Assessing Thallium Elemental Systematics and Isotope Ratio Variations in Porphyry Ore Systems: A Case Study of the Bingham Canyon District
Abstract
:1. Introduction
1.1. Porphyry Ore Deposits
1.2. Bingham Canyon Cu-Mo-Au Deposit
1.3. The Geochemistry of Thallium and Thallium Isotope Systematics
1.4. Thallium Isotope Studies of Hydrothermal Ore Deposits
2. Materials and Methods
2.1. Samples
2.2. Whole Rock Geochemistry
2.3. Chemical Separation of Tl
2.4. MC-ICP-MS Protocols
3. Results
3.1. Data Quality Assessment: Reference Materials, Solution Standards and Total Procedural Blanks
3.2. Thallium Concentrations Measured by MC-ICP-MS vs. ICP-MS
3.3. Thallium Concentrations as a Function of Sample Type and Location
3.4. Thallium Isotope Compositions
3.4.1. Bingham Canyon
3.4.2. Barneys Canyon and Melco
4. Discussion
4.1. Comparison between Bingham Canyon, USA, and Collahuasi Formation, Chile
4.2. Variability in Tl Abundance and ε205Tl throughout the Bingham District
4.3. Thallium Behavior in Sediment-Hosted Gold Systems
5. Outlook
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Tosdal, R.M.; Dilles, J.H.; Cooke, D.R. From source to sinks in auriferous magmatic-hydrothermal porphyry and epithermal deposits. Elements 2009, 5, 289–295. [Google Scholar] [CrossRef]
- Richards, J.P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ. Geol. 2003, 98, 1515–1533. [Google Scholar] [CrossRef]
- Wilkinson, J.J. Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat. Commun. 2013, 6, 917–925. [Google Scholar] [CrossRef] [Green Version]
- Sillitoe, R.H.; Hedenquist, J.W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Spec. Publ. Soc. Econ. Geol. 2003, 10, 315–343. [Google Scholar]
- Heinrich, C.A.; Driesner, T.; Stefansson, A.; Seward, T.M. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology 2004, 32, 761–764. [Google Scholar] [CrossRef]
- Hemley, J.J.; Hunt, J.P. Hydrothermal ore-forming processes in the light of studies in rock-buffered systems: II. Some general geologic applications. Econ. Geol. 1992, 87, 23–43. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Bonham, H.F., Jr. Sediment-hosted gold deposits: Distal products of magmatic-hydrothermal systems. Geology 1990, 18, 157–161. [Google Scholar] [CrossRef]
- Cooke, D.R.; Hollings, P.; Walshe, J.L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Econ. Geol. 2005, 100, 801–818. [Google Scholar] [CrossRef]
- Singer, D.A. World class base and precious metal deposits—A quantitative analysis. Econ. Geol. 1995, 90, 88–104. [Google Scholar] [CrossRef]
- Jones, B.K. Application of metal zoning to gold exploration in porphyry copper systems. J. Geochem. Explor. 1992, 43, 127–155. [Google Scholar] [CrossRef]
- Presnell, R.D.; Parry, W.T. Geology and geochemistry of the Barneys Canyon gold deposit, Utah. Econ. Geol. 1996, 91, 273–288. [Google Scholar] [CrossRef]
- Redmond, P.B.; Einaudi, M.T. The Bingham Canyon porphyry Cu-Mo-Au deposit. I. Sequence of intrusions, vein formation, and sulfide deposition. Econ. Geol. 2010, 105, 43–68. [Google Scholar] [CrossRef]
- Sillitoe, R.H. A plate tectonic model for the origin of porphyry copper deposits. Econ. Geol. 1972, 67, 184–197. [Google Scholar] [CrossRef]
