Geochemistry and Petrogenesis of Mesoproterozoic Dykes of the Irkutsk Promontory, Southern Part of the Siberian Craton
Abstract
:1. Introduction
2. Geological Setting
3. Methods
4. Results
4.1. Geochemistry
4.2. Nd Isotope Systematics
5. Discussion
5.1. Petrogenesis of Dolerites
5.2. Geodynamic Setting
6. Conclusions
- The 1.35 Ga Listvyanka and 1.34 Ga Goloustnaya dolerite dykes form two Middle Mesoproterozoic swarms in Irkutsk Promontory of the southern part of the Siberian craton. The Listvyanka dykes are sub-vertical with a NNE trend, while the Goloustnaya dykes are characterized by a prevailing W trend.
- The Listvyanka and Goloustnaya dolerites in their chemical composition correspond to sub-alkaline tholeiitic basalts with lower to moderate mg#, varying from 36 to 54. The trace and rare earth element abundances in these dolerites are generally close to basalts of the OIB type. The Listvyanka dolerites demonstrate slightly positive εNd(t) values (+1.1 to +1.5), while the Goloustnaya dolerites are characterized by lower εNd(t) values varying from −0.9 to +0.1.
- Geochemical and isotopic affinities of the Listvyanka dolerites suggest their enrichment by a mantle plume-related source. Based on geochemical and isotopic data of the Goloustnaya dolerites, we assume some input of a lithospheric component to their mantle plume-related source.
- The emplacement of the Listvyanka and Goloustnaya dolerites took place in an intracontinental extensional setting, caused by a rising mantle plume.
- Listvyanka and Goloustnaya dolerites are synchronous with several mafic magmatic events in northern Laurentia and likely represent part of the Mesoproterozoic plumbing system of a Siberian–Laurentian LIP.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gladkochub, D.P.; Sklyarov, E.V.; Donskaya, T.V.; Stanevich, A.M.; Mazukabzov, A.M. A period of global uncertainty (Blank Spot) in the Precambrian history of the southern Siberian Craton and the problem of the transproterozoic supercontinent. Dokl. Earth Sci. 2008, 421, 774–778. [Google Scholar] [CrossRef]
- Gladkochub, D.P.; Donskaya, T.V.; Wingate, M.T.D.; Mazukabzov, A.M.; Pisarevsky, S.A.; Sklyarov, E.V.; Stanevich, A.M. A one-billion-year gap in the Precambrian history of the southern Siberian craton and the problem of the Transproterozoic supercontinent. Am. J. Sci. 2010, 310, 812–825. [Google Scholar] [CrossRef]
- Roberts, N.M.W. The boring billion? Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent. Geosci. Front. 2013, 4, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Cawood, P.A.; Hawkesworth, C.J. Earth’s middle age. Geology 2014, 42, 503–506. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, Z.X.; Evans, D.A.D.; Wu, H.; Li, H.; Dong, J. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth Planet. Sci. Lett. 2012, 353–354, 145–155. [Google Scholar] [CrossRef]
