Using Factor Analysis to Determine the Interrelationships between the Engineering Properties of Aggregates from Igneous Rocks in Greece
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Petrographic Features
4.1.1. Ultramafic Rocks
4.1.2. Mafic Rocks
4.1.3. Acidic-Intermediate Rocks
4.2. Engineering Properties
4.3. Factor Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Al-Harthi, A.A.; Al-Amri, R.M.; Shehata, W.M. The porosity and engineering properties of vesicular basalt in Saudi Arabia. Eng. Geol. 1999, 54, 313–320. [Google Scholar] [CrossRef]
- Turgul, A.; Zarif, I.H. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng. Geol. 1999, 51, 303–317. [Google Scholar]
- Smith, M.R.; Collis, L. Aggregates: Sand, Gravel and Crushed Rock Aggregates for Construction Purposes; Spec. Publ. 17; The Geological Society: London, UK, 2001. [Google Scholar]
- Pomonis, P.; Rigopoulos, I.; Tsikouras, B.; Hatzipanagiotou, K. Relationships between petrographic and physicomechanical properties of basic igneous rocks from the Pindos ophiolitic complex, NW Greece. Bull. Geol. Soc. Greece 2007, 2, 947–958. [Google Scholar] [CrossRef]
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. The influence of alteration on the engineering properties of dolerites: The example from the Pindos and Vourinos ophiolites (northern Greece). Int. J. Rock Mech. Min. Sci. 2010, 47, 69–80. [Google Scholar] [CrossRef]
- Yilmaz, N.G.; Goktan, R.M.; Kibici, Y. Relations between some quantitative petrographic characteristics and mechanical strength properties of granitic building stones. Int. J. Rock Mech. Min. Sci. 2011, 48, 506–513. [Google Scholar] [CrossRef]
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. Assessment of the engineering behavior of ultramafic and mafic rocks using chemical indices. Eng. Geol. 2015, 196, 222–237. [Google Scholar] [CrossRef]
- Petrounias, P.; Rogkala, A.; Kalpogiannaki, M.; Tsikouras, B.; Hatzipanagiotou, K. Comparative study of physico-mechanical properties of ultrabasic rocks (Veria-Naousa ophiolite) and andesites from central Macedonia (Greece). Bull. Geol. Soc. Gr. 2016, 50, 1989–1998. [Google Scholar]
- Giannakopoulou, P.P.; Tsikouras, B.; Hatzipanagiotou, K. The interdependence of mechanical properties of ultramafic rocks from Gerania ophiolitic complex. Bull. Geol. Soc. Gr. 2016, 50, 1829–1837. [Google Scholar]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Stamatis, P.M.; Tsikouras, B.; Papoulis, D.; Lampropoulou, P.; Hatzipanagiotou, K. The Influence of Alteration of Aggregates on the Quality of the Concrete: A Case Study from Serpentinites and Andesites from Central Macedonia (North Greece). Geosciences 2018, 8, 115. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Lampropoulou, P.; Koutsopoulou, E.; Papoulis, D.; Tsikouras, B.; Hatzipanagiotou, K. The Impact of Secondary Phyllosilicate Minerals on the Engineering Properties of Various Igneous Aggregates from Greece. Minerals 2018, 8, 329. [Google Scholar] [CrossRef]
- Giannakopoulou, P.P.; Petrounias, P.; Rogkala, A.; Tsikouras, B.; Stamatis, P.M.; Pomonis, P.; Hatzipanagiotou, K. The influence of the mineralogical composition of ultramafic rocks on their engineering performance: A case study from the Veria-Naousa and Gerania ophiolite complexes (Greece). Geosciences 2018, 8, 251. [Google Scholar] [CrossRef]
- Arel, E.; Turgul, A. Weathering and its relation to geomechanical properties of Gavusbasi granitic rocks in northwestern Turkey. Bull. Eng. Geol. Environ. 2001, 60, 123–133. [Google Scholar]
- Ceryan, S.; Tudes, S.; Ceryan, N. Influence of weathering on the engineering properties of Harsit granitic rocks (NE Turkey). Bull. Eng. Geol. Environ. 2008, 67, 97–104. [Google Scholar] [CrossRef]
- Das, A.; Krishnaswami, S.; Sarin, M.M.; Pande, K. Chemical weathering in the Krishna Basin and Western Ghats of the Deccan Traps, India: Rates of basalt weathering and their controls. Geochim. Cosmochim. Acta 2005, 69, 2067–2084. [Google Scholar] [CrossRef] [Green Version]
- Orhan, M.; Isik, N.; Topal, T.; Ozer, M. Effect of weathering on the geomechanical properties of andesite, Ankara-Turkey. Environ. Geol. 2006, 50, 85–100. [Google Scholar] [CrossRef]
- Cascini, L.; Nocera, S.; Critelli, S.; Gulla, G.; Matano, F. Weathering and land sliding in Sila Massif gneiss (Northern Calabria, Italy). In Proceedings of the 7th International Congress-International Association of Engineering Geology, Rotterdam, The Netherlands, 5–9 September 1994; pp. 1613–1622. [Google Scholar]
- Price, J.R.; Velbel, M.A. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem. Geol. 2003, 202, 397–416. [Google Scholar] [CrossRef]
- Augustin, N.; Lackschewitz, K.S.; Kuhn, T.; Devey, C.W. Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N). Mar. Geol. 2008, 256, 18–29. [Google Scholar] [CrossRef]
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. The impact of petrographic characteristics on the engineering properties of ultrabasic rocks from northern and central Greece. Q. J. Eng. Geol. Hydrogeol. 2012, 45, 423–433. [Google Scholar] [CrossRef]
- Undul, O.; Turgul, A. The influence of weathering on the engineering properties of dunites. Rock Mech. Rock Eng. 2012, 45, 225–239. [Google Scholar] [CrossRef]
- Kazi, A.; Al-Mansour, Z.R. Influence of geological factors on abrasion and soundness characteristics of aggregates. Eng. Geol. 1980, 15, 195–203. [Google Scholar] [CrossRef]
- Chargil, J.S.; Shakoor, A. Evaluation of empirical methods for measuring the uniaxial compressive strength. Int. J. Rock Mech. Min. Sci. 1990, 27, 495–503. [Google Scholar] [CrossRef]
- Christensen, N.I. Serpentinites, peridotites and seismology. Int. Geol. Rev. 2004, 46, 795–816. [Google Scholar] [CrossRef]
- Kahraman, S.; Fener, M. Predicting the Los Angeles abrasion loss of rock aggregates from the uniaxial compressive strength. Mater. Lett. 2007, 61, 4861–4865. [Google Scholar] [CrossRef]
- Ugur, I.; Demirdag, S.; Yavuz, H. Effect of rock properties on the Los Angeles abrasion and impact test characteristics of the aggregates. Mater. Charact. 2010, 61, 90–96. [Google Scholar] [CrossRef]