- Grondahl, C.; Zajacz, Z. Magmatic controls on the genesis of porphyry Cu-Mo-Au deposits: The Bingham Canyon example. Earth Planet. Sci. Lett. 2017, 480, 53–65. [Google Scholar] [CrossRef]
- Waite, K.A.; Keith, J.D.; Christiansen, E.H.; Whitney, J.A.; Hattori, K.; Tingey, D.G.; Hook, C.J. Petrogenesis of the volcanic and intrusive rocks associated with the Bingham Canyon porphyry Cu-Au-Mo deposit, Utah. Soc. Econ. Geol. Guideb. Ser. 1997, 29, 69–90. [Google Scholar]
- Atkinson, W.W., Jr.; Einaudi, M.T. Skarn formation and mineralization in the contact aureole at Carr Fork, Bingham, Utah. Econ. Geol. 1978, 73, 1326–1365. [Google Scholar] [CrossRef]
- Lanier, G.; John, E.C.; Swensen, A.J.; Reid, J.; Bard, C.E.; Caddey, S.W.; Wilson, J.C. General geology of the Bingham Mine, Bingham Canyon, Utah. Econ. Geol. 1978, 73, 1228–1241. [Google Scholar] [CrossRef]
- Core, D.P.; Kesler, S.E.; Essene, E.J. Unusually Cu-rich magmas associated with giant porphyry copper deposits: Evidence from Bingham, Utah. Geology 2006, 34, 41–44. [Google Scholar] [CrossRef]
- Zhang, D.; Audétat, A. What caused the formation of the giant Bingham Canyon porphyry Cu-Mo-Au deposit? Insights from melt inclusions and magmatic sulfides. Econ. Geol. 2017, 112, 221–244. [Google Scholar] [CrossRef]
- Von Quadt, A.; Erni, M.; Martinek, K.; Moll, M.; Peytcheva, I.; Heinrich, C.A. Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology 2011, 39, 731–734. [Google Scholar] [CrossRef]
- Landtwing, M.R.; Furrer, C.; Redmond, P.B.; Pettke, T.; Guillong, M.; Heinrich, C.A. The Bingham Canyon porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. Econ. Geol. 2010, 105, 91–118. [Google Scholar] [CrossRef]
- Cunningham, C.G.; Austin, G.W.; Naeser, C.W.; Rye, R.O.; Ballantyne, G.H.; Stamm, R.G.; Barker, C.E. Formation of a paleothermal anomaly and disseminated gold deposits associated with the Bingham Canyon porphyry Cu-Au-Mo system, Utah. Econ. Geol. 2004, 99, 789–806. [Google Scholar] [CrossRef]
- Cline, J.S.; Hofstra, A.H.; Muntean, J.L.; Tosdal, R.M.; Hickey, K.A. Carlin-type deposits gold deposits in Nevada: Critical geologic characteristics and viable models. Econ. Geol. 100 Anniv. Vol. 2005, 451, 484. [Google Scholar]
- Babcock, R.C., Jr.; Ballantyne, G.H.; Phillips, C.H. Summary of the geology of the Bingham District, Utah. Ariz. Geol. Soc. Dig. 1995, 20, 316–335. [Google Scholar]
- Cunningham, C.G.; Austin, G.W.; Naeser, C.W.; Rye, R.O.; Ballantyne, G.H.; Stamm, R.G.; Barker, C.E. Formation of a paleothermal anomaly and disseminated gold deposits associated with the Bingham Canyon porphyry Cu-Au-Mo system, Utah—A reply. Econ. Geol. 2005, 100, 594–595. [Google Scholar] [CrossRef]
- Presnell, R.D.; Parry, W.T. Formation of a paleothermal anomaly and disseminated gold deposits associated with the Bingham Canyon porphyry Cu-Au-Mo system, Utah—A discussion. Econ. Geol. 2005, 100, 591–593. [Google Scholar] [CrossRef]
- McGoldrick, P.J.; Keays, R.R.; Scott, B.B. Thallium: A sensitive indicator of rock/seawater interaction and of sulfur saturation of silicate melts. Geochim. Cosmochim. Acta 1979, 43, 1301–1311. [Google Scholar] [CrossRef]
- Noll, P.D., Jr.; Newsom, H.E.; Leeman, W.P.; Ryan, J.G. The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron. Geochim. Cosmochim. Acta 1996, 60, 587–611. [Google Scholar] [CrossRef]