- Cawood, P.A.; Strachan, R.; Pisarevsky, S.A.; Gladkochub, D.P.; Murphy, J.B. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth Planet. Sci. Lett. 2016, 449, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Ernst, R.E.; Hamilton, M.A.; Söderlund, U.; Hanes, J.A.; Gladkochub, D.P.; Okrugin, A.V.; Kolotilina, T.; Mekhonoshin, A.S.; Bleeker, W.; LeCheminant, A.N.; et al. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nat. Geosci. 2016, 9, 464–469. [Google Scholar] [CrossRef]
- Sears, J.W.; Price, R.A. The Siberian connection: A case for the Pre-cambrian separation of the North American and Siberian cratons. Geology 1978, 6, 267–270. [Google Scholar] [CrossRef]
- Sears, J.W.; Price, R.A. New look at the Siberian connection: No SWEAT. Geology 2000, 28, 423–426. [Google Scholar] [CrossRef]
- Sears, J.W.; Price, R.A. Tightening the Siberian connection to western Laurentia. Geol. Soc. Am. Bull. 2003, 115, 943–953. [Google Scholar] [CrossRef]
- Hoffman, P.F. Did the breakout of Laurentia turn Gondwanaland inside out? Science 1991, 252, 1409–1412. [Google Scholar] [CrossRef] [PubMed]
- Condie, K.C.; Rosen, O.M. Laurentia-Siberia connection revisited. Geology 1994, 22, 168–170. [Google Scholar] [CrossRef]
- Pisarevsky, S.A.; Natapov, L.M. Siberia and Rodinia. Tectonophysics 2003, 375, 221–245. [Google Scholar] [CrossRef]
- Li, Z.X.; Bogdanova, S.V.; Collins, A.; Davidson, A.; De Waele, B.; Ernst, R.E.; Fitzsimons, I.; Fuck, R.; Gladkochub, D.; Jacobs, J.; et al. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 2008, 160, 179–210. [Google Scholar] [CrossRef]
- Wingate, M.T.D.; Pisarevsky, S.A.; Gladkochub, D.P.; Donskaya, T.V.; Konstantinov, K.M.; Mazukabzov, A.M.; Stanevich, A.M. Geochronology and paleomagnetism of mafic igneous rocks in the Olenek Uplift, northern Siberia: Implications for Mesoproterozoic supercontinents and paleogeography. Precambrian Res. 2009, 170, 256–266. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.A.D.; Mitchell, R.N. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology 2011, 39, 443–446. [Google Scholar] [CrossRef]
- Evans, D.A.D.; Veselovsky, R.V.; Petrov, P.Y.; Shatsillo, A.V.; Pavlov, V.E. Paleomagnetism of Mesoproterozoic margins of the Anabar Shield: A hypothesized billion-year partnership of Siberia and northern Laurentia. Precambrian Res. 2016, 281, 639–655. [Google Scholar] [CrossRef] [Green Version]
- Gladkochub, D.P.; Pisarevsky, S.A.; Donskaya, T.V.; Ernst, R.E.; Wingate, M.T.D.; Söderlund, U.; Mazukabzov, A.M.; Sklyarov, E.V.; Hamilton, M.A.; Hanes, J.A. Proterozoic mafic magmatism in Siberian craton: An overview and implications for paleocontinental reconstruction. Precambrian Res. 2010, 183, 660–668. [Google Scholar] [CrossRef]
- Pisarevsky, S.A.; Elming, S.-Å.; Pesonen, L.J.; Li, Z.X. Mesoproterozoic paleogeography: Supercontinent and beyond. Precambrian Res. 2014, 244, 207–225. [Google Scholar] [CrossRef]
