New Perspectives for UAV-Based Modelling the Roman Gold Mining Infrastructure in NW Spain
Abstract
:1. Introduction
2. Geology of Gold Deposits
2.1. Primary Gold Deposits
2.2. Secondary or Placer Gold Deposits
3. Roman Goldmining Infrastructure in Northwest Spain
3.1. Hydraulic Infrastructure
3.2. Mining Activity
4. Materials and Methods
- Two different examples of open-cast mine: deep and shallow mining representatives
- Tailing deposits
- Hydraulic infrastructure comprising: a rock passageway for transferring water from one valley to another and a stepped network of tanks for water storage
- A water supply canal system
- Roman mining camp
Data Acquisition and Processing
5. Results
5.1. Open-Cast Mining
5.1.1. Model 1
5.1.2. Model 2
5.2. Tailing Deposits (Model 3)
5.3. Hydraulic Infrastructure (Models 4, 5 and 6)
5.3.1. Model 4
5.3.2. Model 5
5.3.3. Model 6
5.4. Mining Camps (Model 7)
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Enghag, P. Encyclopedia of the Elements: Technical Data. History, Processing, Applications; Wiley-VCH: Weinheim, Germany, 2004; p. 1309. ISBN 978-3-527-30666-4. [Google Scholar]
- García-Moreno, O.; Aguirre-Palafox, L.E.; Álvarez, W.; Hawley, W. A Little Big History of Iberian Gold. J. Big Hist. 2017, 1, 40–58. [Google Scholar] [CrossRef] [Green Version]
- Leusch, V.; Armbruster, B.; Pernicka, E.; Slavčev, V. On the invention of gold metallurgy: The gold objects from the Varna I cemetery (Bulgaria)—Technological consequence and inventive creativity. Camb. Archaeol. J. 2015, 25, 353–376. [Google Scholar] [CrossRef]
- Rivas y de Hoyos, A.; Barrios-Sánchez, S.; Lozano-Fernández, R.P. Pepitas de oro Españolas; Cuadernos del Museo Geominero; Museo Geominero: Madrid, Spain, 2017; Volume 23, p. 182. ISBN 978-84-9138-048-1. [Google Scholar]
- Macdonald, E. Handbook of Gold Exploration and Evaluation; Elsevier: Cambridge, UK, 2007; p. 630. ISBN 978-1-84569-175-2. [Google Scholar]
- Sánchez-Palencia, F.J.; Perona, D.R.; Ortega, A.B. Geoarqueología del oro en la Zona minera de Pino del Oro (Zamora). Mélanges de la Casa de Velázquez 2018, 1, 63–87. [Google Scholar] [CrossRef]
- Sánchez-Palencia, F.J.S.P.; Fernández-Posse, M.D.; Fernández-Manzano, J.; Álvarez-González, Y.; López-González, L.F. La zona arqueológica de las Médulas (1988–89). Archivo Español de Arqueología 1990, 63, 249–264. [Google Scholar]
- Domergue, C.; Hérail, G. Conditions de gisement et exploitation antique à Las Médulas (León, Espagne). Aquitania Suppl. 1999, 9, 93–116. [Google Scholar]
- Sánchez-Palencia, F.J.S.P.; Fernández-Posse, M.D.; Fernández, M.J.; Orejas, A.; Pérez-García, L.C.; Sastre, I. Las Médulas (León), un paisaje cultural patrimonio de la humandiad. Trabajos de Prehistoria 2000, 57, 195–208. [Google Scholar] [CrossRef]
- Pérez-García, L.C.; Sánchez-Palencia, F.J. El yacimiento aurífero de Las Médulas: Situación y geología. In Las Médulas (León). Un Paisaje Cultural en la «Asturia Augustana»; Sánchez-Palencia, F.J., Ed.; Instituto Leonés de Cultura: León, Spain, 2000; pp. 144–188. ISBN 84-89470-87-1. [Google Scholar]
- Fernández-Lozano, J.; Gutiérrez-Alonso, G.; Fernández-Morán, M.Á. Using airborne LiDAR sensing technology and aerial orthoimages to unravel roman water supply systems and gold works in NW Spain (Eria valley, León). J. Archaeol. Sci. 2015, 53, 356–373. [Google Scholar] [CrossRef]
- Matías, R.; Llamas, B. Use of LIDAR and photointerpretation to map the water supply at the Las Murias-Los Tallares Roman gold mine (Castrocontrigo, León, Spain). Archaeol. Prospect. 2018, 25, 59–69. [Google Scholar] [CrossRef]
- Pukanska, K.; Bartos, K.; Sabova, J. Comparison of Survey Results of the Surface Quarry Spišské Tomášovce by the Use of Photogrammetry and Terrestrial Laser Scanning. Inżynieria Mineralna 2014, 15, 47–54. [Google Scholar]