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. Correlations between petrographic and geometrical properties of ophiolitic aggregates from Greece. Bull. Eng. Geol. Environ. 2014, 73, 1–12. [Google Scholar] [CrossRef]
- Joreskog, K.G.; Klovan, J.E.; Reyment, R.A. Geological Factor Analysis; Elsevier: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Temple, J.T. The use of factor analysis in geology. Math. Geol. 1978, 10, 379–387. [Google Scholar] [CrossRef]
- Davis, J.C. Statistics and Data Analysis in Geology; Willey & Sons: New York, NY, USA, 1986. [Google Scholar]
- Schaeben, H. Geology and mathematics: Progressing mathematization of geology. Geol. Rundsch. 1988, 77, 591–607. [Google Scholar] [CrossRef]
- Morrison, D.F. Multivariate Statistical Methods, 5th ed.; Duxbury Press: Pacific Grove, CA, USA, 2004. [Google Scholar]
- Anazawa, K.; Ohmori, H. The hydrochemistry of surface waters in Andesitic Volcanic area, Norikura volcano, central Japan. Chemosphere 2005, 59, 605–615. [Google Scholar] [CrossRef]
- Hitchon, B.; Billings, K.G.; Klovan, J.E. Geochemistry and origin of formation waters in the western Canada sedimentary basin, III. Factors controlling chemical composition. Geochim. Cosmochim. Acta 1971, 35, 567–598. [Google Scholar] [CrossRef]
- Voudouris, K.S.; Lambrakis, N.J.; Papatheodorou, G.; Daskalaki, P. An application of factor analysis for the study of the hydrogeological conditions in Plio-Pleistocene aquifers of N.W Achaia (N.W Peloponnesus, Greece). Math. Geol. 1997, 29, 43–59. [Google Scholar] [CrossRef]
- David, M.; Campiglio, C.; Darling, R. Progress in R- and Q-mode analysis. Correspondence analysis and its application to the study of geological processes. Can. J. Earth Sci. 1974, 11, 131–146. [Google Scholar] [CrossRef]
- Kumru, M.N.; Bakac, M. R-mode factor analysis applied to the distribution of elements in soils from the Aydin basin, Turkey. J. Geochem. Explor. 2003, 77, 81–91. [Google Scholar] [CrossRef]
- Meng, S.X.; Maynard, J.B. Use of statistical analysis to formulate conceptual models of geochemical behavior: Water chemical data from the Botucatu aquifer in Sao Paulo State, Brazil. J. Hydrol. 2001, 250, 78–97. [Google Scholar] [CrossRef]
- Yidana, S.M.; Ophori, D.; banoeng-Yakubo, B. A multivariate statistical analysis of surface water chemistry data- the Ankobra Basin, Ghana. J. Environ. Manag. 2008, 86, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.C.; Huang, C.Y.; Chuang, Y.H.; Chen, H.W.; Chan, Y.T.; Teah, H.Y.; Chen, T.Y.; Chang, C.F.; Liu, Y.T.; Tzou, Y.M. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries. Sci. Rep. 2016, 6, 34250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiatr, I.; Stenzel, P. Application of factor analysis to classification of engineering-geological environments. J. Int. Assoc. Math. Geol. 1974, 6, 17–31. [Google Scholar] [CrossRef]
- Rigopoulos, I.; Tsikouras, B.; Pomonis, P.; Hatzipanagiotou, K. Determination of the interrelations between the engineering parameters of construction aggregates from ophiolite complexes of Greece using factor analysis. Constr. Build. Mater. 2013, 49, 747–757. [Google Scholar] [CrossRef]
- Rogkala, A.; Petrounias, P.; Tsikouras, B.; Hatzipanagiotou, K. New occurrence of pyroxenites in the Veria-Naousa ophiolite (north Greece): Implications on their origin and petrogenetic evolution. Geosciences 2017, 7, 92. [Google Scholar] [CrossRef]
- Decourt, J.; Aubouin, J.; Savoyat, E. Le sillon mesohellenique et la zone pelagonienne. Bull. Soc. Geol. Fr. 1977, 1, 32–70. [Google Scholar]
- Michailidis, K.M. Zoned chromites with high MN-contents in the Fe-Ni-Cr-laterite ore deposits from the Edessa area in Northern Greece. Miner. Deposita 1990, 25, 190–197. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W. The Igneous Rocks of Greece; The Anatomy of an Orogen; Beitrge zur Regionalen Geologie der Erde (Series); Gebrder Borntaeger: Stuttgart, Germany, 2002; 573p. [Google Scholar]
- Clément, B. Evolution géodynamique d’un secteur des Hellénides internes: L’Attique-Béotie (Gréce continentale). Ph.D. Thesis, University Lille, Lille, France, 1983. [Google Scholar]
- Vacondios, I. Etude metallogenique des chromites liees aux ophiolites de type Mediterranee occdentale ou orientale: Le chromites de Tinos et des Gerannees. Ph.D. Thesis, University of Patras, Patras, Greece, 1997; 98p. [Google Scholar]
- Danelian, T.; Robertson, A.H.F. Palaeogeographic implications of the age of radiolarian-rich sediments in Beotia (Greece). Bull. Geol. Soc. Greece 1998, 32, 21–29. [Google Scholar]
- Zachariadis, P.; Kostopoulos, D.; Reischmann, T.; Himmerkus, F.; Matukov, D.; Sergeev, S. U-Pb ion-microprobe zircon dating of subduction-related magmatism from northern Greece: The ages of the Guevgueli, Thessaloniki and Chalkidiki igneous complexes. Geophys. Res. Abstr. 2006, 8, 055560. [Google Scholar]
- Saccani, E.; Bortolotti, V.; Marroni, M.; Pandolfi, L.; Photiades, A.; Principi, G. The Jurassic association of backarc basin ophiolites and calc-alkaline volcanics in the Guevgueli complex (Northern Greece): Implication for the evolution of the Vardar zone. Ofioliti 2008, 33, 209–227. [Google Scholar]
- Boccaletti, M.; Manetti, P.; Peccerillo, A. The Balkanides as an Instance of Back-Arc Thrust Belt: Possible relation with the Hellinides. Geol. Soc. Am. Bull. 1974, 85, 1077–1084. [Google Scholar] [CrossRef]
- Eleftheriadis, G.; Castorina, F.; Soldatos, T.; Masi, U. Geochemical and Sr-Nd isotopic evidence for the genesis of the Late Cainozoic Almopia volcanic rocks (Central Macedonia, Greece). Min. Petrol. 2003, 78, 21–36. [Google Scholar] [CrossRef]
- Freyberg, B.V. Geologie des Isthmus von Korinth. Erlanger Geologische Abhandlungen, 95; Junge and Sohn, Universitats-Buchdruckerei: Erlangen, Germany, 1973. [Google Scholar]
- Part 1: Composition, Specifications and Conformity Criteria for Common Cements; EN 932-1; European Standard: Warsaw, Poland, 2011.