- Rehkamper, M.; Nielsen, S.G. The mass balance of dissolved thallium in the oceans. Mar. Chem. 2004, 85, 125–139. [Google Scholar] [CrossRef]
- Nielsen, S.G.; Rehkamper, M.; Prytulak, J. Investigation and application of thallium isotope fractionation. Rev. Mineral. Geochem. 2017, 82, 759–798. [Google Scholar] [CrossRef]
- Shaw, D.M. The geochemistry of thallium. Geochim. Cosmochim. Acta 1952, 2, 118–154. [Google Scholar] [CrossRef]
- Prytulak, J.; Brett, A.; Webb, M.; Plank, T.; Rehkamper, M.; Savage, P.S.; Woodhead, J. Thallium elemental behavior and stable isotope fractionation during magmatic processes. Chem. Geol. 2017, 448, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Bea, F.; Pereira, M.D.; Stroh, A. Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol. 1994, 117, 291–312. [Google Scholar] [CrossRef]
- Kiseeva, E.S.; Wood, B.J. A simple model for chalcophile element partitioning between sulphide and silicate liquids with geochemical applications. Earth Planet. Sci. Lett. 2013, 383, 68–81. [Google Scholar] [CrossRef]
- Rader, S.T.; Mazdab, F.K.; Barton, M.D. Mineralogical thallium geochemistry and isotope variations from igneous, metamorphic, and metasomatic systems. Geochim. Cosmochim. Acta 2018, 243, 42–65. [Google Scholar] [CrossRef]
- Vink, B.W. The behavior of thallium in the (sub) surface environment in terms of Eh and pH. Chem. Geol. 1993, 109, 119–123. [Google Scholar] [CrossRef]
- Batley, G.E.; Florence, T.M. Determination of thallium in natural waters by anodic stripping voltammetry. J. Electroanal. Chem. 1975, 61, 205–211. [Google Scholar] [CrossRef]
- Nielsen, S.G.; Rehkamper, M.; Teagle, D.A.H.; Butterfield, D.A.; Alt, J.C.; Halliday, A.N. Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth Planet. Sci. Lett. 2006, 251, 120–133. [Google Scholar] [CrossRef]
- Coggon, R.M.; Rehkamper, M.; Atteck, C.; Teagle, D.A.H.; Alt, J.C.; Cooper, M.J. Controls on thallium uptake during hydrothermal alteration of the upper ocean crust. Geochim. Cosmochim. Acta 2014, 144, 25–42. [Google Scholar] [CrossRef]
- Nielsen, S.G.; Rehkamper, M.; Norman, M.D.; Halliday, A.N.; Harrison, D. Thallium isotopic evidence for ferromanganese sediments in the mantle source of Hawaiian basalts. Nature 2006, 439, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Brett, A.; Prytulak, J.; Hammond, S.J.; Rehkamper, M. Thallium mass fraction and stable isotope ratios of sixteen geological reference materials. Geostand. Geoanal. Res. 2018. [Google Scholar] [CrossRef]
- Prytulak, J.; Nielsen, S.G.; Plank, T.; Barker, M.; Elliott, T. Assessing the utility of thallium and thallium isotopes for tracing subduction zone inputs to the Mariana arc. Chem. Geol. 2013, 345, 139–149. [Google Scholar] [CrossRef]
- Nielsen, S.G.; Yogodzinski, G.; Prytulak, J.; Plank, T.; Kay, S.; Kay, R.; Blusztajn, J.; Owens, J.; Auro, M.; Kading, T. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes. Geochim. Cosmochim. Acta 2016, 181, 217–237. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.G.; Prytulak, J.; Blusztajn, J.; Shu, Y.; Auro, M.; Regelous, M.; Walker, J. Thallium isotopes as tracers of recycled materials in subduction zones: Review and new data from Tonga-Kermadec and Central America. J. Volcanol. Geotherm. Res. 2017, 339, 23–40. [Google Scholar] [CrossRef]