- Davis, R.A.; Welty, A.T.; Borrego, J.; Morales, J.A.; Pendon, J.G.; Ryan, J.G. Rio Tinto estuary (Spain): 5000 years of pollution. Environ. Geol. 2000, 39, 1107–1116. [Google Scholar] [CrossRef]
- Lehrberger, G. The Gold Deposits of Europe. In Prehistoric Gold in Europe; Monteani, G., Northover, J., Eds.; Springer: Dordrecht, The Netherlands, 1995; pp. 115–144. ISBN 978-94-015-1292-3. [Google Scholar]
- Fonte, J.; Pires, H.; Gonçalves-Seco, L.; Matias, R.; Lima, A. Archaeological research of ancient mining landscapes in Galicia (Spain) using Airborne Laser Scanning data. In Atas do Simpósio Internacional Paisagens Mineiras Antigas na Europa Occidental; Cámara Municipal: Boticas, Portugal, 2014; pp. 198–199. [Google Scholar]
- Currás-Refojos, B.; Romero, D.; Sánchez-Palencia, F.J.; Pecharromán, J.L.; Reher, G.; Alonso, F. Minería de oro antigua en la cuenca del río Negro (Zamora). In Minería Romana en Zonas Interfronterizas de Castilla y León y Portugal (Asturia y NE de Lusitania); Sánchez-Palencia, J.F., Ed.; Documento Pahis; Junta de Castilla y León, Consejería de cultura y Turismo: León, Spain, 2012; pp. 217–229. ISBN 978-8469715796. [Google Scholar]
- Fernández-Posse, M.D.; Sánchez-Palencia, F.J. La Corona y el Castro de Corporales II: Campaña de 1983 y prospecciones en la Valderia y la Cabrera (León); Ministerio de Cultura, Dirección General de Bellas Artes y Archivos, Junta de Castilla y León, Consejería de Educación y Cultura: León, Spain, 1988; 262p, ISBN 978-84-5058-267-3. [Google Scholar]
- Sánchez-Palencia, F.J. Prospecciones en las explotaciones auríferas del NO de España (Cuencas de los ríos Eria y Cabrera y Sierra del Teleno). Not. Arq. Hisp. 1980, 8, 214–289. [Google Scholar]
- Sáenz-Ridruejo, J.; Vélez-González, C. Contribución al Estudio de la Minería Primitiva del oro en el Noroeste de España; Ediciones Atlas: Madrid, Spain, 1974; p. 190. ISBN 978-8440009586. [Google Scholar]
- Fernández-Lozano, J.; Gutiérrez-Alonso, G. Aplicaciones geológicas de los drones. Rev. Soc. Geol. Esp. 2016, 29, 89–105. [Google Scholar]
- Lee, S.; Choi, Y. Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry. Geosyst. Eng. 2016, 19, 197–204. [Google Scholar] [CrossRef]
- McLeod, T.; Samson, C.; Labrie, M.; Shehata, K.; Mah, J.; Lai, P.; Wang, L.; Elder, J.H. Using video acquired from an unmanned aerial vehicle (UAV) to measure fracture orientation in an open-pit mine. Geomatica 2013, 67, 173–180. [Google Scholar] [CrossRef]
- Alvarado, M.; Gonzalez, F.; Fletcher, A.; Doshi, A. Towards the development of a low-cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites. Sensors 2015, 15, 19667–19687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Choi, Y. Topographic survey at small-scale open-pit mines using a popular rotary-wing unmanned aerial vehicle (drone). Tunnel Undergr. Space 2015, 25, 462–469. [Google Scholar] [CrossRef]
- Martin, P.G.; Payton, O.D.; Fardoulis, J.S.; Richards, D.A.; Scott, T.B. The use of unmanned aerial systems for the mapping of legacy uranium mines. J. Environ. Radioact. 2015, 143, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Honkavaara, E.; Eskelinen, M.A.; Pölönen, I.; Saari, H.; Ojanen, H.; Mannila, R.; Holmlund, C.; Hakala, T.; Litkey, P.; Rosnell, T.; et al. Remote sensing of 3-D geometry and surface moisture of a peat production area using hyperspectral frame cameras in visible to short-wave infrared spectral ranges onboard a small unmanned airborne vehicle (UAV). IEEE Trans. Geosci. Remote Sens. 2016, 54, 5440–5454. [Google Scholar] [CrossRef]
- Li, F.; Yang, W.; Liu, X.; Sun, G.; Liu, J. Using high-resolution UAV-borne thermal infrared imagery to detect coal fires in Majiliang mine, Datong coalfield, Northern China. Remote Sens. Lett. 2018, 9, 71–80. [Google Scholar] [CrossRef]
