The Jbel Saghro Au(–Ag, Cu) and Ag–Hg Metallogenetic Province: Product of a Long-Lived Ediacaran Tectono-Magmatic Evolution in the Moroccan Anti-Atlas
Abstract
:1. Introduction
2. Geological Overview of the Anti-Atlas Mountains
3. Tectono-Magmatic Evolution of the Jbel Saghro
3.1. The Lower Complex and the D1 Transpressive Tectonics
3.1.1. The Earlier Arc-Related Metagreywackes and Metavolcanic Rocks
3.1.2. The Intrusive Rocks
3.1.3. The Main Pan-African D1 Deformation Event
3.2. The Upper Complex or the Inception of a Silicic Large Igneous Province
3.2.1. Generalities
3.2.2. The Qal’at Mgouna Ash-Flow Caldera
- (i).
- A lowermost pyroclastic layer consists of a 400–500 m thick, unwelded to slightly welded, moderately crystal-rich dacitic lapilli tuff (Figure 6c,d and Figure 7a,b) interpreted as an ash-flow deposit [142,143]. Internal stratification of the ash-flow tuff is crude, oriented N060–080°E 80°NW, as highlighted by discrete layers which are either pumice-richer, lithic-richer or entirely devitrified with spherulites. In a specific layer 40 m thick, greenish fibrous pumices displaying silicified tubular micro-vesicles and a silky/fibrous fabric can reach up to 5 cm long. Lithic clasts up to 20 cm in size are common throughout and consist mainly of basement greywackes, lavas and quartz-rich ignimbrite fragments. Phenocrysts are mostly broken plagioclase and K-feldspar, in various ratios with minor amounts of chloritised ferro-magnesian crystals (biotite and probable amphibole) and very scarce quartz.
- (ii).
- Above the ash-flow unit lies a ca. 200 m thick volcano-sedimentary (epiclastic) unit with very thin bedding (Figure 6d and Figure 7a,b). The lower part (100 m thick) is made of layered tuffaceous breccias containing ignimbrites fragments. The upper part consists of laminated reddish and greenish mudstones and sandstone oriented N070°E 70°NW. When preserved from important silicification, the identifiable components are microscopic broken crystals and lithic fragments. Beds are broadly continuous laterally, being only sometimes disrupted by syn-sedimentary normal faults and slump-like structures. Faults are roughly oriented NW–SE. Fluid escape textures are common and allow assessment of the polarity of the intra-caldera sequence. All sedimentological features argue for a subaqueous emplacement, at least for the upper part of the epiclastic unit. In our model, and as no marine sediments have been hitherto recognised in the entire Jbel Saghro in the Ediacaran formations, such subaqueous environment may be reasonably related to a caldera lake.
- (iii).
- Above the volcano-sedimentary unit lies a ca. 200–300 m thick crystal-rich rhyolitic ash- and-lapilli tuff (Figure 6d and Figure 7a–c). Plastic deformation due to significant compaction is evidenced by reddish flattened pumices (Figure 6e). Glass shards and broken phenocrysts are visible under the microscope (Figure 6f). Phenocrysts are quartz, plagioclase, K-feldspar, and scarce amounts of chloritised Fe–Mg minerals (biotite and amphibole). Up to 2 m-sized lithic clasts are abundant, especially in the basal part, and consist of metagreywacke, ash-flow tuff fragments, jasperoids and monzogranite (Figure 6e). This voluminous quartz- and pumice-rich unit is readily interpreted here as a welded ignimbrite.
- (iv).
- The top of the sequence is dominated by massive andesite lava flows and epiclastic polylithologic breccias (Figure 5, Figure 6d and Figure 7a,b). The bottom of this whole sequence is intruded by a monzogranite porphyry (Figure 5 and Figure 7a,b). Plugs of similar porphyry facies also locally intrude the upper parts of the sequence. Such porphyry is here interpreted as a resurgent pluton [137,144] that tilted the intra-caldera sequence upon emplacement [47]. Because of the tilting, the thickness of the intra-caldera sequence is exposed over 1500–2000 m, of which 800–1000 m consists of ash-flow tuffs and epiclastic rocks. To the north, the intra-caldera sequence disappears beneath the young sedimentary rocks of the Dadès valley (Figure 5).
