Geodynamic Significance of the Mesoproterozoic Magmatism of the Udzha Paleo-Rift (Northern Siberian Craton) Based on U-Pb Geochronology and Paleomagnetic Data
Abstract
:1. Introduction
2. Samples and Methodology
3. U-Pb Dating Results
4. Paleomagnetic Results
- Statistically significant differences (γ/γcr = 29.62°/30.52°) between the mean direction of the HT component and the mean paleomagnetic direction obtained from the unbaked host rocks of the Udzha formation (Table 1, Figure 7) [15,16]. Unfortunately, baked contacts themselves are not exposed, and therefore we must treat this result only as a conditional positive contact test. Nevertheless, the obtained data clearly support the absence of large regional remagnetization events after the accumulation of rocks of the Udzha formation, and the emplacement of the studied intrusions.
- With the exception of Siberian traps, which are widespread in the lower course of the Udzha River, there are no traces of any magmatic events in the studied region that could lead to the remagnetization of the studied rocks. In the paleomagnetic recording of the studied rocks, there are no any indications of remagnetization by Permian-Triassic traps. The directions of all the selected components are noticeably different from the average paleomagnetic direction obtained earlier from the Udzha traps [17]. Thus, the probability of the remagnetization of the studied rocks by the Siberian traps can be excluded. The influence of a partial remagnetization of the present magnetic field (LT component) is easily removed by heating to 120 °C. The character of the distribution of MT vectors, as noted above, does not allow the association of it with some general remagnetization event, moreover, this component is also easily removed during the demagnetization. Thus, the formation of HT components in the studied magmatic bodies and in the host rocks due to the subsequent remagnetization events is very unlikely.
- The virtual geomagnetic pole (VGP) calculated from the HT component (Table 2) is located at a considerable distance from any known Neoproterozoic and Phanerozoic poles in the Siberian platform (e.g., References [18,19]) (Figure 8). This observation advocates the early formation of the HT component, however, the Siberian Meso-Neoproterozoic apparent polar wander path (APWP) is poorly established, and therefore cannot be considered as a decisive argument. Nevertheless, this presents substantial support for our assertion.
- The resulting pole matches well with a small number of currently known Mesoproterozoic poles of the Siberian platform. It is positioned between the reliable paleomagnetic poles of Siberia for 1500 Ma and 1045 Ma (Figure 8; [15,18,19,20,21,22,23,24,25,26,27]) and is concordant with the hypothesis for the primary origin of the HT component.
- Electron microscope data indicate that grains of magnetic minerals were formed during the emplacement and cooling of the studied intrusions.
- Data from rock magnetic studies confirm that magnetization is carried by PSD grains, which can retain the primary magnetization for large geological time scales.
5. Discussion and Geodynamic Significance
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gladkochub, D.P.; Stanevich, A.M.; Travin, A.V.; Mazukabzov, A.M.; Konstantinov, K.M.; Yudin, D.S.; Kornilova, T.A. The Mesoproterozoic Udzha paleorift (Northern Siberian Craton): New data on age of basites, straigraphy, and microphytology. Dokl. Earth Sci. 2009, 425, 371–377. [Google Scholar] [CrossRef]
- Chew, D.M.; Sylvester, P.J.; Tubrett, M.N. U–Pb and Th–Pb dating of apatite by LA-ICPMS. Chem. Geol. 2011, 280, 200–216. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.; Meffre, S.; Maas, R.; Kamenetsky, V.; Kamenetsky, M.; Goemann, K.; Ehrig, K.; Danyushevsky, L. Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite. J. Anal. At. Spectrom. 2016, 31, 1206–1215. [Google Scholar] [CrossRef]