- Ashley, S. Searching for land mines. Mech. Eng. 1996, 118, 62. [Google Scholar]
- Eck, C.; Imbach, B. Aerial magnetic sensing with an UAV helicopter. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, 81–85. [Google Scholar] [CrossRef]
- Eisenbeiss, H.; Zhang, L. Comparison of DSMs generated from mini UAV imagery and terrestrial laser scanner in a cultural heritage application. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 90–96. [Google Scholar]
- Pacina, J.; Kopecký, J.; Bedrníková, L.; Handrychová, B.; Svarcová, M.; Holá, M.; Poncíková, E. Information system for preserving culture heritage in areas affected by heavy industry and mining. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 27 April–2 May 2014; Volume 16. [Google Scholar]
- Fernández-Lozano, J.; Gutiérrez-Alonso, G. The Alejico Carboniferous Forest: A 3D-terrestrial and UAV-assisted photogrammetric model for geologic heritage preservation. Geoheritage 2017, 9, 163–173. [Google Scholar] [CrossRef]
- Fernández-Lozano, J.; Gutiérrez-Alonso, G. Improving archaeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain). J. Archaeol. Sci. Rep. 2016, 5, 509–520. [Google Scholar] [CrossRef]
- Tripcevich, N.; Vaughn, K.J. Mining and Quarrying in the Ancient Andes; Springer: Berlin, Germany, 2013; p. 386. ISBN 978-1461451990. [Google Scholar]
- Ramage, A.; Craddock, P.T.; Cowell, M.R. King Croesus’ Gold: Excavations at Sardis and the History of Gold Refining; British Museum Press: London, UK, 2000; Volume 11, p. 272. ISBN 9780674503700. [Google Scholar]
- Boyle, R.W. The Geochemistry of Gold and Its Deposits; Bulletin/Geological Survey 280; Energy, Mines and Resources Canada: Geological Survey of Canada: Ottawa, ON, Canada, 1979; p. 584. ISBN 978-0660017693. [Google Scholar]
- Spiering, E.D.; Pevida, L.R.; Maldonado, C.; González, S.; García, J.; Varela, A.; Arias, D.; Martın-Izard, A. The gold belts of western Asturias and Galicia (NW Spain). J. Geochem. Explor. 2000, 71, 89–101. [Google Scholar] [CrossRef]
- Boixet, LL. Prospección de yacimientos auríferos en la Península Ibérica. Tierra Tecnol. 2015, 48, 3–8. [Google Scholar]
- Pérez-García, L.C. Los sedimentos auríferos del NO de la Cuenca del Duero (Provincia de León, España) y su prospección. Tesis inédita, Universidad de Oviedo, Oviedo, Spain, 1977. [Google Scholar]
- Hérail, G. Géomorphologie et gîtologie de l’or détritique. Piémonts et bassins intramontagneux du Nord-Ouest de l’Espagne; Éditions du CNRS, Centre de Toulouse, Sciences de la Terre; CNRS: Paris, France, 1984; p. 450. ISBN 978-2-222-03562-6. [Google Scholar]
- Fernández-Lozano, J. Estudio geológico preliminar de un sector del cierre periclinal del Sinclinorio de Truchas (León): El anticlinal de Manzaneda. Geogaceta 2012, 52, 17–20. [Google Scholar]
- Dixon-Porter, H.; Morán, B.A. Mineralizaciones de oro del noroeste de España. In Recursos Minerales de España; García-Guinea, J., Martínez-Frías, J., Eds.; Consejo Superior de Investigaciones Científicas, CSIC: Madrid, Spain, 1992; pp. 849–860. ISBN 84-00-07263-4. [Google Scholar]
- Gómez-Fernández, F.; Vindel, E.; Martín-Crespo, T.; Sánchez, V.; Clavijo, E.G.; Matías, R. The Llamas de Cabrera gold district, a new discovery in the Variscan basement of northwest Spain: A fluid inclusion and stable isotope study. Ore Geol. Rev. 2012, 46, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Pérez-García, L.C.; Sánchez-Palencia, F.J.; Torres-Ruiz, J. Tertiary and Quaternary alluvial gold deposits of Northwest Spain and Roman mining (NW of Duero and Bierzo Basins). J. Geochem. Explor. 2000, 71, 225–240. [Google Scholar] [CrossRef]
- IGME. Atlas Geoquímico de España. Instituto Geológico y Minero de España, 2012. Available online: http://mapas.igme.es/Servicios/default.aspx (accessed on 20 August 2018).