- Part 3: Procedure and Terminology for Simplified Petrographic Description; EN 932; European Standard: Warsaw, Poland, 1996.
- AASHTO T255. Standard Method of Test for Total Evaporable Moisture Content of Aggregate by Drying; ASTM International: West Conshohocken, PA, USA, 2000.
- ISRM Suggested Methods. Rock Characterization Testing and Monitoring; Brown, E., Ed.; Pergamon Press: Oxford, NY, USA, 1981. [Google Scholar]
- BS 812, Testing Aggregates, Part 105: Methods for Determination of Particle Shape. Section: 105.1: Flakiness Index; British Standards Institution: London, UK, 1989.
- BS 812, Testing Aggregates, Part 105: Methods for determination of particle Shape. Section: 105.2: Elongation Index; British Standards Institution: London, UK, 1990.
- ASTM C-131. Resistance to Abrasion of Small-Size Coarse Aggregate by Use of the Los Angeles Machine; American Society for Testing and Materials: Philadelphia, PA, USA, 1989.
- ASTM D-2938. Standard Test Method of Unconfined Compressive Strength of Intact Rock Core Specimens; Annual Book of Standards, 4.08; American Society for Testing and Materials: Philadelphia, PA, USA, 1986.
- ISRM. Suggested method for determining point load strength. Int. J. Rock Mech Min. Sci. Geomech. Abstr. 1985, 22, 51–62. [Google Scholar] [CrossRef]
- EN 1367-2. Tests for Thermal and Weathering Properties of Aggregates—Part 2: Magnesium Sulfate Test; European Committee for Standardization: Brussels, Belgium, 1999.
- EΝ 933-9, Tests for Geometrical Properties of Aggregates—Part 9: Assessment of Fines-Methylene Blue Tests; European Committee for Standardization: Brussels, Belgium, 1998.
- ASTM D 7348, Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion; Residues, ASTM International: West Conshohocken, PA, USA, 2011.
- Davis, J.H. Statistics and Data Analysis in Geology, 3rd ed.; Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Dally, R.A.; Manger, G.E.; Clark, S.P. Density of rocks. In Handbook of Physical Contants; Geological Society of America: Boulder, CO, USA, 1966; Volume 97, pp. 19–26. [Google Scholar]
- Ramana, Y.V.; Venkatanaryana, B. An air porosimeter for the porosity of rocks. Int. J. Rock Mech. Min. Sci. 1971, 8, 2953–2960. [Google Scholar] [CrossRef]
- Tugrul, A.; Zarif, I.H. Engineering aspects of limestone weathering in Instabul, Turkey. Bull. Eng. Geol. Environ. 2000, 58, 191–206. [Google Scholar] [CrossRef]
- Tugrul, A. The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Eng. Geol. 2004, 75, 215–227. [Google Scholar] [CrossRef]
- Koukis, G.; Sabatakakis, N.; Spyropoulos, A. Resistance variation of low-quality aggregates. Bull. Eng. Geol. Environ. 2007, 66, 457–466. [Google Scholar] [CrossRef]
- Fortes, A.P.P.; Anastasio, S.; Kuznetsova, E.; Danielsen, S.W. Behaviour of crushed rock aggregates used in asphalt surface layer exposed to cold climate conditions. Environ. Earth Sci. 2016, 75, 1414. [Google Scholar] [CrossRef]
- Sabatakakis, N.; Tsiambaos, G.; Ktena, S.; Bouboukas, S. The effect of microstructure on mi strength parameter variation of common rock types. Bull. Eng. Geol. Environ. 2017, 77, 1673–1688. [Google Scholar] [CrossRef]
- Miskovsky, K.; Tabora, D.M.; Kou, S.Q.; Lindqvist, P.A. Influence of the mineralogical composition and textural properties on the quality of coarse aggregates. J. Mater. Eng. Perform. 2004, 13, 144–150. [Google Scholar] [CrossRef]
- Zorlu, K.; Gokceoglu, C.; Ocakoglu, F.; Nefeslioglu, H.A.; Acikalin, S. Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng. Geol. 2008, 96, 141–158. [Google Scholar] [CrossRef]
- Pola, A.; Crosta, G.; Fusi, N.; Barberini, V.; Norini, G. Influence of alteration on physical properties of volcanic rocks. Tectonophysics 2012, 566–567, 67–86. [Google Scholar] [CrossRef]
- Frolova, J.; Ladygin, V.; Rychagov, S.; Zukhubaya, D. Effects of hydrothermal alterations on physical and mechanical properties of rocks in the Kuril-Kamchatka island arc. Eng. Geol. 2014, 183, 80–95. [Google Scholar]