- Kirschvink, J.L. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. R. Astron. Soc. 1980, 62, 699–718. [Google Scholar] [CrossRef] [Green Version]
- Sir Ronald Fisher, F.R.S. Dispersion on a sphere. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1953, 217, 295–305. [Google Scholar] [CrossRef]
- Enkin, R.J. A Computer Program Package for Analysis and Presentation of Paleomagnetic Data; Geological Survey of Canada: Sidney, BC, Canada, 1994; p. 16. [Google Scholar]
- Torsvik, T.H.; Smethurst, M.A. Plate tectonic modelling: Virtual reality with GMAP. Comput. Geosci. 1999, 25, 395–402. [Google Scholar] [CrossRef]
- Day, R.; Fuller, M.; Schmidt, V.A. Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Phys. Earth Planet. Inter. 1977, 13, 260–267. [Google Scholar] [CrossRef]
- Dunlop, D.J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. Solid Earth 2002, 107. [Google Scholar] [CrossRef]
- Dunlop, D.J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res. Solid Earth. 2002, 107. [Google Scholar] [CrossRef]
- Butler, R. Paleomagnetism: Magnetic Domains to Geologic Terranes; Blackwell Scientific Publications: Hoboken, NJ, USA, 1992; ISBN 086542070X. [Google Scholar]
- McElhinny, M.W.; McFadden, P.L.B.T.-I.G. (Eds.) Chapter Two—Rock Magnetism. In Paleomagnetism; Academic Press: Cambridge, MA, USA, 2000; Volume 73, pp. 31–77. ISBN 0074-6142. [Google Scholar]
- Dunlop, D.J.; Özdemir, Ö. Rock Magnetism. Fundamentals and Frontiers; Cambridge University Press (Cambridge Studies in Magnetism): Cambridge, UK, 1997; ISBN 9780511612794. [Google Scholar]
- Konstantinov, K.M.; Pavlov, V.E.; Petukhova, E.P. The results of reconnaissance paleomagnetic studies of the rocks of the Udja uplift (north of the Siberian platform). In Paleomagnetism and Magnetism of Rocks; Theory, Practice, Experiment. Workshop Materials Borok 18–21 October 2007; GEOS: Moscow, Russia, 2007; pp. 69–71. [Google Scholar]
- Rodionov, V.P. Paleomagnetism of the Upper Precambrian and Lower Paleozoic of the Udja region. In Paleomagnetic Methods in Stratigraphy; VNIGRI: Saint-Peterburg, Russia, 1984; pp. 18–28. [Google Scholar]
- McFadden, P.L.; McElhinny, M.W. Classification of the reversal test in palaeomagnetism. Geophys. J. Int. 1990, 103, 725–729. [Google Scholar] [CrossRef] [Green Version]
- Veselovskiy, R.V.; Konstantinov, K.M.; Latyshev, A.; Fetisova, A. Paleomagnetism of the trap intrusive bodies in arctic Siberia: Geological and methodical implications. Izv. Phys. Solid Earth 2012, 48, 738–750. [Google Scholar] [CrossRef]
- Pavlov, V.E.; Shatsillo, A.; Petrov, P.Y. Paleomagnetism of the upper Riphean deposits in the Turukhansk and Olenek uplifts and Uda Pre-Sayan region and the neoproterozoic drift of the Siberian Platform. Izv. Phys. Solid Earth 2015, 51, 716–747. [Google Scholar] [CrossRef]
- Evans, D.A.D.; Veselovsky, R.V.; Petrov, P.Y.; Shatsillo, A.V.; Pavlov, V.E. Paleomagnetism of Mesoproterozoic margins of the Anabar Shield: A hypothesized billion-year partnership of Siberia and northern Laurentia. Precambrian Res. 2016, 281, 639–655. [Google Scholar] [CrossRef] [Green Version]
- Pisarevsky, S.A.; Gladkochub, D.P.; Konstantinov, K.M.; Mazukabzov, A.M.; Stanevich, A.M.; Murphy, J.B.; Tait, J.A.; Donskaya, T.V.; Konstantinov, I.K. Paleomagnetism of Cryogenian Kitoi mafic dykes in South Siberia: Implications for Neoproterozoic paleogeography. Precambrian Res. 2013, 231, 372–382. [Google Scholar] [CrossRef]
- Metelkin, D.; Belonosov, I.V.; Gladkochub, D.P.; Donskaya, T.V.; Mazukabzov, A.M.; Stanevich, A.M. Paleomagnetic directions from Nersa intrusions of the Biryusa terrane, Siberian craton, as a reflection of tectonic events in the Neoproterozoic. Geol. Geofiz. 2005, 46, 398–413. [Google Scholar]