- Shu, Y.; Nielsen, S.G.; Zeng, Z.; Shinjo, R.; Blusztajn, J.; Wang, X.; Chen, S. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa trough system: Evidence from thallium isotopes. Geochim. Cosmochim. Acta 2017, 217, 462–491. [Google Scholar] [CrossRef]
- Bigeleisen, J.; Mayer, M.G. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 1947, 15, 261–267. [Google Scholar] [CrossRef]
- Baker, R.G.A.; Rehkamper, M.; Ihlenfeld, C.; Oates, C.J.; Coggon, R. Thallium isotope variations in an ore-bearing continental igneous setting: Collahuasi Formation, northern Chile. Geochim. Cosmochim. Acta 2010, 74, 4405–4416. [Google Scholar] [CrossRef]
- Munizaga, F.; Maksaev, V.; Fanning, C.M.; Giglio, S.; Yaxley, G.; Tassinari, C.C.G. Late Paleozoic-Early Triassic magmatism on the western margin of Gondwana: Collahuasi area, northern Chile. Gondwana Res. 2008, 13, 407–427. [Google Scholar] [CrossRef]
- Masterman, G.J.; Cooke, D.R.; Berry, R.F.; Clark, A.H.; Archibald, D.A.; Mathur, R.; Walshe, J.L.; Durán, M. 40Ar/39Ar and Re-Os geochronology of porphyry copper-molybdenum deposits and related copper-silver veins in the Collahuasi district, northern Chile. Econ. Geol. 2004, 99, 673–690. [Google Scholar] [CrossRef]
- Masterman, G.J.; Cooke, D.R.; Berry, R.F.; Walshe, J.L.; Lee, A.W.; Clark, A.H. Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi District, northern Chile. Econ. Geol. 2005, 100, 835–862. [Google Scholar] [CrossRef]
- Rehkamper, M.; Frank, M.; Hein, J.R.; Porcelli, D.; Halliday, A.; Ingri, J.; Liebetrau, V. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet. Sci. Lett. 2002, 197, 65–81. [Google Scholar] [CrossRef]
- Rehkamper, M.; Frank, M.; Hein, J.R.; Halliday, A. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments. Earth Planet. Sci. Lett. 2004, 219, 77–91. [Google Scholar] [CrossRef]
- Wickham, K. Thallium Isotope Implications for the Metalliferous Source of Carlin-Type Gold Deposits in Northern Nevada. Master’ Thesis, University of Nevada, Reno, NV, USA, 2014. [Google Scholar]
- Hettmann, K.; Marks, M.A.W.; Kreissig, K.; Zack, T.; Wenzel, T.; Rehkamper, M.; Jacob, D.E.; Markl, G. The geochemistry of Tl and its isotopes during magmatic and hydrothermal processes: The peralkaline Ilimaussaq complex, southwest Greenland. Chem. Geol. 2014, 366, 1–13. [Google Scholar] [CrossRef]
- Hettmann, K.; Kreissig, K.; Rehkamper, M.; Wenzel, T.; Mertz-Kraus, R.; Markl, G. Thallium geochemistry in the metamorphic Lengenbach sulfide deposit, Switzerland: Thallium-isotope fractionation in a sulfide melt. Am. Miner. 2014, 99, 793–803. [Google Scholar] [CrossRef]
- Peter, J.M.; Gadd, M.G.; Layton-Matthews, D.; Voinot, A. Reconnaissance thallium isotope study of zinc-lead SEDEX mineralization and host rocks in the Howard’s Pass district, Selwyn Basin, Yukon: Potential application to paleoredox determinations and fingerprinting of mineralization. In Targeted Geoscience Initiative: 2017 Report of Activities; Rogers, N., Ed.; Geological Survey of Canada: Ottawa, ON, Canada, 2018; Volume 3, Open File 8358; pp. 173–191. [Google Scholar]
- Rehkamper, M.; Halliday, A.N. The precise measurement of Tl isotopic compositions by MC-ICPMS: Application to the analysis of geological materials and meteorites. Geochim. Cosmochim. Acta 1999, 63, 935–944. [Google Scholar] [CrossRef]