- Piasta, W.; Gora, J.; Turkiewicz, T. Properties and durability of coarse igneous rock aggregates and concretes. Constr. Build. Mater. 2016, 126, 119–129. [Google Scholar] [CrossRef]
- Undul, O.; Turgul, A. On the variations of geo-engineering properties of dunites and diorites related to weathering. Environ. Earth Sci. 2016, 75, 1326. [Google Scholar] [CrossRef]
- Sabatakakis, N.; Koukis, G.; Tsiambaos, G.; Papanakli, S. Index properties and strength variation controlled by microstructure for sedimentary rocks. Eng. Geol. 2008, 97, 80–90. [Google Scholar] [CrossRef]
No. | Samples | Lithotype | Texture | Primary Minerals | Secondary Minerals |
---|---|---|---|---|---|
1 | GE.4/Gerania | Srp. Harzburgite | Mesh | ol, opx, sp, | srp, act, bas |
2 | GE.17/Gerania ** | Dunite | Granular, cataclastic, mesh, ribbon, interwoven | ol, opx, sp, chr | srp, talc, bruc |
3 | GE.25/Gerania ** | Lherzolite | Granular, porphyroclastic | ol, opx, cpx, sp | srp |
4 | GE.26/Gerania ** | Srp. Lherzolite | cataclastic, porphyroclastic, mesh, ribbon | ol, opx, cpx, sp | srp, talc, bas |
5 | GE.28/Gerania ** | Harzburgite | Granular, cataclastic, porphyroclastic, ribbon | ol, opx, cpx, sp | srp |
6 | GE.30/Gerania ** | Lherzolite | Cataclastic, porphyroclastic, mesh, ribbon | ol, opx, cpx, sp | srp, chl, mgt |
7 | GE.31/Gerania ** | Lherzolite | Cataclastic, porphyroclastic, ribbon | ol, opx, cpx, sp | srp, chl, act, mgt |
8 | GE.32/Gerania ** | Lherzolite | Granular, cataclastic, porphyroclastic, ribbon | ol, opx, cpx, sp | srp, chl, talc, mgt |
9 | GE.33/Gerania ** | Lherzolite | Granular, cataclastic, porphyroclastic, ribbon | ol, opx, cpx, sp | srp, chl, talc, mgt |
10 | GE.34/Gerania ** | Dunite | Granular, cataclastic, porphyroclastic, ribbon | ol, opx, sp, chr | srp, talc, chl |
11 | GE.35/Gerania | Lherzolite | Granular, cataclastic, porphyroclastic, mesh, ribbon | ol, opx, cpx, sp | srp, chl |
12 | GE.36/Gerania | Lherzolite | Cataclastic, porphyroclastic, mesh, ribbon | ol, opx, cpx, sp | srp, chl, act |
13 | GE.37/Gerania ** | Dunite | Granular, cataclastic, porphyroclastic, mesh, ribbon | ol, opx, cpx, sp, chr | srp, talc, chl, bas, ath |
14 | GE.39/Gerania ** | Lherzolite | Cataclastic, porphyroclastic, mesh, ribbon | ol, opx, cpx, sp | srp, chl, act |
15 | BE.01A/Veria | Srp. Harzburgite | Ribbon, mesh, bastite | opx, ol, sp | srp, mgt, bas |
16 | BE.01B/Veria ** | Srp. Harzburgite | Ribbon, mesh, bastite | opx, ol, sp | srp, mgt, bas |
17 | BE.12/Veria * | Srp. Harzburgite | Ribbon, mesh, bastite | opx, ol, cpx, sp | srp, mgt, bas, grt |
18 | BE.12Β/Veria ** | Srp. Harzburgite | Ribbon, mesh, bastite | opx, ol, cpx, sp | srp, mgt, bas, grt |
19 | BE.67/Veria **** | Pyroxenite | Porphyroclastic, mesh | opx, cpx, ol | srp, chl, talc, tr, mgt |
20 | BE.103/Veria *** | Srp. Lherzolite | Ribbon, mesh, bastite, interlocking | opx, cpx, sp | srp, chl, mgt |
21 | BE.103Β/Veria ** | Srp. Lherzolite | Ribbon, mesh, bastite | opx, ol, cpx, sp | srp, chl, mgt, bas |
22 | BE.103C/Veria | Srp. Lherzolite | Ribbon, mesh, bastite | opx, ol, cpx, sp | srp, mgt, bas |
23 | BE.122/Veria ** | Srp. Harzburgite | Ribbon, mesh, bastite | opx, ol, cpx, sp | srp, mgt, bas |
24 | BE.122B/Veria | Srp. Harzburgite | Ribbon, mesh, bastite | opx, ol, sp | srp, mgt, bas |
25 | BE.133/Veria * | Srp. Lherzolite | Ribbon, mesh, bastite, interlocking | sp | srp, mgt, chl, bas |
26 | ED.59/Edessa *** | Srp. Harzburgite | Ribbon, mesh, bastite | sp | srp, mgt, bas |
27 | ED.115/Edessa *** | Srp. Harzburgite | Ribbon, mesh, bastite | sp | srp, mgt, bas |
28 | BE.77/Veria | Diorite | Granular, ophitic to subophitic | cpx, plg, or, qz | ser, chl, ep, chl, act |
29 | ED.93/Edessa | Diorite | Granular | plg, hbl, cpx, or, qz, ttn | ser, act, chl, stl |
30 | ED.94/Edessa | Diorite | Granular | plg, hbl, cpx, or, qz, ttn | ser, act, chl, stl |
31 | GE.24/Gerania | Troctolite | Granular, cumulate | plg, ol, opx, cpx | ser, act, chl, ep, grt, srp, cc |