- Ernst, R.E.; Hamilton, M.A.; Soderlund, U.; Hanes, J.A.; Gladkochub, D.P.; Okrugin, A.V.; Kolotilina, T.; Mekhonoshin, A.S.; Bleeker, W.; LeCheminant, A.N.; et al. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic. Nat. Geosci. 2016, 9, 464–469. [Google Scholar] [CrossRef]
- Wingate, M.T.D.; Pisarevsky, S.A.; Gladkochub, D.P.; Donskaya, T.V.; Konstantinov, K.M.; Mazukabzov, A.M.; Stanevich, A.M. Geochronology and paleomagnetism of mafic igneous rocks in the Olenek Uplift, northern Siberia: Implications for Mesoproterozoic supercontinents and paleogeography. Precambrian Res. 2009, 170, 256–266. [Google Scholar] [CrossRef] [Green Version]
- Ernst, R.E.; Buchan, K.L.; Hamilton, M.A.; Okrugin, A.V.; Tomshin, M.D. Integrated Paleomagnetism and U-Pb Geochronology of Mafic Dikes of the Eastern Anabar Shield Region, Siberia: Implications for Mesoproterozoic Paleolatitude of Siberia and Comparison with Laurentia. J. Geol. 2000, 108, 381–401. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, V.E. Paleomagnetic poles of the Uchur-Maya Riphaean Hypostratotype and the Drift of the Aldan Block (of the Siberian Craton) in the Riphaean. Doklady Rossiyskoy Akademii Nauk 1994, 336, 533–537. [Google Scholar]
- Pavlov, V.E.; Gallet, Y.; Shatsillo, A.V. Paleomagnetism of the Upper Riphean Lakhandinskaya Group in the Uchuro-Maiskii area and the hypothesis of the Late Proterozoic supercontinent. Izv. Phys. Solid Earth 2000, 36, 638–648. [Google Scholar]
- Pavlov, V.E.; Gallet, Y.; Petrov, P.Y.; Zhuravlev, D.Z.; Shatsillo, A. V The Ui Group and Late Riphean Sills in the Uchur–Maya Area: Isotope and Paleomagnetic Data and the Problem of the Rodinia Supercontinent. Geotectonics 2002, 36, 278–292. [Google Scholar]
- Gallet, Y.; Pavlov, V.E.; Semikhatov, M.A.; Petrov, P.Y. Late Mesoproterozoic magnetostratigraphic results from Siberia: Paleogeographic implications and magnetic field behavior. J. Geophys. Res. Solid Earth 2000, 105, 16481–16499. [Google Scholar] [CrossRef] [Green Version]
- Khudoley, A.K.; Chamberlain, K.R.; Ershova, V.B.; Sears, J.W.; Prokopiev, A.V.; MacLean, J.; Kazakova, G.G.; Malyshev, S.V.; Molchanov, A.; Kullerud, K.; et al. Proterozoic supercontinental restorations: Constraints from provenance studies of Mesoproterozoic to Cambrian clastic rocks, eastern Siberian Craton. Precambrian Res. 2015, 259, 78–94. [Google Scholar] [CrossRef]
- Pavlov, V.; Bachtadse, V.; Mikhailov, V. New Middle Cambrian and Middle Ordovician palaeomagnetic data from Siberia: Llandelian magnetostratigraphy and relative rotation between the Aldan and Anabar–Angara blocks. Earth Planet. Sci. Lett. 2008, 276, 229–242. [Google Scholar] [CrossRef]
- Evans, D.A.D. The palaeomagnetically viable, long-lived and all-inclusive Rodinia supercontinent reconstruction. Geol. Soc. Lond. Spec. Publ. 2009, 327, 371–404. [Google Scholar] [CrossRef]
- Gladkochub, D.P.; Donskaya, T.V.; Wingate, M.T.D.; Mazukabzov, A.M.; Pisarevsky, S.A.; Sklyarov, E.V.; Stanevich, A.M. A one-billion-year gap in the Precambrian history of the southern Siberian Craton and the problem of the Transproterozoic supercontinent. Am. J. Sci. 2010, 310, 812–825. [Google Scholar] [CrossRef]
- Cocks, L.R.M.; Torsvik, T.H. Siberia, the wandering northern terrane, and its changing geography through the Palaeozoic. Earth-Sci. Rev. 2007, 82, 29–74. [Google Scholar] [CrossRef]
Leading Title | n/N | Dec (°) | Inc (°) | k | α95 (°) | Plat (°N) | Plong (°E) | A95 (°) | Coordinates | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Average Direction of HT-Component | Virtual Geomagnetic Poles | |||||||||
The Great Udzha dyke (1) | 8/10 | 37.4 | −29.5 | 30.4 | 10.2 | 0.3 | 81.2 | 8.4 | N 70.83075° E 117.0021° | This study |
