: Washington, DC, USA, 1995; Volume 617, pp. 170–192. [Google Scholar]
- Paškevicius, J. The Geology of the Baltic Republics; Geological Survey and University of Lithuania: Vilnius, Lithuania, 1997; p. 387. [Google Scholar]
- Kharin, G.; Emelyanov, E.M.; Zagorodnich, A.V. Paleogene mineral resources of the SE Baltic Sea and Sambian Peninsula. Z. Angew. Geol. 2004, 2, 64–71. [Google Scholar]
- Kosmoswska-Cevanowicz, B. Quaternary amber bearing deposits on the Polish Coast. Z. Angew. Geol. 2004, 2, 73–84. [Google Scholar]
- Nirgi, T.; Rosentau, A.; Ots, M.; Vahur, S.; Kriiska, A. A Buried amber finds in the coastal deposits of Saaremaa Island, eastern Baltic Sea—Their sedimentary environment and possible use by Bronze Age islanders. Boreas 2017, 46, 725–736. [Google Scholar] [CrossRef]
- Tyson, R. Sedimentary Organic Matter: Organic Facies and Palynofacies; Springer: Dordrecht, The Netherlands, 2012; p. 615. [Google Scholar]
- McClenaghan, M.B.; Kjarsgaard, B.A. Indicator mineral and surficial geochemical exploration methods for kimberlite in glaciated terrain: Examples from Canada. Geol. Assoc. Can. 2007, 4, 983–1006. [Google Scholar]
- Hutchison, M.T.; Frei, D. Diamondiferous kimberlite from Garnet Lake, West Greenland II: Diamonds and the mantle sample. In Proceedings of the 9th International Kimberlite Conference, Frankfurt, Germany, 10–15 August 2008. Extended Abstract No. 9IKCA-00182. [Google Scholar]
Element (for General Classification Scheme see [1]) | Mineral | Type | Density (Mean) kg/m3 | Hardness |
---|---|---|---|---|
Beryllium | Beryl and its varieties emerald, aquamarine, heliodor, morganite, goshenite, pezzottaite (a) Chrysoberyl (b) | Residual, colluvial, alluvial (fluvial). Argillaceous (kaolin) regolith | (a) 2.8 (b) 3.7 | (a) 7.5–8.0 (b) 8.5 |
Boron | Tourmaline (further minerals see Table 2) | Residual to colluvial placers in stream sediments and marine placer deposits as byproduct, useful as proximity indicator/pathfinder | 3.2 | 7.5 |
Fluorine | Topaz | Residual to colluvial placers in stream sediments useful as proximity indicator/pathfinder | 3.6 | 8.0 |
Phosphorous | Apatite | Eluvial, colluvial, alluvial placers | 3.2 | 5.0 |
Zirconium | Zircon (hyacinth) | Gemstone: residual to alluvial placers. Industrial minerals: marine placers | 4.7 | 7.5 |
Garnet group | Grossular (hessonite, tsavorite), spessartine, pyrope and its variety rhodolite, andradite (demantoid), almandine | Gemstone: residual to alluvial placers. Industrial minerals: also in marine placers | 4.2 | 7.0–8.0 |
Corundum | Ruby, sapphire, padparaja | Residual, eluvial, colluvial alluvial-fluvial | 4.1 | 9.0 |
Spinel | Spinel group minerals | See corundum | 3.6 | 8.0 |
Diamonds | Diamond | Residual, eluvial, colluvial, alluvial-fluvial, marine and aeolian modern and paleoplacers deposits | 3.5 | 10 |
Silica | Rock crystal, agate, amethyst, citrine, quartz, rose quartz, smoky quartz | Alluvial-fluvial placers (amethyst, agate, rock crystal). Residual placer (double terminated rock crystal) | 2.6 | 7.0 |
Chromium | Cr titanite (a), Cr diopside (b) | Colluvial-alluvial-fluvial placers (Cr diopside), ((Cr)-titanite) short distance of transport, useful as pathfinder | (a) 3.5 (b) 3.4 | (a) 5.0–5.5 (b) 6.0 |
Olivine s.s.s. | Peridote | Colluvial-alluvial-fluvial-marine placers only in case of a high ratio of uplift/weathering and/or short distance of transport | 3.3 | 6.5–7.0 |
Epidote s.s.s. | Tanzanite | Colluvial-alluvial | 3.3 | 6.5 |