- Lewis, P.R.; Jones, G.D.B. Roman gold-mining in north-west Spain. J. Roman Stud. 1970, 60, 169–185. [Google Scholar] [CrossRef]
- Jones, R.F.J.; Bird, D.G. Roman gold-mining in north-west Spain, II: Workings on the Rio Duerna. J. Roman Stud. 1972, 62, 59–74. [Google Scholar] [CrossRef]
- Domergue, C. De l’utilisation de l’eau pour le transport des matériaux: Le cas des mines romaines de Las Médulas (province de León, Espagne). In L’eau: Usages, Risques et Représentations dans le Sud-Ouest de la Gaule et le Nord de la Péninsule Ibérique, de la fin de l’Âge du Fer à l’Antiquité Tardive (IIe saC-VIespC); Bost, J.P., Ed.; Aquitania: Talence, France, 2012; p. 21. ISBN 2-910763-24-2. [Google Scholar]
- Matías, R. El agua en la ingeniería de la explotación minera de Las Médulas (León-España). Lancia Rev. Prehistoria Arqueología Hist. Antigua Noroeste Peninsular 2006, 7, 17–112. [Google Scholar]
- Gutiérrez, R.B.G. Las explotaciones auríferas romanas del río de las Huelgas y su influencia en la transformación del paisaje (el ejemplo de Veguelina de Cepeda, León). Cuadernos Investig. Geogr. 1999, 25, 111–124. [Google Scholar] [CrossRef]
- Sánchez-Palencia Ramos, F.J.; Pérez García, L.C. Las Médulas y la minería del oro romana en la Astvria Avgustana. Las Médulas (León). In Las Médulas (León). Un Paisaje Cultural en la «Asturia Augustana»; Sánchez-Palencia, F.J., Ed.; Instituto Leonés de Cultura: León, Spain, 2000; pp. 137–226. ISBN 84-89470-87-1. [Google Scholar]
- Sastre, I.; Sánchez-Palencia, F.J. La red hidráulica de las minas de oro hispanas: Aspectos jurídicos, administrativos y políticos. Arch. Esp. Arqueol. 2002, 75, 215–233. [Google Scholar] [CrossRef]
- López, D.G. Las Médulas; Ed. Nebrija: León, Spain, 1980; p. 159. ISBN 84-391-4011-8. [Google Scholar]
- Pérez-García, L.C. Métodos de prospección de oro en diferentes depósitos aluvionares en España. In Actas del Congeso Gisements Alluviaux d’or; ORSTOM: La Paz, Bolivia, 1991; pp. 325–355. [Google Scholar]
- Fernández-Lozano, J.; Andrés-Bercianos, R. Movimientos en masa naturales o inducidos: Nuevas aportaciones al estudio de inestabilidad de laderas en la provincia de León. Geogaceta 2018, 62, 1–4. [Google Scholar]
- Lingua, A.; Marenchino, D.; Nex, F. Performance analysis of the SIFT operator for automatic feature extraction and matching in photogrammetric applications. Sensors 2009, 9, 3745–3766. [Google Scholar] [CrossRef] [PubMed]
- Westoby, M.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. Structure-from-Motion photogrammetry: A novel, low-cost tool for geomorphological applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Turner, D.; Lucieer, A.; Watson, C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef]
- Yi, G. Survey of Structure from Motion. In Proceedings of the IEEE International Conference on Cloud Computing and Internet of Things (CCIOT), Changchun, China, 13–14 December 2014; pp. 72–76. [Google Scholar]
- Micheletti, N.; Chandler, J.H.; Lane, S.N. Structure from Motion (SfM) Photogrammetry. Geomorphological Tech. Br. Soc. Geomorphol. 2015, 2, 1–12. [Google Scholar]
- Strecha, C.; Von Hansen, W.; Van Gool, L.; Fua, P.; Thoennessen, U. On benchmarking camera calibration and multi-view stereo for high resolution imagery. In Proceedings of the Computer Vision and Pattern Recognition 2008, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Verhoeven, G. Taking computer vision aloft—Archaeological three-dimensional reconstructions from aerial photographs with PhotoScan. Archaeol. Prospt. 2011, 18, 67–73. [Google Scholar] [CrossRef]
- Pérez, M.; Agüera, F.; Carvajal, F. Low cost surveying using an unmanned aerial vehicle. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 311–315. [Google Scholar] [CrossRef]
- Gašparović, M.; Gajski, D. Two-step camera calibration method developed for micro UAV’s. In Proceedings of the XXIII ISPRS Congress, Prague, Czech Republic, 12–19 July 2016; Volume XLI-b1, pp. 829–833. [Google Scholar] [CrossRef]
- Gašparović, M.; Jurjević, L. Gimbal Influence on the Stability of Exterior Orientation Parameters of UAV Acquired Images. Sensors 2017, 17, 401. [Google Scholar] [CrossRef] [PubMed]
- Cardenal, J.; Mata, E.; Perez-Garcia, J.L.; Delgado, J.; Andez, M.; Gonzalez, A.; Diaz-de-Teran, J.R. Close range digital photogrammetry techniques applied to landslide monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37 Pt B8, 235–240. [Google Scholar]
- Plan Nacional de Ortofotografía Aérea. Available online: http://pnoa.ign.es/ (accessed on 8 October 2018).