Sill at the Udzha and Hapchanyr river junction (2). | 13/14 | 32.4 | −22.8 | 50.3 | 5.9 | −4.4 | 85.3 | 4.6 | N 70.81217° E 117.0336° | This study |
Dyke (3) | 4/7 | 20.5 | −9.2 | 105 | 9 | −13.3 | 95.9 | 6.5 | N 70.8855° E 116.899° | This study |
Sill of Hapchanyr riv. * | 10 | 32.3 | −22.4 | - | 4.9 | −4.5 | 85.3 | 3.8 | N 71° E 117° | [14] |
Dykes of Kotuy-Olenek complex * | 38 | 33 | −15 | - | 5.7 | −8.3 | 83.9 | 4.2 | N 71° E 118° | [14] |
Pole of Chieress Dyke 1384 ± 2 Ma (Anabar shield) | - | - | - | - | - | −4 | 78 | 7 | - | [24] |
Lt-components of Udzha intrusions | 13/22 | 89.9 | 72.5 | 11.1 | 13.0 | - | - | - | - | - |
VGP for the Siberian Craton for 1380 Ma by the Udzha’s intrusions | 3 | 210 ** | 21 ** | 10.9 ** | −5.8 | 87.4 | 15.6 | - | This study | |
P–T Udzha Traps | 18 | 109.1 | 80.3 | 18.6 | 5.7 | 60.3 | 152.4 | 11.2 | N 71.4°E 115.3° | [17] |
Paleomagnetic pole of the Udzha formation | 35 | 237 | 7 | 8 | 9 | −6 | 59 | 6.7 | - | [15] |
Rock Unit | Code | Age (Ma) | Pole (°N) | Pole (°E) | A95 (°) | References |
---|---|---|---|---|---|---|
Nersa compex | Ner | 1641 ± 8 | −23 | 130 | 12 | [19,21] |
Ilya-Burdur Fm | Il-B | 1690–1500 | −4 | 120 | 9 | [19] |
Labaztakh-Kotuykan | Lb-Kt | <Il-B | 0 | 94 | 5 | [19] |
West Anabar Intrusions | WAI | 1503 ± 2 | −25 | 61 | 5 | [19,22] |
North Anabar Intrusions | NAI | 1483 ± 17 | −24 | 75 | 8 | [19,22] |
Sololi-Kyutingde | Sl-Kt | 1473 ± 24 | −34 | 73 | 10 | [23] |
Ungoakhtakh Fm | Ung | ca. 1500 | −23 | 75 | 9 | [15], estimate age from paleomagnetic correlation |
Udzha Fm | Ud | 1500–1386 | −6 | 59 | 7 | [15] |
Chieress Anabar Dyke | Chrs | 1384 ± 2 | −4 | 78 | 7 | [24] |
Udzha Intrusions | Ud_In | 1386 ± 30 | −6 | 87 | 16 | * This study |
Totta Fm | Tt | <1100 | 14 | 85 | 9 | [25] |
Malgina Fm | Mlg | 1043 ± 14 | 15 | 70 | 3 | [28,29] |
Linok Fm | Lnk | = Mlg | 15 | 76 | 8 | [28], age from correlation |
Lakhanda Fm | Lhd | 1025–930 | 2 | 45 | 11 | [18] |
Derevnya Fm | Der | = Lhd | −5 | 31 | 8 | [18] |
Kandyk mafic sills | Knd | 942 ± 19 | −8 | 19 | 4 | [27] |
Ust’-Kirba Fm | U-K | 950–930 | −3 | 25 | 10 | [27] |
Kitoi mafic intusions | Kt | 758 | 1 | 22 | 7 | [20] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malyshev, S.V.; Pasenko, A.M.; Ivanov, A.V.; Gladkochub, D.P.; Savatenkov, V.M.; Meffre, S.; Abersteiner, A.; Kamenetsky, V.S.; Shcherbakov, V.D. Geodynamic Significance of the Mesoproterozoic Magmatism of the Udzha Paleo-Rift (Northern Siberian Craton) Based on U-Pb Geochronology and Paleomagnetic Data. Minerals 2018, 8, 555. https://doi.org/10.3390/min8120555
Malyshev SV, Pasenko AM, Ivanov AV, Gladkochub DP, Savatenkov VM, Meffre S, Abersteiner A, Kamenetsky VS, Shcherbakov VD. Geodynamic Significance of the Mesoproterozoic Magmatism of the Udzha Paleo-Rift (Northern Siberian Craton) Based on U-Pb Geochronology and Paleomagnetic Data. Minerals. 2018; 8(12):555. https://doi.org/10.3390/min8120555
Chicago/Turabian StyleMalyshev, Sergey V., Aleksander M. Pasenko, Alexei V. Ivanov, Dmitrii P. Gladkochub, Valery M. Savatenkov, Sebastien Meffre, Adam Abersteiner, Vadim S. Kamenetsky, and Vasiliy. D. Shcherbakov. 2018. "Geodynamic Significance of the Mesoproterozoic Magmatism of the Udzha Paleo-Rift (Northern Siberian Craton) Based on U-Pb Geochronology and Paleomagnetic Data" Minerals 8, no. 12: 555. https://doi.org/10.3390/min8120555
APA StyleMalyshev, S. V., Pasenko, A. M., Ivanov, A. V., Gladkochub, D. P., Savatenkov, V. M., Meffre, S., Abersteiner, A., Kamenetsky, V. S., & Shcherbakov, V. D. (2018). Geodynamic Significance of the Mesoproterozoic Magmatism of the Udzha Paleo-Rift (Northern Siberian Craton) Based on U-Pb Geochronology and Paleomagnetic Data. Minerals, 8(12), 555. https://doi.org/10.3390/min8120555