32 | KIL.1/Guevgueli | Hbl-Gabbro | Granular, ophitic, cumulative | plg, cpx, amp | chl, act, ep, ser, tr |
33 | KIL.4/Guevgueli | Hbl-Gabbro | Granular, subophitic | plg, cpx, amp | chl, act, ep, ser, qz |
34 | KIL.5/Guevgueli | Hbl-Gabbro | Granular, ophitic | plg, cpx, opx, amp | chl, act, ep, ser |
35 | KIL.6/Guevgueli | Hbl-Gabbro | Granular, ophitic | plg, cpx, opx, ol, amp | chl, act, ep, ser |
36 | KIL.9/Guevgueli | Qz-Hbl-Gabbro | Ophitic, cumulative | plg, cpx, amp, qz | chl, act, ser, ep |
37 | KIL.10/Guevgueli | Qz-Hbl-Gabbro | Ophitic, cumulative | plg, cpx, amp, qz | chl, act, ser, ep |
38 | BE.100/Veria | Gabbro | Granular, ophitic to subophitic | cpx, plg, ttn | chl, act, ep |
39 | ED.26B/Edessa | Gabbro | Ophitic to subophitic | cpx, plg, ttn | chl, ser, ep, phr |
40 | KIL.2/Guevgueli *** | Diabase | Subophitic | plg, cpx, opx, amp, ttn | chl, act, ser, ep |
41 | KIL.3/Guevgueli *** | Diabase | Subophitic | plg, cpx, opx, amp, ttn | chl, act, ser, ep |
42 | KIL.8/Guevgueli | Diabase | Subophitic | plg, cpx, opx, amp, ttn | chl, act, ser, ep |
43 | BE.24/Veria | Diabase | Subophitic | plg, cpx, ttn | chl, act, ep |
44 | BE.43/Veria *** | Diabase | Ophitic, cataclastic | plg, cpx | chl, act, ep |
45 | ED.24/Edessa *** | Diabase | Subophitic | plg, cpx | act, chl, ep, phr, ser |
46 | BE.113/Veria | Diabase | Cataclastic | plg, cpx | chl, act, ep |
47 | ED.45/Edessa | Diabase | Porphyritic, Interlocking | plg, cpx | chl, ep, ser, act |
48 | ED.66B/Edessa | Diabase | Porphyritic, Interlocking | plg, cpx | chl, ep, ser, act |
49 | ED.110/Edessa *** | Diabase | Subophitic | plg, cpx | chl, act, ep |
50 | BE.15/Veria | Basalt | Porphyritic, interwoven | plg, cpx | ep, chl, phr, act |
51 | ED.66A/Edessa | Basalt | Interwoven, porphyritic | plg, cpx | chl, ep, act |
52 | GE.22/Ag. Theod *** | Dacite | Porphyritic | plg, hbl, san, or, bi, qz | ser |
53 | GE23/Ag. Theod *** | Dacite | Porphyritic | plg, hbl, san, or, bi, qz | ser |
54 | BE.81B/Veria | Andesite | Porphyritic, microlithilic | plg, hbl, cpx, san, bi, qz | chl, ser |
55 | BE.82B/Veria | Andesite | Porphyritic, microlithilic | plg, hbl, cpx, san, bi, qz | chl, ser |
56 | BE.88/Veria * | Andesite | Porphyritic, microlithilic | plg, hbl, cpx, san, bi | chl, ser |
57 | BE.89/Veria * | Andesite | Porphyritic, microlithilic, trachytic | plg, hbl, cpx, san, bi | chl, ser |
58 | BE.101Β/Veria | Andesite | Porphyritic, microlithilic | plg, hbl, cpx, san, bi, qz | chl, ser |
59 | BE.139/Veria | Granodiorite | Granular, porphyritic | qz, plg, or, ttn | chl, ep, ser |
60 | BE.140/Veria | Granodiorite | Granular, porphyritic | qz, plg, or | chl, ep, ser |
61 | BE.149/Veria | Granodiorite | Granular, porphyritic | qz, plg, or | chl, ep, ser |
62 | BE.108/Veria | Albitite | Subophitic | plg, cpx, qz | chl, ep, ser |
63 | BE.150/Veria | Albitite | Subophitic | plg, cpx, qz | chl, ep, ser |
No. | Sample Code/Locality | Physical Properties | Geometrical Properties | Mechanical Properties | Physicochemical Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
w | nt | ρd | IF | IE | LA | UCS | Is(50) | SHV | S | MBF | LOI | ||
1 | GE.4/Gerania | 2.91 | 6.81 | 23.16 | 85.96 | 73.65 | 34.01 | 48.00 | 1.00 | 42.30 | 27.81 | 11.60 | 17.2 |
2 | GE.17/Gerania | 0.90 | 1.56 | 25.6 | 23.44 | 27.33 | 20.30 | 93.05 | 3.46 | 50.20 | 14.62 | 9.60 | 14.1 |
3 | GE.25/Gerania | 0.04 | 0.78 | 31.87 | 22.54 | 34.17 | 15.89 | 79.00 | 6.92 | 50.70 | 17.49 | 4.20 | 0.7 |
4 | GE.26/Gerania | 0.40 | 0.91 | 27.47 | 33.90 | 32.33 | 19.63 | 66.00 | 7.30 | 50.30 | 9.73 | 6.30 | 8.7 |
5 | GE.28/Gerania | 0.08 | 0.42 | 29.15 | 32.07 | 26.90 | 15.73 | 86.20 | 2.28 | 51.10 | 11.76 | 8.30 | 5.5 |
6 | GE.30/Gerania | 0.25 | 0.92 | 29.09 | 26.84 | 34.16 | 16.61 | 75.00 | 3.84 | 53.00 | 12.33 | 4.00 | 0.1 |
7 | GE.31/Gerania | 0.22 | 0.53 | 29.22 | 26.10 | 38.06 | 27.16 | 111.63 | 8.84 | 49.20 | 18.06 | 5.00 | 2.7 |