- Nielsen, S.G.; Rehkamper, M.; Baker, J.; Halliday, A.N. The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICPMS. Chem. Geol. 2004, 204, 109–124. [Google Scholar] [CrossRef]
- Baker, R.G.A.; Rehkamper, M.; Hinkley, T.K.; Nielsen, S.G.; Toutain, J.P. Investigation of thallium fluxes from subaerial volcanism—Implications for the present and past mass balance of thallium in the oceans. Geochim. Cosmochim. Acta 2009, 73, 6340–6359. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Rudnick, R.L., Ed.; Elsevier Ltd: Amsterdam, The Netherlands, 2014; Volume 3, p. 659. [Google Scholar]
- Parry, W.T.; Jasumback, M.; Wilson, P.N. Clay mineralogy of phyllic and intermediate argillic alteration at Bingham, Utah. Econ. Geol. 2002, 97, 221–239. [Google Scholar] [CrossRef]
- Cameron, D.E.; Garmoe, W.J. Geology of skarn and high-grade gold in the Carr Fork Mine, Utah. Econ. Geol. 1987, 82, 1319–1333. [Google Scholar] [CrossRef]
- Xiong, J. Hydrothermal thallium mineralization up to 300 °C: A thermodynamic approach. Ore Geol. Rev. 2007, 32, 291–313. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Econ. Geol. 1971, 66, 98–118. [Google Scholar] [CrossRef]
- Arehart, G.B. Characteristics and origin of sediment-hosted disseminated gold deposits: A review. Ore Geol. Rev. 1996, 11, 383–403. [Google Scholar] [CrossRef]
- Arehart, G.B.; Chakurian, A.M.; Tretbar, D.R.; Christensen, J.N.; McInnes, B.A.; Donelick, R.A. Evaluation of radioisotope dating of Carlin-type deposits in the Great Basin, western North America, and implications for deposit genesis. Econ. Geol. 2003, 98, 235–248. [Google Scholar] [CrossRef]
Sample | Lithology | Description | TlWR (ng/g) | ε205Tl | 2σ | Tl (ng/g) | 2σ | # Runs | # Sessions | # Dissolutions |
---|---|---|---|---|---|---|---|---|---|---|
Bingham Canyon | ||||||||||
BC11MB116 | Sandstone | Weakly calcareous white sandstone on Middle Canyon Road | 20 | −4.2 | 0.6 | 88 | 11 | 4 | 2 | 1 |
BC11MB111 | Silicified limestone | Silicified, grey Jordan limestone cut by thin calcite veinlets | 450 | −2.9 | 0.6 | 459 | 76 | 2 | 1 | 1 |
BC11MB101 | Latite porphyry | Feldspar-phyric (± biotite) latite porphyry dyke with disseminated chlorite alteration | 130 | −8.8 | 0.6 | 1384 | 155 | 2 | 1 | 1 |
BC11MB102 | Silicified limestone breccia | Brecciated, silicified limestone | 1910 | 1.3 | 0.6 | 4932 | 47 | 2 | 1 | 1 |
BC11CW020 | Quartzite | Massive, pale grey, fine-grained quartzite | 210 | 0.9 | 1.1 | 274 | 20 | 3 | 2 | 1 |
BC12LZ527 | Latite porphyry | Latite porphyry with K-feldspar altered plagioclase, strong propylitic alteration and quartz-pyrite veins | 700 | −2.9 | 0.6 | 1687 | 78 | 3 | 2 | 1 |
BC11DC007c | Lamprophyre | Lamprophyre containing minor bornite and chalcopyrite and late quartz-calcite veins | 820 | −3.6 | 0.6 | 1525 | 124 | 5 | 1 | 1 |
BC11DC005a | Monzonite | Propylitically-altered monzonite, with early barren quartz veins cut by quartz-molybdenite-Cu-Fe-sulfide veins (5–20 mm wide) | 860 | −1.3 | 0.6 | 1420 | 85 | 4 | 1 | 1 |
BC12JT601 | Recrystallised calcareous sandstone | Weakly-bedded, recrystallised, and fractured calcareous sandstone, containing calcite-pyrite veins | 120 | −3.3 | 0.6 | 207 | 30 | 3 | 2 | 1 |