- González-Díez, A.; Fernández-Maroto, G.; Doughty, M.W.; De Terán, J.D.; Bruschi, V.; Cardenal, J.; Pérez, J.L.; Mata, E.; Delgado, J. Development of a methodological approach for the accurate measurement of slope changes due to landslides, using digital photogrammetry. Landslides 2014, 11, 615–628. [Google Scholar] [CrossRef]
- Esparza Arroyo, Á. Explotaciones auríferas romanas en el valle del río Negro (Zamora). Anuario del Instituto de Estudios Zamoranos Florián de Ocampo 1984, 1, 49–54. [Google Scholar]
- Domergue, C. Dix-huit ans de recherché (1968–1986) sur les mines d’or romaines du nord-ouest de la Peninsule Iberique. Actas I Congreso Internacional Astorga Romana 1986, 2, 7–101. [Google Scholar]
- Domergue, C.; Sillières, P. Minas de oro romanas de la provincial de León. I. La Corona de Quintanilla: Excavaciones 1971–1973. Las Coronas de Filiel, Boisan, Luyego 1 y 2: Exploraciones de 1973; Servicio de Publicaciones del Ministerio de Educación y Ciencia: Madrid, Spain, 1977; p. 183. ISBN 8436902327. [Google Scholar]
- Fernández-Lozano, J.; Gutiérrez-Alonso, G. Modelización 3D con tecnología Vant para la reproducción y preservación del registro arqueológico del proyecto de geoparque Las Loras (Palencia-Burgos). In Investigaciones arqueológicas en el valle del Duero: Del Paleolítico a la Edad Media, Actas de las V Jornadas de Jóvenes Investigadores del valle del Duero; Glyphos Publicaciones: Valladolid, Spain, 2017; pp. 537–554. ISBN 978-84-946124-0-4. [Google Scholar]
- Remondino, F. Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens. 2011, 3, 1104–1138. [Google Scholar] [CrossRef] [Green Version]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geom. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Shahbazi, M.; Sohn, G.; Théau, J.; Ménard, P. UAV-based point cloud generation for open-pit mine modelling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 213–320. [Google Scholar] [CrossRef]
- Esposito, G.; Mastrorocco, G.; Salvini, R.; Oliveti, M.; Starita, P. Application of UAV photogrammetry for the multi-temporal estimation of surface extent and volumetric excavation in the Sa Pigada Bianca open-pit mine, Sardinia, Italy. Environ. Earth Sci. 2017, 76, 103. [Google Scholar] [CrossRef]
- Cole, D. Exploring the sustainability of mining heritage tourism. J. Sustain. Tour. 2004, 12, 480–494. [Google Scholar] [CrossRef]
- Conesa, H.M.; Schulin, R.; Nowack, B. Mining landscape: A cultural tourist opportunity or an environmental problem?: The study case of the Cartagena–La Unión Mining District (SE Spain). Ecol. Econ. 2008, 64, 690–700. [Google Scholar] [CrossRef]
- Biel-Ibáñez, P. El paisaje minero en España como elemento de desarrollo territorial. Apuntes: Revista de estudios sobre patrimonio cultural. J. Cult. Herit. Stud. 2009, 22, 6–19. [Google Scholar]
- Répola, L.; Memmolo, R.; Signoretti, D. Instruments and methodologies for the underwater tridimensional digitization and data musealization. In Proceedings of the Underwater 3D Recording and Modeling, Piano di Sorrento, Italy, 16–17 April 2015; pp. 183–190. [Google Scholar] [CrossRef]