8 | GE.32/Gerania | 0.16 | 0.89 | 30.58 | 15.08 | 29.13 | 22.01 | 97.00 | 2.93 | 50.10 | 14.39 | 5.00 | 4.1 |
9 | GE.33/Gerania | 0.08 | 0.16 | 30.88 | 16.25 | 30.76 | 20.92 | 69.12 | 8.45 | 47.10 | 14.37 | 6.60 | 0.1 |
10 | GE.34/Gerania | 0.36 | 0.76 | 29.23 | 31.12 | 33.61 | 17.51 | 88.86 | 5.38 | 48.40 | 13.45 | 6.30 | 5.8 |
11 | GE.35/Gerania | 0.26 | 0.69 | 30.65 | 25.15 | 24.51 | 23.95 | 76.00 | 4.99 | 46.30 | 17.55 | 5.60 | 3.4 |
12 | GE.36/Gerania | 0.13 | 0.54 | 31.32 | 22.10 | 38.25 | 23.29 | 50.00 | 1.15 | 47.80 | 6.83 | 6.30 | 1.6 |
13 | GE.37/Gerania | 0.43 | 0.76 | 28.09 | 40.07 | 41.36 | 17.36 | 112.10 | 4.22 | 50.90 | 22.82 | 8.00 | 11.4 |
14 | GE.39/Gerania | 0.25 | 0.89 | 30.15 | 32.49 | 34.28 | 19.76 | 95.39 | 4.61 | 49.50 | 18.02 | 6.60 | 4.1 |
15 | BE.01A/Veria | 1.50 | 4.00 | 23.50 | 42.10 | 28.00 | 27.00 | 76.00 | 3.76 | 52.00 | 40.00 | 17.00 | 14.6 |
16 | BE.01B/Veria | 2.58 | 6.49 | 23.40 | 40.00 | 45.00 | 32.00 | 51.00 | 2.76 | 50.00 | 75.34 | 15.50 | 14.5 |
17 | BE.12/Veria | 2.18 | 3.40 | 24.00 | 37.20 | 21.00 | 23.00 | 55.40 | 1.88 | 50.00 | 26.00 | 13.32 | 13.5 |
18 | BE.12Β/Veria | 2.20 | 3.30 | 23.50 | 35.00 | 20.00 | 25.16 | 55.40 | 1.88 | 52.00 | 25.20 | 12.80 | 13.4 |
19 | BE.67/Veria | 0.41 | 1.18 | 35.41 | 19.00 | 16.50 | 14.22 | 85.70 | 11.26 | 57.60 | 12.90 | 4.66 | 1.2 |
20 | BE.103/Veria | 1.95 | 5.00 | 24.66 | 34.50 | 35.00 | 28.98 | 32.00 | 1.16 | 49.00 | 74.00 | 9.33 | 14.2 |
21 | BE.103Β/Veria | 1.94 | 4.99 | 25.00 | 33.00 | 30.00 | 28.97 | 32.00 | 1.10 | 48.00 | 75.12 | 9.00 | 14.1 |
22 | BE.103C/Veria | 1.94 | 4.99 | 24.00 | 30.00 | 33.00 | 28.97 | 39.00 | 1.30 | 49.00 | 70.00 | 8.35 | 14.1 |
23 | BE.122/Veria | 1.25 | 3.21 | 24.95 | 19.98 | 30.65 | 25.51 | 25.45 | 3.00 | 51.20 | 30.00 | 8.33 | 15.3 |
24 | BE.122B/Veria | 1.25 | 3.21 | 25.00 | 19.00 | 45.00 | 25.50 | 34.00 | 2.80 | 49.00 | 52.00 | 8.00 | 15.4 |
25 | BE.133/Veria | 1.40 | 2.80 | 25.06 | 16.12 | 35.00 | 22.50 | 35.00 | 1.55 | 50.00 | 36.46 | 10.00 | 13.4 |
26 | ED.59/Edessa | 1.52 | 6.29 | 24.32 | 26.49 | 49.00 | 40.36 | 20.00 | 1.35 | 47.00 | 75.00 | 12.00 | 14.1 |
27 | ED.115/Edessa | 2.10 | 4.53 | 23.12 | 33.62 | 38.00 | 20.77 | 28.00 | 1.94 | 50.00 | 65.00 | 10.00 | 14.4 |
28 | BE.77/Veria | 0.38 | 0.80 | 26.29 | 19.90 | 24.30 | 12.42 | 95.00 | 6.21 | 55.00 | 3.73 | 10.00 | 2.0 |
29 | ED.93/Edessa | 0.50 | 1.27 | 24.31 | 27.34 | 22.18 | 11.81 | 100.00 | 4.10 | 54.00 | 13.64 | 13.30 | 3.1 |
30 | ED.94/Edessa | 0.64 | 2.27 | 26.44 | 37.49 | 20.00 | 18.40 | 85.00 | 6.00 | 54.00 | 30.00 | 9.33 | 2.5 |
31 | GE.24/Gerania | 0.28 | 0.73 | 27.92 | 16.19 | 27.70 | 9.65 | 141.00 | 8.45 | 48.80 | 15.71 | 5.20 | 10.5 |
32 | KIL.1/Guevgueli | 0.22 | 1.32 | 29.17 | 12.14 | 47.47 | 16.59 | 99.33 | 6.79 | 50.30 | 3.76 | 5.60 | 1.5 |
33 | KIL.4/Guevgueli | 0.20 | 1.25 | 28.61 | 15.27 | 30.75 | 14.89 | 106.56 | 4.98 | 55.30 | 1.54 | 4.10 | 1.6 |
34 | KIL.5/Guevgueli | 0.12 | 1.17 | 28.88 | 29.27 | 29.52 | 13.20 | 109.26 | 6.34 | 53.70 | 7.59 | 5.60 | 1.2 |
35 | KIL.6/Guevgueli | 0.12 | 0.54 | 28.73 | 23.33 | 39.79 | 12.50 | 112.67 | 13.50 | 51.10 | 6.37 | 5.00 | 0.9 |
36 | KIL.9/Guevgueli | 0.23 | 0.65 | 28.94 | 24.47 | 51.74 | 9.34 | 107.16 | 10.88 | 51.90 | 4.70 | 5.00 | 1.8 |
37 | KIL.10/Guevgueli | 0.19 | 0.67 | 30.08 | 18.43 | 22.64 | 12.58 | 108.36 | 7.70 | 51.10 | 8.44 | 5.60 | 1.6 |
38 | BE.100/Veria | 0.47 | 0.88 | 25.63 | 12.05 | 22.97 | 13.88 | 65.00 | 3.72 | 54.00 | 1.30 | 15.00 | 5.1 |
39 | ED.26B/Edessa | 0.60 | 1.74 | 27.19 | 13.62 | 23.90 | 20.68 | 80.00 | 5.22 | 55.00 | 6.54 | 13.33 | 5.8 |
40 | KIL.2/Guevgueli | 0.20 | 0.66 | 28.80 | 31.67 | 34.73 | 9.31 | 122.34 | 7.25 | 51.50 | 3.71 | 5.30 | 3.0 |
41 | KIL.3/Guevgueli | 0.14 | 0.48 | 28.35 | 36.91 | 44.77 | 10.77 | 126.72 | 11.33 | 55.20 | 2.52 | 6.50 | 2.2 |
42 | KIL.8/Guevgueli | 0.17 | 0.36 | 28.83 | 25.24 | 33.01 | 9.53 | 87.29 | 16.38 | 51.00 | 1.54 | 6.60 | 0.8 |
43 | BE.24/Veria | 0.44 | 0.70 | 27.69 | 33.30 | 9.80 | 11.34 | 124.57 | 9.03 | 57.20 | 3.45 | 9.95 | 2.2 |