- Pourteau, A.; Smit, M.A.; Li, Z.X.; Collins, W.J.; Nordsvan, A.R.; Volante, S.; Li, J. 1.6 Ga crustal thickening along the final Nuna suture. Geology 2018, 46, 959–962. [Google Scholar] [CrossRef]
- Goodge, J.W.; Vervoort, J.D.; Fanning, C.M.; Brecke, D.M.; Farmer, G.L.; Williams, I.S.; Myrow, P.M.; DePaolo, D.J. A positive test of East Antarctica–Laurentia juxtaposition within the Rodinia supercontinent. Science 2008, 321, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Betts, P.G.; Giles, D.; Schaefer, B.F. Comparing 1800–1600 Ma accretionary and basin processes in Australia and Laurentia: Possible geographic connections in Columbia. Precambrian Res. 2008, 166, 81–92. [Google Scholar] [CrossRef]
- Rogers, C.; Kamo, S.L.; Söderlund, U.; Hamilton, M.A.; Ernst, R.E.; Cousens, B.; Harlan, S.S.; Wade, C.E.; Thorkelson, D.J. Geochemistry and U–Pb geochronology of 1590 and 1550 Ma mafic dyke swarms of Western Laurentia: Mantle plume magmatism shared with Australia. Lithos 2018, 314–315, 216–235. [Google Scholar] [CrossRef]
- Rogers, J.J.W.; Santosh, M. Tectonics and surface effects of the supercontinent Columbia. Gondwana Res. 2009, 15, 373–380. [Google Scholar] [CrossRef]
- Gladkochub, D.P.; Donskaya, T.V.; Ernst, R.E.; Hamilton, M.A.; Mazukabzov, A.M.; Pisarevsky, S.A.; Kamo, S. New Ectasian event of basic magmatism in the Southern Siberian craton. Dokl. Earth Sci. 2018, in press. [Google Scholar]
- Rosen, O.M.; Condie, K.C.; Natapov, L.M.; Nozhkin, A.D. Archean and Early Proterozoic evolution of the Siberian Craton: A preliminary assessment. In Archean Crustal Evolution; Condie, K.C., Ed.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 411–459. ISBN 0444816216, 978-0444816214. [Google Scholar]
- Rosen, O.M. The Siberian craton: Tectonic zonation and stages of evolution. Geotectonics 2003, 37, 175–192. [Google Scholar]
- Gladkochub, D.; Pisarevsky, S.A.; Donskaya, T.; Natapov, L.M.; Mazukabzov, A.; Stanevich, A.M.; Slkyarov, E. Siberian Craton and its evolution in terms of Rodinia hypothesis. Episodes 2006, 29, 169–174. [Google Scholar]
- Pisarevsky, S.A.; Natapov, L.M.; Donskaya, T.V.; Gladkochub, D.P.; Vernikovsky, V.A. Proterozoic Siberia: A promontory of Rodinia. Precambrian Res. 2008, 160, 66–76. [Google Scholar] [CrossRef]
- Panteeva, S.V.; Gladkochoub, D.P.; Donskaya, T.V.; Markova, V.V.; Sandimirova, G.P. Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion. Spectrochim. Acta Part B At. Spectrosc. 2003, 58, 341–350. [Google Scholar] [CrossRef]
- Vanin, V.A.; Chugaev, A.V.; Demonterova, E.I.; Gladkochub, D.P.; Mazukabzov, A.M. Geologic structure of the Mukodek gold field (northern Transbaikalia) and sources of matter (Pb-Pb and Sm–Nd data). Russ. Geol. Geophys. 2018, 59, 1078–1086. [Google Scholar] [CrossRef]
- Jacobsen, S.B.; Wasserburg, G.J. Sm–Nd isotopic evolution of chondrites and achondrites, II. Earth Planet. Sci. Lett. 1984, 67, 137–150. [Google Scholar] [CrossRef]