Lithium | Kunzite, hiddenite | Residual to alluvial placers, swiftly decomposes to argillaceous material | 3.2 | 6.5–7.0 |
Organic compounds | Amber | Fluvial, marine placers | 1.1 | 2.0–2.5 |
Axinite | Ca2MgAl2(BO3)Si4O12(OH) |
Danburite | CaB2Si2O8 |
Datolite | CaB(SiO4)(OH) |
Dravite | NaMg3Al6(BO3)3Si6O18(OH)4 |
Dumortierite | Al6.9(BO3)(SiO4)3O2.5(OH)0.5 |
Elbaite | NaLi2.5Al6.5(BO3)3Si6O18(OH)4 |
Elbaite (Paraiba) | |
Elbaite (Indicolite) | Na(Li,Al)3Al6(BO3)3Si6O18(OH)4 |
Jeremejevite | Al6B5O15F2.5(OH)0.5 |
Kornerupine | Mg3.5Fe2+0.2Al5.7(SiO4)3.7(BO4)0.3O1.2(OH) |
Painite | Ca0.77Na0.19Al8.8Ti0.19Cr0.03Zr0.04B1.06O18 |
Elbaite (Rubellite) | Na(Li,Al)3Al6(BO3)3Si6O18(OH)4 |
Serendibite | Ca2Mg4.5Al1.5Si3.6Al1.8B0. |
Sinhalite | MgAl(BO4) |
Environment | Lithoclasts | Heavy Minerals |
---|---|---|
Primary deposit | 70% volcanites (olivine basalt, bassanite, trachybasalts), 30% tuffaceous breccia composed mainly of fragments of shales, sandstones, crystalline rocks and volcaniclastic material | olivine, titanite, garnet (pyrope-enriched), garnet (almandine-enriched), zircon, clinozoisite, epidote (pistazite), amphibole |
Secondary colluvial to alluvial placer deposit | 50% volcanites, 20% tuffaceous breccia, 20% crystalline rocks, 10% olivine-garnet aggregates | titanite, garnet (pyrope-enriched), garnet (almandine-enriched), olivine, zircon green amphibole, brown amphibole, tremolite-actinolite, apatite, epidote (pistazite), clinozoisite, orthopyroxene (bronzite, hypersthene), clinopyroxene, biotite, spinel |
Fluvial placer deposits (proximal tributary stream) | 20% volcanites, 10% tuffaceous breccia, 30% crystalline rocks, 20% granitic fragments, 20% shales/slates | titanite, green amphibole, brown amphibole, olivine, epidote (pistazite), garnet (almandine-enriched), zircon, apatite, orthopyroxene (bronzite, hypersthene), spinel, andalusite |
Fluvial placer deposits (intermediate tributary stream) | 20% volcanites, 10% tuffaceous breccia, 30% crystalline rocks, 20% granitic fragments, 20% shales/slates | titanite, green amphibole, brown amphibole, zircon, epidote (pistazite) apatite, garnet (almandine-enriched), monazite, tourmaline, fayalite-enriched olivine, hypersthene, |
Fluvial placer deposits (distal tributary stream) | 10% volcanites, 5% tuffaceous breccia, 50% crystalline rocks, 10% granitic fragments, 25% shales/slates | titanite, green amphibole, brown amphibole epidote (pistazite), zircon, apatite, garnet (almandine-enriched), (pyrope-enriched), orthite |
Fluvial placer deposits (trunk river) | 10% volcanites, 60% crystalline rocks, 10% granitic fragments, 20% shales/slates | titanite, green amphibole brown amphibole, epidote (pistazite), garnet (almandine-enriched), (pyrope-enriched), fayalite-enriched olivine, zircon, apatite, forsterite-enriched olivine, hypersthene |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dill, H.G. Gems and Placers—A Genetic Relationship Par Excellence. Minerals 2018, 8, 470. https://doi.org/10.3390/min8100470
Dill HG. Gems and Placers—A Genetic Relationship Par Excellence. Minerals. 2018; 8(10):470. https://doi.org/10.3390/min8100470
Chicago/Turabian StyleDill, Harald G. 2018. "Gems and Placers—A Genetic Relationship Par Excellence" Minerals 8, no. 10: 470. https://doi.org/10.3390/min8100470
APA StyleDill, H. G. (2018). Gems and Placers—A Genetic Relationship Par Excellence. Minerals, 8(10), 470. https://doi.org/10.3390/min8100470