44 | BE.43/Veria | 0.25 | 0.53 | 26.57 | 31.30 | 16.60 | 8.72 | 150.00 | 12.80 | 55.80 | 4.74 | 4.97 | 1.7 |
45 | ED.24/Edessa | 0.52 | 0.84 | 25.40 | 15.79 | 19.68 | 14.15 | 91.33 | 9.70 | 55.00 | 3.58 | 11.66 | 5.4 |
46 | BE.113/Veria | 0.42 | 0.45 | 25.30 | 24.05 | 14.00 | 7.39 | 97.15 | 9.70 | 57.00 | 2.02 | 10.00 | 3.2 |
47 | ED.45/Edessa | 0.41 | 0.24 | 26.66 | 29.93 | 16.00 | 9.99 | 110.00 | 8.40 | 56.00 | 3.12 | 11.66 | 6.0 |
48 | ED.66B/Edessa | 0.50 | 0.22 | 27.75 | 46.17 | 17.00 | 8.18 | 119.00 | 6.00 | 54.00 | 2.47 | 6.66 | 2.7 |
49 | ED.110/Edessa | 0.20 | 0.86 | 27.36 | 24.88 | 17.80 | 7.31 | 148.00 | 12.00 | 59.00 | 3.96 | 6.00 | 2.0 |
50 | BE.15/Veria | 0.29 | 0.13 | 25.99 | 56.10 | 12.70 | 10.54 | 165.87 | 12.63 | 62.00 | 8.68 | 5.32 | 3.0 |
51 | ED.66A/Edessa | 0.46 | 0.38 | 27.27 | 27.00 | 15.00 | 7.65 | 73.00 | 5.59 | 52.00 | 3.50 | 5.66 | 2.6 |
52 | GE.22/Ag. Theodori | 1.47 | 11.93 | 21.37 | 12.00 | 22.04 | 58.04 | 25.00 | 2.30 | 26.40 | 61.30 | 11.60 | 3.6 |
53 | GE.23/Ag. Theodori | 2.13 | 8.40 | 19.02 | 12.52 | 26.20 | 50.62 | 33.11 | 2.69 | 30.30 | 10.37 | 9.80 | 3.4 |
54 | BE.81B/Veria | 0.90 | 10.15 | 22.51 | 15.42 | 20.34 | 23.98 | 45.00 | 2.26 | 49.00 | 77.50 | 5.30 | 1.6 |
55 | BE.82B/Veria | 1.14 | 10.76 | 22.25 | 16.91 | 32.00 | 35.00 | 35.62 | 1.77 | 49.00 | 70.00 | 16.60 | 2.0 |
56 | BE.88/Veria | 1.38 | 2.84 | 23.94 | 10.87 | 20.04 | 18.36 | 53.00 | 4.50 | 53.00 | 39.00 | 10.98 | 1.6 |
57 | BE.89/Veria | 1.02 | 6.83 | 23.75 | 18.84 | 20.63 | 23.98 | 45.00 | 2.71 | 50.00 | 38.00 | 6.60 | 1.5 |
58 | BE.101Β/Veria | 2.70 | 11.62 | 22.10 | 14.06 | 48.00 | 55.00 | 37.47 | 1.12 | 46.00 | 89.50 | 8.30 | 1.7 |
59 | BE.139/Veria | 0.60 | 1.70 | 27.00 | 18.68 | 16.00 | 7.71 | 91.00 | 3.68 | 54.40 | 2.41 | 6.33 | 2.4 |
60 | BE.140/Veria | 0.29 | 1.60 | 27.60 | 38.38 | 20.97 | 13.67 | 75.00 | 7.76 | 53.00 | 14.68 | 5.00 | 2.6 |
61 | BE.149/Veria | 0.35 | 0.97 | 25.23 | 32.67 | 18.95 | 10.25 | 70.00 | 5.43 | 51.00 | 21.00 | 6.66 | 2.5 |
62 | BE.108/Veria | 0.29 | 0.31 | 26.96 | 36.90 | 18.00 | 13.05 | 140.00 | 5.00 | 61.00 | 14.00 | 5.00 | 0.4 |
63 | BE.150/Veria | 0.27 | 0.29 | 26.93 | 37.96 | 14.89 | 11.00 | 145.00 | 10.00 | 62.40 | 14.80 | 5.30 | 0.4 |
Factor | Initial Eigenvalues | Rotation Sums of Squared Loadings | ||||
---|---|---|---|---|---|---|
Eigenvalue | Percentage of Variance (%) | Cumulative Percentage of Variance (%) | Eigenvalue | Percentage of Variance (%) | Cumulative Percentage of Variance (%) | |
1 | 6.328 | 52.732 | 52.732 | 4.302 | 35.849 | 35.849 |
2 | 1.576 | 13.135 | 65.867 | 3.204 | 26.697 | 62.546 |
3 | 1.257 | 10.472 | 76.338 | 1.655 | 13.792 | 76.338 |
4 | 0.737 | 6.140 | 82.479 | |||
5 | 0.576 | 4.802 | 87.280 | |||
6 | 0.464 | 3.868 | 91.148 | |||
7 | 0.332 | 2.763 | 93.911 | |||
8 | 0.248 | 2.069 | 95.980 | |||
9 | 0.209 | 1.740 | 97.721 | |||
10 | 0.146 | 1.214 | 98.935 | |||
11 | 0.072 | 0.602 | 99.537 | |||
12 | 0.056 | 0.463 | 100.000 |
Variable | Factor 1 | Factor 2 | Factor 3 | Communalities |
---|---|---|---|---|
w | 0.538 | 0.685 | 0.352 | 0.882 |
nt | 0.749 | 0.520 | −0.081 | 0.838 |
LA | 0.862 | 0.346 | 0.016 | 0.863 |
UCS | −0.767 | −0.420 | −0.027 | 0.766 |
ρd | −0.332 | −0.822 | −0.006 | 0.787 |
S | 0.650 | 0.505 | 0.134 | 0.696 |
MBF | 0.111 | 0.815 | 0.103 | 0.688 |
IF | −0.275 | 0.119 | 0.808 | 0.743 |
IE | 0.585 | −0.273 | 0.634 | 0.819 |
Is(50) | −0.602 | −0.474 | −0.143 | 0.608 |
SHV | −0.856 | −0.049 | 0.040 | 0.736 |
LOI | 0.248 | 0.505 | 0.646 | 0.735 |
w | nt | LA | UCS | ρd | S | MBF | IF | IE | Is(50) | SHV | LOI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
w | 1.000 | 0.750 | 0.718 | −0.696 | −0.756 | 0.735 | 0.587 | 0.221 | 0.337 | −0.638 | −0.463 | 0.680 |
nt | 1.000 | 0.853 | −0.695 | −0.738 | 0.811 | 0.433 | −0.100 | 0.258 | −0.587 | −0.636 | 0.274 | |
LA | 1.000 | −0.717 | −0.570 | 0.711 | 0.401 | −0.110 | 0.389 | −0.623 | −0.785 | 0.352 | ||