- Goldstein, S.J.; Jacobsen, S.B. Nd and Sr isotopic systematics of rivers water suspended material: Implications for crustal evolution. Earth Planet. Sci. Lett. 1988, 87, 249–265. [Google Scholar] [CrossRef]
- LeBas, M.J.; LeMaitre, R.W.; Streckeisen, A.; Zanettin, B. A chemical classification of volcanic-rocks based on the total alkali silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Jensen, L.S. A New Cation Plot for Classifying Subalkalic Volcanic Rocks; Ontario Division of Mines, Miscellaneous Paper: Toronto, ON, Canada, 1976; p. 22. [Google Scholar]
- Sun, S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes Basins. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Special Publications 42; Geological Society of London: London, UK, 1989; pp. 313–345. ISBN 1897799128, 978-1897799123. [Google Scholar]
- Wakita, H.; Schmitt, R.A.; Rey, P. Elemental abundances of major, minor, and trace elements in Apollo 11 lunar rocks, soil and core samples. In Proceedings of the Apollo 11 Lunar Science Conference, Houston, TX, USA, 5–8 January 1970. Geochim. Cosmochim. Acta 1970, 34 (Suppl. 1), 1685–1717. [Google Scholar]
- Condie, K.C. High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes? Lithos 2005, 79, 491–504. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69, 33–47. [Google Scholar] [CrossRef]
- Meschede, M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram. Chem. Geol. 1986, 56, 207–218. [Google Scholar] [CrossRef]
- Khudoley, A.K.; Kropachev, A.P.; Tkachenko, V.I.; Rublev, A.G.; Sergeev, S.A.; Matukov, D.I.; Lyahnitskaya, O.Y. Mesoproterozoic to Neoproterozoic evolution of the Siberian craton and adjacent microcontinents: An overview with constraints for a Laurentian connection. Soc. Sediment. Geol. Spéc. Publ. 2007, 86, 209–226. [Google Scholar] [CrossRef]
- Popov, N.V.; Likhanov, I.I.; Nozhkin, A.D. Mesoproterozoic granitoid magmatism in the Trans-Angara Segment of the Yenisei Range: U‒Pb evidence. Dokl. Earth Sci. 2010, 431, 418–423. [Google Scholar] [CrossRef]
- Likhanov, I.I.; Popov, N.V.; Nozhkin, A.D. The oldest granitoids in the Transangarian part of the Yenisey Ridge: U–Pb and Sm–Nd data and geodynamic settings. Geochem. Int. 2012, 50, 869–877. [Google Scholar] [CrossRef]
- Veselovskiy, R.V.; Petrov, P.Y.; Karpenko, S.F.; Kostitsyn, Y.A.; Pavlov, V.E. New paleomagnetic and isotopic data on the Mesoproterozoic igneous complex on the northern slope of the Anabar massif. Dokl. Earth Sci. 2006, 411, 1190–1194. [Google Scholar] [CrossRef]
- Ernst, R.E.; Buchan, K.L.; Hamilton, M.A.; Okrugin, A.V.; Tomshin, M.D. Integrated paleomagnetism and U–Pb geochronology of mafic dikes of the eastern Anabar Shield region, Siberia: Implications for Mesoproterozoic paleolatitude of Siberia and comparison with Laurentia. J. Geol. 2000, 108, 381–401. [Google Scholar] [CrossRef] [PubMed]