- Marinos, V.; Vazaios, I.; Papathanassiou, G.; Kaklis, T.; Goula, E. 3D Modelling of the ancient underground quarries of the famous Parian marble in the Aegean Sea, Greece and assessment of their stability using LiDAR scanning. Q. J. Eng. Geol. Hydrogeol. 2018. [Google Scholar] [CrossRef]
Model | Images | GSD (m) | Surface (ha) | Flying Mode | Height (m) |
---|---|---|---|---|---|
Model 1 | 270 | 0.0305 | 32.33 | Rectangular grid | 50 |
Model 2 | 283 | 0.0477 | 11.75 | Rectangular grid | 50 |
Model 3 | 325 | 0.0489 | 16.15 | Manual | Vary |
Model 4 | 536 | 0.0180 | 17.01 | Manual | Vary |
Model 5 | 372 | 0.0462 | 14.64 | Rectangular grid | 50 |
Model 6 | 423 | 0.0480 | 26.06 | Rectangular grid | 50 |
Model 7 | 63 | 0.1314 | 27.28 | Manual | Vary |
Model | RMS-GCP X (m) | RMS-GCP Y (m) | RMS-GCP Z (m) | RMS-ChP X (m) | RMS-ChP Y (m) | RMS-ChP Z (m) | Model Global Accuracy (m) * | GCP | ChP |
---|---|---|---|---|---|---|---|---|---|
Model 1 | 0.401 | 0.635 | 0.151 | 0.351 | 0.693 | 0.537 | 0.944 | 5 | 3 |
Model 2 | 0.061 | 0.052 | 0.115 | 0.086 | 0.012 | 0.21 | 0.227 | 5 | 3 |
Model 3 | 0.101 | 0.189 | 0.035 | 0.161 | 0.628 | 0.201 | 0.679 | 4 | 3 |
Model 4 | 0.226 | 0.156 | 0.27 | 0.163 | 0.174 | 0.161 | 0.288 | 9 | 3 |
Model 5 | 0.006 | 0.114 | 0.068 | 0.046 | 0.116 | 0.163 | 0.205 | 5 | 3 |
Model 6 | 0.108 | 0.083 | 0.077 | 0.212 | 0.06 | 0.939 | 0.964 | 6 | 3 |
Model 7 | 0.131 | 0.088 | 0.413 | 0.319 | 0.119 | 0.111 | 0.358 | 4 | 3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Lozano, J.; González-Díez, A.; Gutiérrez-Alonso, G.; Carrasco, R.M.; Pedraza, J.; García-Talegón, J.; Alonso-Gavilán, G.; Remondo, J.; Bonachea, J.; Morellón, M. New Perspectives for UAV-Based Modelling the Roman Gold Mining Infrastructure in NW Spain. Minerals 2018, 8, 518. https://doi.org/10.3390/min8110518
Fernández-Lozano J, González-Díez A, Gutiérrez-Alonso G, Carrasco RM, Pedraza J, García-Talegón J, Alonso-Gavilán G, Remondo J, Bonachea J, Morellón M. New Perspectives for UAV-Based Modelling the Roman Gold Mining Infrastructure in NW Spain. Minerals. 2018; 8(11):518. https://doi.org/10.3390/min8110518
Chicago/Turabian StyleFernández-Lozano, Javier, Alberto González-Díez, Gabriel Gutiérrez-Alonso, Rosa M. Carrasco, Javier Pedraza, Jacinta García-Talegón, Gaspar Alonso-Gavilán, Juan Remondo, Jaime Bonachea, and Mario Morellón. 2018. "New Perspectives for UAV-Based Modelling the Roman Gold Mining Infrastructure in NW Spain" Minerals 8, no. 11: 518. https://doi.org/10.3390/min8110518
APA StyleFernández-Lozano, J., González-Díez, A., Gutiérrez-Alonso, G., Carrasco, R. M., Pedraza, J., García-Talegón, J., Alonso-Gavilán, G., Remondo, J., Bonachea, J., & Morellón, M. (2018). New Perspectives for UAV-Based Modelling the Roman Gold Mining Infrastructure in NW Spain. Minerals, 8(11), 518. https://doi.org/10.3390/min8110518