BC11MB155 | Silicified limestone | Silicified limestone from above Northern Haul Road, cut by numerous thin (up to 1 cm) coarse crystalline calcite veins | 30 | 0.2 | 0.8 | 256 | 23 | 5 | 1 | 1 |
BC11MB152b | Quartzite | Quartzite from layer below limestone; contains spots of red-brown mineral, possibly Fe-carbonate-after-pyrite | 90 | −3.4 | 0.6 | 341 | 5 | 3 | 2 | 1 |
BC11MB151 | Quartzite | Massive quartzite | 50 | −1.5 | 0.6 | 138 | 14 | 2 | 1 | 1 |
BC11MB146 | Quartzite breccia | Quartzite breccia, with angular to sub-rounded quartzite clasts in calcite-dominated crystalline cement | 4790 | 7.2 | 1.8 | 7213 | 1108 | 2 | 1 | 1 |
BC11DC164 | Quartzite breccia | 0.5 m-wide breccia zone in quartzite surrounding shear band; clayey matrix obscures clast-matrix/cement relationship | 120 | −2.3 | 0.7 | 358 | 12 | 3 | 2 | 1 |
Barneys Canyon/Melco | ||||||||||
BC11CW089b | Veined limestone | Dark grey limestone with stockwork of calcite veins (between 1-10 mm in width) | 31590 | −6.5 | 0.6 | 5072 | 634 | 2 | 1 | 1 |
BC11MB184 | Quartzite breccia | Silicified, solution-collapse breccia in quartzite, located immediately NE of Melco pit | 790 | 6.0 | 0.6 | 698 | 33 | 4 | 2 | 1 |
BC11MB185 | Quartzite breccia | Brecciated quartzite containing discontinuous calcite veinlets; | 1270 | −16.4 | 0.7 | 1545 | 137 | 7 | 2 | 2 |
BC11CW079 | Quartzite | Pale beige, hard, finely crystalline quartzite containing stockwork of quartz veinlets (0.–2 mm wide) from Barney’s Canyon mine, sampled away from most intense clay alteration and fracturing | 1780 | −3.1 | 0.6 | 824 | 19 | 2 | 1 | 1 |
BC11CW080b | Dolomitic nodule | Possibly bituminous dolomite nodules with large (up to 10 cm) open cavities with inwards-growing calcite crystals (up to 4 mm long) | 6080 | 0.0 | 0.6 | 4650 | 499 | 2 | 1 | 1 |
Standards | ||||||||||
AGV-2 (this study) | −2.8 | 0.5 | 271 | 92 | 2 | 2 | 2 | |||
AGV-2 [43] | −3.0 | 0.6 | 267 | 35 | 15 | n/a | 8 | |||
Aldrich (this study) | −0.8 | 0.6 | n/a | n/a | 36 | 2 | n/a | |||
Aldrich [31] | −0.8 | 0.3 | n/a | n/a | 133 | n/a | n/a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitzpayne, A.; Prytulak, J.; Wilkinson, J.J.; Cooke, D.R.; Baker, M.J.; Wilkinson, C.C. Assessing Thallium Elemental Systematics and Isotope Ratio Variations in Porphyry Ore Systems: A Case Study of the Bingham Canyon District. Minerals 2018, 8, 548. https://doi.org/10.3390/min8120548
Fitzpayne A, Prytulak J, Wilkinson JJ, Cooke DR, Baker MJ, Wilkinson CC. Assessing Thallium Elemental Systematics and Isotope Ratio Variations in Porphyry Ore Systems: A Case Study of the Bingham Canyon District. Minerals. 2018; 8(12):548. https://doi.org/10.3390/min8120548
Chicago/Turabian StyleFitzpayne, Angus, Julie Prytulak, Jamie J. Wilkinson, David R. Cooke, Michael J. Baker, and Clara C. Wilkinson. 2018. "Assessing Thallium Elemental Systematics and Isotope Ratio Variations in Porphyry Ore Systems: A Case Study of the Bingham Canyon District" Minerals 8, no. 12: 548. https://doi.org/10.3390/min8120548
APA StyleFitzpayne, A., Prytulak, J., Wilkinson, J. J., Cooke, D. R., Baker, M. J., & Wilkinson, C. C. (2018). Assessing Thallium Elemental Systematics and Isotope Ratio Variations in Porphyry Ore Systems: A Case Study of the Bingham Canyon District. Minerals, 8(12), 548. https://doi.org/10.3390/min8120548