- Ernst, R.E.; Okrugin, A.V.; Veselovskiy, R.V.; Kamo, S.L.; Hamilton, M.A.; Pavlov, V.; Söderlund, U.; Chamberlain, K.R.; Rogers, C. The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U–Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks. Russ. Geol. Geophys. 2016, 57, 653–671. [Google Scholar] [CrossRef]
- Malyshev, S.V.; Pasenko, A.M.; Ivanov, A.V.; Gladkochub, D.P.; Savatenkov, V.M.; Meffre, S.; Abersteiner, A.; Kamenetsky, V.S. Geodynamic significance of the Mesoproterozoic magmatism of the Udzha paleo-rift (northern Siberian Craton) based on U–Pb geochronology and paleomagnetic data. Minerals 2018, in press. [Google Scholar]
- Priyatkina, N.; Collins, W.J.; Khudoley, A.; Zastrozhnov, D.; Ershova, V.; Chamberlain, K.; Shatsillo, A.; Proskurnin, V. The Proterozoic evolution of northern Siberian Craton margin: A comparison of U–Pb–Hf signatures from sedimentary units of the Taimyr orogenic belt and the Siberian platform. Int. Geol. Rev. 2017, 59, 1632–1656. [Google Scholar] [CrossRef]
- Gladkochub, D.P.; Donskaya, T.V.; Mazukabzov, A.M.; Pisarevsky, S.A.; Ernst, R.E.; Stanevich, A.M. The Mesoproterozoic mantle plume beneath the northern part of the Siberian craton. Russ. Geol. Geophys. 2016, 57, 671–685. [Google Scholar] [CrossRef]
- Ernst, R.E.; Wingate, M.T.D.; Buchan, K.L.; Li, Z.X. Global record of 1600–700 Ma large igneous provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Res. 2008, 160, 159–178. [Google Scholar] [CrossRef]
- Ernst, R.E.; Pereira, E.; Hamilton, M.A.; Pisarevsky, S.A.; Rodriques, J.; Tassinari, C.C.G.; Teixeira, W.; Van-Dunem, V. Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions. Precambrian Res. 2013, 230, 103–118. [Google Scholar] [CrossRef]
Location | Listvyanka | Goloustnaya | ||||||||||
Dyke Number | 1 | 2 | 3 | 4 | ||||||||
Sample | 1283 | 1283a | 14101 | 14102 | 14103 | 1261 | 1401 | 1263 | 1264 | 1265 | 1402 | 1403 |
SiO2, wt.% | 48.57 | 48.23 | 49.28 | 47.71 | 47.52 | 48.60 | 47.30 | 49.46 | 48.88 | 50.36 | 47.37 | 46.72 |
TiO2 | 2.24 | 2.58 | 1.64 | 2.29 | 2.34 | 2.75 | 2.75 | 2.32 | 2.08 | 2.00 | 2.67 | 2.75 |
Al2O3 | 13.55 | 12.60 | 14.75 | 13.20 | 13.75 | 12.84 | 13.05 | 12.72 | 14.46 | 14.28 | 13.40 | 13.50 |
Fe2O3 | 3.31 | 3.21 | 3.13 | 3.45 | 3.66 | 3.42 | 4.08 | 1.76 | 2.94 | 2.31 | 3.61 | 3.50 |
FeO | 10.19 | 11.37 | 8.53 | 10.89 | 11.12 | 10.78 | 10.68 | 11.82 | 9.92 | 9.56 | 11.03 | 10.76 |
MnO | 0.21 | 0.23 | 0.17 | 0.22 | 0.24 | 0.19 | 0.20 | 0.22 | 0.18 | 0.18 | 0.20 | 0.19 |
MgO | 5.91 | 6.71 | 6.24 | 6.67 | 6.25 | 5.99 | 5.94 | 6.13 | 5.54 | 5.35 | 6.18 | 6.53 |
CaO | 9.48 | 9.72 | 10.48 | 9.35 | 8.52 | 8.93 | 9.53 | 7.79 | 8.72 | 8.63 | 9.27 | 9.53 |
Na2O | 2.71 | 2.50 | 2.48 | 2.73 | 2.26 | 2.18 | 1.86 | 2.72 | 2.40 | 2.52 | 2.74 | 2.31 |
K2O | 0.5 | 0.31 | 0.39 | 0.66 | 1.26 | 0.87 | 1.15 | 0.82 | 0.83 | 0.78 | 0.62 | 0.66 |
P2O5 | 0.28 | 0.28 | 0.19 | 0.31 | 0.26 | 0.37 | 0.38 | 0.44 | 0.36 | 0.46 | 0.27 | 0.31 |
LOI | 2.19 | 2.29 | 1.68 | 2.03 | 2.83 | 2.91 | 3.10 | 3.33 | 3.04 | 3.04 | 2.86 | 3.28 |
H2O− | 0.14 | 0.09 | 0.19 | 0.12 | 0.13 | 0.24 | 0.14 | 0.28 | 0.31 | 0.22 | 0.11 | 0.11 |