UCS | 1.000 | 0.508 | −0.698 | −0.448 | 0.192 | −0.326 | 0.736 | 0.629 | −0.481 | |||
ρd | 1.000 | −0.584 | −0.631 | −0.067 | −0.027 | 0.489 | 0.383 | −0.430 | ||||
S | 1.000 | 0.373 | −0.009 | 0.311 | −0.615 | −0.403 | 0.488 | |||||
MBF | 1.000 | 0.065 | 0.037 | −0.432 | −0.189 | 0.501 | ||||||
IF | 1.000 | 0.214 | 0.023 | 0.174 | 0.332 | |||||||
IE | 1.000 | −0.251 | −0.387 | 0.374 | ||||||||
Is(50) | 1.000 | 0.475 | −0.521 | |||||||||
SHV | 1.000 | −0.236 | ||||||||||
LOI | 1.000 |
Sample | Factor 1 | Factor 2 | Factor 3 | Sample | Factor 1 | Factor 2 | Factor 3 |
---|---|---|---|---|---|---|---|
GE.4 | 1.21 | 0.17 | 4.84 | BE.81B | 1.13 | 0.69 | −1.62 |
GE.17 | −0.21 | 0.51 | 0.39 | BE.82B | 1.05 | 1.70 | −1.27 |
GE.22 | 2.93 | 0.72 | −2.11 | BE.88 | −0.05 | 1.09 | −1.35 |
GE.23 | 2.23 | 0.70 | −1.66 | BE.89 | 0.66 | 0.53 | −1.27 |
GE.24 | −0.31 | −0.69 | −0.01 | BE.100 | −0.67 | 1.04 | −0.95 |
GE.25 | 0.45 | −1.67 | −0.16 | BE.101B | 2.68 | 0.45 | −0.63 |
GE.26 | 0.03 | −0.57 | 0.64 | ED.24 | −0.96 | 0.73 | −0.84 |
GE.28 | −0.21 | −0.39 | 0.24 | ED.26B | −0.49 | 0.69 | −0.76 |
GE.30 | 0.29 | −1.18 | −0.05 | ED.45 | −1.44 | 0.79 | −0.20 |
GE.31 | 0.45 | −1.44 | 0.19 | ED.94 | −0.58 | 0.49 | −0.09 |
GE.32 | 0.48 | −1.15 | −0.47 | ED.59 | 1.63 | 0.57 | 0.93 |
GE.33 | 0.57 | −1.39 | −0.71 | BE.103 | 0.87 | 0.89 | 1.04 |
GE.34 | 0.20 | −0.94 | 0.47 | BE.103B | 0.86 | 0.93 | 0.78 |
GE.35 | 0.52 | −1.07 | −0.32 | BE.103C | 0.86 | 0.88 | 0.75 |
GE.36 | 0.97 | −1.50 | −0.06 | BE.108 | −1.26 | 0.02 | −0.05 |
GE.37 | −0.12 | −0.54 | 1.56 | BE.113 | −1.40 | 0.77 | −0.77 |
GE.39 | 0.23 | −1.03 | 0.46 | BE.122 | 0.50 | 0.56 | 0.31 |
KIL.1 | 0.64 | −1.64 | −0.14 | BE.122B | 1.06 | 0.04 | 0.81 |
KIL.2 | −0.32 | −1.07 | 0.43 | BE.133 | 0.60 | 0.58 | 0.23 |
KIL.3 | −0.54 | −1.19 | 0.97 | BE.139 | −0.61 | 0.13 | −0.92 |
KIL.4 | −0.06 | −0.98 | −0.55 | BE.140 | −0.44 | −0.38 | 0.03 |
KIL.5 | −0.32 | −0.84 | −0.04 | BE.149 | −0.45 | 0.15 | −0.35 |
KIL.6 | −0.07 | −1.51 | 0.04 | ED.66B | −1.19 | 0.01 | 0.43 |
KIL.8 | −0.38 | −1.15 | −0.17 | ED.66A | −0.59 | −0.10 | −0.59 |
KIL.9 | 0.18 | −1.78 | 0.65 | ED.93 | −0.97 | 1.08 | −0.43 |
KIL.10 | −0.22 | −0.89 | −0.69 | ED.110 | −1.42 | −0.13 | −0.53 |
BE.01 | −0.57 | 2.01 | 1.07 | ED.115 | 0.57 | 1.11 | 1.15 |
BE.01B | 0.61 | 1.64 | 1.62 | BE.150 | −1.64 | 0.12 | −0.12 |
BE.12 | −0.34 | 1.79 | 0.69 | ||||
BE.12B | −0.40 | 1.87 | 0.56 | ||||
BE.15 | −2.20 | 0.34 | 0.75 | ||||
BE.24 | −1.56 | 0.63 | −0.49 | ||||
BE.43 | −1.33 | −0.23 | −0.35 | ||||
BE.67 | −0.41 | −1.21 | −0.70 | ||||
BE.77 | −0.70 | 0.25 | −0.66 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannakopoulou, P.P.; Petrounias, P.; Tsikouras, B.; Kalaitzidis, S.; Rogkala, A.; Hatzipanagiotou, K.; Tombros, S.F. Using Factor Analysis to Determine the Interrelationships between the Engineering Properties of Aggregates from Igneous Rocks in Greece. Minerals 2018, 8, 580. https://doi.org/10.3390/min8120580
Giannakopoulou PP, Petrounias P, Tsikouras B, Kalaitzidis S, Rogkala A, Hatzipanagiotou K, Tombros SF. Using Factor Analysis to Determine the Interrelationships between the Engineering Properties of Aggregates from Igneous Rocks in Greece. Minerals. 2018; 8(12):580. https://doi.org/10.3390/min8120580
Chicago/Turabian StyleGiannakopoulou, Panagiota P., Petros Petrounias, Basilios Tsikouras, Stavros Kalaitzidis, Aikaterini Rogkala, Konstantin Hatzipanagiotou, and Stylianos F. Tombros. 2018. "Using Factor Analysis to Determine the Interrelationships between the Engineering Properties of Aggregates from Igneous Rocks in Greece" Minerals 8, no. 12: 580. https://doi.org/10.3390/min8120580
APA StyleGiannakopoulou, P. P., Petrounias, P., Tsikouras, B., Kalaitzidis, S., Rogkala, A., Hatzipanagiotou, K., & Tombros, S. F. (2018). Using Factor Analysis to Determine the Interrelationships between the Engineering Properties of Aggregates from Igneous Rocks in Greece. Minerals, 8(12), 580. https://doi.org/10.3390/min8120580