CO2 | 0.69 | 0.23 | 0.54 | 0.24 | 0.11 | <0.06 | - | 0.09 | 0.09 | 0.09 | - | 0.28 |
Total | 99.97 | 100.35 | 99.69 | 99.87 | 100.25 | 100.06 | 100.16 | 99.90 | 99.74 | 99.78 | 100.33 | 100.43 |
Rb, ppm | 15 | 7 | 8 | 22 | 32 | 26 | 64 | 26 | 20 | 20 | 25 | 21 |
Sr | 361 | 335 | 324 | 350 | 270 | 227 | 242 | 225 | 255 | 267 | 230 | 194 |
Y | 25 | 24 | 16 | 24 | 20 | 34 | 36 | 38 | 34 | 39 | 28 | 30 |
Zr | 170 | 149 | 97 | 150 | 124 | 212 | 218 | 247 | 221 | 254 | 159 | 184 |
Nb | 25 | 25 | 24 | 24 | 21 | 24 | 25 | 30 | 24 | 28 | 17 | 20 |
Ba | 150 | 74 | 113 | 154 | 333 | 283 | 293 | 315 | 335 | 390 | 242 | 233 |
La | 21.13 | 19.96 | 13.92 | 21.65 | 18.04 | 24.81 | 29.96 | 30.69 | 24.31 | 29.54 | 19.29 | 22.70 |
Ce | 45.56 | 43.06 | 29.79 | 48.03 | 38.16 | 55.46 | 65.76 | 67.65 | 55.33 | 67.01 | 43.44 | 50.67 |
Pr | 6.10 | 5.93 | 3.86 | 6.13 | 4.90 | 7.25 | 8.11 | 8.63 | 7.23 | 8.63 | 5.46 | 6.27 |
Nd | 24.86 | 24.26 | 16.07 | 26.39 | 21.33 | 29.37 | 33.41 | 36.07 | 30.52 | 36.62 | 23.12 | 25.98 |
Sm | 5.62 | 5.62 | 3.91 | 5.93 | 4.79 | 7.15 | 8.22 | 8.51 | 6.92 | 8.47 | 5.36 | 6.57 |
Eu | 1.90 | 1.78 | 1.26 | 1.80 | 1.52 | 2.03 | 2.32 | 2.31 | 2.10 | 2.49 | 1.74 | 2.05 |
Gd | 5.02 | 4.93 | 3.27 | 4.90 | 4.00 | 5.77 | 7.06 | 6.76 | 5.68 | 7.05 | 5.12 | 5.78 |
Tb | 0.76 | 0.75 | 0.50 | 0.74 | 0.59 | 0.95 | 1.11 | 1.10 | 0.95 | 1.16 | 0.83 | 0.91 |
Dy | 4.69 | 4.53 | 2.97 | 4.56 | 3.61 | 5.96 | 6.46 | 6.73 | 5.95 | 6.98 | 5.08 | 5.32 |
Ho | 0.90 | 0.88 | 0.59 | 0.92 | 0.74 | 1.24 | 1.28 | 1.40 | 1.22 | 1.40 | 1.00 | 1.08 |
Er | 2.42 | 2.22 | 1.66 | 2.48 | 1.98 | 3.09 | 3.21 | 3.48 | 3.16 | 3.58 | 2.65 | 2.81 |
Tm | 0.37 | 0.32 | 0.22 | 0.35 | 0.28 | 0.45 | 0.48 | 0.51 | 0.48 | 0.53 | 0.39 | 0.42 |
Yb | 2.26 | 2.04 | 1.34 | 2.11 | 1.74 | 2.75 | 2.90 | 3.14 | 2.84 | 3.25 | 2.31 | 2.38 |
Lu | 0.33 | 0.31 | 0.22 | 0.32 | 0.29 | 0.42 | 0.45 | 0.50 | 0.45 | 0.50 | 0.34 | 0.36 |
Hf | 4.08 | 3.61 | 2.66 | 3.90 | 3.30 | 5.04 | 5.33 | 5.97 | 5.29 | 6.10 | 4.08 | 4.65 |
Ta | 1.65 | 1.42 | 2.47 | 1.53 | 1.35 | 1.44 | 1.53 | 1.78 | 1.42 | 1.72 | 0.78 | 1.28 |
Th | 1.90 | 1.54 | 1.34 | 2.03 | 1.71 | 1.78 | 2.60 | 2.53 | 1.95 | 2.45 | 1.61 | 1.82 |
U | 0.50 | 0.34 | 0.33 | 0.41 | 0.34 | 0.94 | 0.97 | 0.63 | 0.69 | 0.72 | 0.41 | 0.43 |
mg# | 48 | 50 | 54 | 50 | 48 | 48 | 46 | 49 | 48 | 49 | 48 | 50 |
(La/Yb)n | 6.06 | 6.32 | 6.70 | 6.65 | 6.70 | 5.84 | 6.68 | 6.31 | 5.54 | 5.89 | 5.40 | 6.16 |
Eu/Eu* | 1.10 | 1.05 | 1.08 | 1.03 | 1.07 | 0.97 | 0.94 | 0.94 | 1.03 | 0.99 | 1.03 | 1.02 |
Nb/Nb* | 1.36 | 1.51 | 1.89 | 1.25 | 1.26 | 1.22 | 0.95 | 1.17 | 1.19 | 1.13 | 0.77 | 0.95 |
Ti/Ti* | 0.99 | 1.15 | 1.08 | 1.00 | 1.26 | 1.01 | 0.85 | 0.72 | 0.78 | 0.61 | 1.20 | 1.05 |
Location | Goloustnaya | |||||||||||
Dyke Number | 4 | 5 | 6 | 7 | 8 | 9 | ||||||
Sample | 1404 | 1266 | 1267 | 1412 | 1414 | 1278 | 1279 | 1425 | 1428 | 1435 | 1437 | 1438 |
SiO2, wt.% | 49.31 | 49.02 | 46.96 | 47.66 | 50.21 | 49.25 | 49.42 | 48.48 | 47.69 | 48.33 | 48.77 | 47.94 |
TiO2 | 2.95 | 2.57 | 3.18 | 2.77 | 2.43 | 2.91 | 2.95 | 2.62 | 2.88 | 2.58 | 2.33 | 3.31 |
Al2O3 | 13.65 | 15.37 | 11.85 | 13.60 | 15.80 | 13.70 | 13.30 | 14.30 | 13.78 | 14.32 | 13.04 | 13.57 |
Fe2O3 | 3.80 | 2.90 | 4.20 | 4.02 | 3.43 | 4.28 | 4.40 | 4.25 | 4.05 | 4.34 | 4.62 | 4.61 |
FeO | 10.64 | 9.28 | 11.52 | 10.72 | 8.82 | 10.72 | 10.68 | 9.53 | 10.04 | 9.85 | 8.84 | 11.23 |
MnO | 0.18 | 0.17 | 0.16 | 0.18 | 0.15 | 0.19 | 0.19 | 0.18 | 0.19 | 0.18 | 0.16 | 0.20 |
MgO | 4.18 | 4.24 | 5.53 | 5.60 | 3.91 | 3.95 | 3.95 | 5.16 | 6.18 | 5.24 | 6.08 | 4.09 |
CaO | 8.14 | 8.29 | 7.43 | 9.00 | 8.27 | 8.21 | 8.13 | 9.63 | 9.75 | 8.80 | 8.84 | 7.96 |
Na2O | 3.02 | 2.63 | 1.65 | 2.43 | 3.08 | 2.41 | 2.72 | 2.53 | 2.19 | 2.33 | 2.21 | 2.37 |
K2O | 0.81 | 0.79 | 0.56 | 0.90 | 0.72 | 1.19 | 1.2 | 0.69 | 0.6 | 0.81 | 1.48 | 1.07 |
P2O5 | 0.74 | 0.42 | 0.41 | 0.34 | 0.44 | 0.65 | 0.57 | 0.33 | 0.26 | 0.32 | 0.24 | 0.66 |
LOI | 2.84 | 3.37 | 4.02 | 2.72 | 3.00 | 2.74 | 2.48 | 2.06 | 2.21 | 2.26 | 2.69 | 2.67 |
H2O− | 0.12 | 0.30 | 0.29 | 0.19 | 0.14 | 0.16 | 0.13 | 0.13 | 0.20 | 0.08 | 0.17 | 0.06 |
CO2 | - | 0.56 | 1.94 | 0.24 | <0.06 | <0.06 | 0.17 | 0.41 | 0.15 | 0.36 | 0.31 | 0.22 |
Total | 100.38 | 99.91 | 99.70 | 100.37 | 100.40 | 100.36 | 100.29 | 100.30 | 100.17 | 99.80 | 99.78 | 99.96 |
Rb, ppm | 26 | 30 | 23 | 24 | 26 | 31 | 30 | 22 | 19 | 26 | 65 | 28 |
Sr | 290 | 269 | 144 | 236 | 391 | 242 | 262 | 276 | 254 | 259 | 254 | 256 |
Y | 45 | 34 | 35 | 33 | 41 | 45 | 43 | 32 | 27 | 31 | 24 | 42 |
Zr | 302 | 234 | 233 | 222 | 294 | 305 | 291 | 208 | 166 | 190 | 146 | 268 |
Nb | 33 | 25 | 29 | 26 | 29 | 33 | 33 | 22 | 17 | 20 | 15 | 32 |
Ba | 459 | 341 | 166 | 384 | 356 | 488 | 450 | 298 | 259 | 436 | 426 | 463 |
La | 37.81 | 27.10 | 25.46 | 26.62 | 35.16 | 35.97 | 33.55 | 24.27 | 19.99 | 22.22 | 17.30 | 34.43 |
Ce | 85.88 | 61.49 | 58.28 | 61.05 | 79.08 | 82.94 | 77.53 | 56.00 | 45.91 | 50.66 | 39.10 | 78.99 |
Pr | 10.60 | 7.92 | 7.69 | 7.48 | 9.62 | 10.68 | 9.97 | 6.78 | 5.71 | 6.29 | 4.96 | 9.81 |
Nd | 43.75 | 32.92 | 31.72 | 30.24 | 39.07 | 44.48 | 42.18 | 28.16 | 23.83 | 26.80 | 20.68 | 40.90 |
Sm | 10.36 | 7.51 | 7.92 | 7.50 | 9.38 | 10.30 | 9.40 | 6.86 | 6.15 | 6.59 | 5.14 | 10.13 |
Eu | 3.16 | 2.24 | 2.13 | 2.33 | 2.82 | 2.91 | 2.78 | 2.09 | 1.87 | 2.06 | 1.59 | 2.95 |
Gd | 9.01 | 6.61 | 6.38 | 6.36 | 8.03 | 8.32 | 7.91 | 6.10 | 5.10 | 5.84 | 4.68 | 8.75 |
Tb | 1.33 | 1.04 | 1.05 | 1.02 | 1.31 | 1.32 | 1.28 | 0.99 | 0.85 | 0.96 | 0.75 | 1.35 |
Dy | 8.18 | 6.20 | 6.30 | 6.08 | 7.61 | 8.03 | 7.59 | 5.78 | 5.00 | 5.66 | 4.52 | 7.89 |
Ho | 1.63 | 1.27 | 1.26 | 1.22 | 1.53 | 1.66 | 1.57 | 1.17 | 1.02 | 1.06 | 0.89 | 1.58 |
Er | 4.17 | 3.13 | 3.30 | 3.20 | 3.85 | 4.18 | 3.94 | 3.04 | 2.52 | 2.87 | 2.47 | 4.00 |
Tm | 0.61 | 0.45 | 0.49 | 0.48 | 0.56 | 0.60 | 0.57 | 0.42 | 0.38 | 0.43 | 0.35 | 0.57 |
Yb | 3.74 | 2.83 | 3.06 | 2.85 | 3.43 | 3.64 | 3.44 | 2.71 | 2.27 | 2.63 | 2.10 | 3.46 |
Lu | 0.53 | 0.44 | 0.48 | 0.44 | 0.54 | 0.55 | 0.54 | 0.40 | 0.35 | 0.39 | 0.31 | 0.51 |
Hf | 7.62 | 5.46 | 5.58 | 5.48 | 7.13 | 7.36 | 6.81 | 5.27 | 4.11 | 4.95 | 3.55 | 6.74 |
Ta | 2.12 | 1.55 | 1.73 | 1.60 | 1.84 | 2.04 | 2.01 | 1.44 | 0.78 | 1.29 | 1.00 | 2.12 |
Th | 3.42 | 2.28 | 2.08 | 2.40 | 3.24 | 3.03 | 2.89 | 2.16 | 1.60 | 1.84 | 1.46 | 2.88 |
U | 0.80 | 0.83 | 0.98 | 0.57 | 0.80 | 0.74 | 0.67 | 0.51 | 0.41 | 0.51 | 0.49 | 0.96 |
mg# | 38 | 43 | 43 | 45 | 41 | 36 | 36 | 45 | 49 | 44 | 50 | 36 |
(La/Yb)n | 6.54 | 6.20 | 5.38 | 6.05 | 6.64 | 6.40 | 6.32 | 5.79 | 5.69 | 5.47 | 5.33 | 6.43 |
Eu/Eu* | 1.01 | 0.98 | 0.92 | 1.04 | 1.00 | 0.97 | 0.99 | 1.00 | 1.03 | 1.02 | 1.00 | 0.97 |
Nb/Nb* | 1.17 | 1.10 | 1.36 | 0.87 | 0.91 | 1.07 | 1.15 | 1.02 | 0.81 | 1.01 | 0.68 | 1.07 |
Ti/Ti* | 0.72 | 0.86 | 1.05 | 0.94 | 0.66 | 0.74 | 0.80 | 0.95 | 1.21 | 0.98 | 1.12 | 0.83 |
Sample | T, Ma | Sm (ppm) | Nd (ppm) | 147Sm/144Nd | 143Nd/144Nd | εNd(t) | TNd(DM) |
---|---|---|---|---|---|---|---|
±2σ | Ma | ||||||
Listvyanka dolerites | |||||||
1283 | 1350 | 4.50 | 18.35 | 0.1325 | 0.512146 ± 10 | 1.5 | 1882 |
14101 | 1350 | 2.97 | 11.65 | 0.1374 | 0.512175 ± 10 | 1.2 | 1947 |
14103 | 1350 | 4.06 | 16.46 | 0.1330 | 0.512129 ± 11 | 1.1 | 1926 |
Goloustnaya dolerites | |||||||
1265 | 1338 | 5.23 | 21.10 | 0.1339 | 0.512060 ± 11 | −0.5 | 2079 |
1267 | 1338 | 6.22 | 24.98 | 0.1345 | 0.512078 ± 11 | −0.2 | 2059 |
1279 | 1338 | 6.32 | 25.91 | 0.1316 | 0.512021 ± 10 | −0.9 | 2094 |
1401 | 1338 | 4.00 | 15.33 | 0.1407 | 0.512152 ± 10 | 0.1 | 2080 |
1428 | 1338 | 3.33 | 12.46 | 0.1444 | 0.512140 ± 10 | −0.7 | 2217 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donskaya, T.V.; Gladkochub, D.P.; Ernst, R.E.; Pisarevsky, S.A.; Mazukabzov, A.M.; Demonterova, E.I. Geochemistry and Petrogenesis of Mesoproterozoic Dykes of the Irkutsk Promontory, Southern Part of the Siberian Craton. Minerals 2018, 8, 545. https://doi.org/10.3390/min8120545
Donskaya TV, Gladkochub DP, Ernst RE, Pisarevsky SA, Mazukabzov AM, Demonterova EI. Geochemistry and Petrogenesis of Mesoproterozoic Dykes of the Irkutsk Promontory, Southern Part of the Siberian Craton. Minerals. 2018; 8(12):545. https://doi.org/10.3390/min8120545
Chicago/Turabian StyleDonskaya, T. V., D. P. Gladkochub, R. E. Ernst, S. A. Pisarevsky, A. M. Mazukabzov, and E. I. Demonterova. 2018. "Geochemistry and Petrogenesis of Mesoproterozoic Dykes of the Irkutsk Promontory, Southern Part of the Siberian Craton" Minerals 8, no. 12: 545. https://doi.org/10.3390/min8120545
APA StyleDonskaya, T. V., Gladkochub, D. P., Ernst, R. E., Pisarevsky, S. A., Mazukabzov, A. M., & Demonterova, E. I. (2018). Geochemistry and Petrogenesis of Mesoproterozoic Dykes of the Irkutsk Promontory, Southern Part of the Siberian Craton. Minerals, 8(12), 545. https://doi.org/10.3390/min8120545