3.2.3. The D2 Deformation Event
4. Characteristics of Ore Deposits
4.1. The Thaghassa Intrusion-Related Gold Deposit
4.2. The Qal’at Mgouna Au–Ag (Cu, Mo, Bi, Te) District
4.2.1. The Isamlal Porphyry Au(–Cu–Mo) Deposit
4.2.2. The Qal’at Mgouna Au–Ag(–Bi–Te) Epithermal System
4.3. The Zone des Dykes Intermediate Sulfidation Epithermal Au-Base Metal Deposit
4.4. The Giant Ag–Hg Imiter Deposit
5. Discussion
5.1. A Simplified Tectono-Magmatic Evolution Model of the Eastern Anti-Atlas
5.1.1. The Lower Complex and the D1 Deformation
5.1.2. The Upper Complex and the D2 Deformation
5.1.3. About the Transition between the Two Complexes and the D1 and D2 Tectonics
5.2. The Mineralising Model
- The first stage shows strong magmatic influence. It is characterised by emplacement of porphyry stocks, aplite dykes and sills at high temperatures from 400 °C up to 600 °C. At Thaghassa, this stage was responsible for the partial melting of the metagreywackes in response to the Ikniwn granodiorite thermal effect and for the related genesis of leucocratic S-type haplogranitic sills. In the Qal’at Mgouna district, this stage was responsible for the formation of stockscheider and miarolitic cavities within sills and dykes.
- The second intermediate stage consists of magmatic-hydrothermal vein emplacement and associated pervasive alteration. The persistence of the magmatic character is shown by the occurrence of high-temperature alteration phases such as tourmaline, micas, andalusite, apatite, K-feldspar with quartz. In the Qal’at Mgouna district, at Isamlal, this stage can be compared with the classical potassic and magnetite alteration in some porphyry type systems [190]. It is also marked by the wide pervasive development of Al-silicate–Al-hydroxide–phosphate–muscovite–F-rich phlogopite and F-rich tourmaline alteration, related to the late Si-rich alkali granites. K-feldspar, apatite, white mica along vein rims are observed at the beginning of vein aperture at Thaghassa. Temperatures of formation are bracketed between 250 and 500 °C.
- The third stage is hydrothermal and formed at lower temperature (60 < T (°C) < 300) producing gangue minerals except for the Thaghassa and Isamlal deposits where high-temperature minerals were also formed (350–450 °C). This stage end with the emplacement of economic ore.
5.3. Implication of the Tectonic Regime Changes for the Late Neoproterozoic—Early Cambrian Geodynamic Evolution and Ore Deposit Emplacement
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dostal, J.; Caby, R.; Keppie, J.D.; Maza, M. Neoproterozoic magmatism in Southwestern Algeria (Sebkha el Melah inlier): A northerly extension of the Trans-Saharan orogen. J. Afr. Earth Sci. 2002, 35, 213–225. [Google Scholar] [CrossRef]
- Ennih, N.; Liegeois, J.-P. The boundaries of the West African craton, with special reference to the basement of the Moroccan metacratonic Anti-Atlas belt. Geol. Soc. Lond. Spec. Publ. 2008, 297, 1–17. [Google Scholar] [CrossRef]
- Liégeois, J.P.; Latouche, L.; Boughrara, M.; Navez, J.; Guiraud, M. The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): Behaviour of an old passive margin during the Pan-African orogeny. J. Afr. Earth Sci. 2003, 37, 161–190. [Google Scholar] [CrossRef]
- Ouzegane, K.; Kienast, J.-R.; Bendaoud, A.; Drareni, A. A review of Archaean and Paleoproterozoic evolution of the In Ouzzal granulitic terrane (Western Hoggar, Algeria). J. Afr. Earth Sci. 2003, 37, 207–227. [Google Scholar] [CrossRef]
- Thomas, R.J.; Fekkak, A.; Ennih, N.; Errami, E.; Loughlin, S.C.; Gresse, P.G.; Chevallier, L.P.; Liegeois, J.-P. A new lithostratigraphic framework for the Anti-Atlas Orogen, Morocco. J. Afr. Earth Sci. 2004, 39, 217–226. [Google Scholar] [CrossRef] [Green Version]
- El Bahat, A.; Ikenne, M.; Söderlund, U.; Cousens, B.; Youbi, N.; Ernst, R.; Soulaimani, A.; El Janati, M.H.; Hafid, A. U–Pb baddeleyite ages and geochemistry of dolerite dykes in the Bas Drâa Inlier of the Anti-Atlas of Morocco: Newly identified 1380Ma event in the West African Craton. Lithos 2013, 174, 85–98. [Google Scholar] [CrossRef]
- Ikenne, M.; Söderlund, U.; Ernst, R.E.; Pin, C.; Youbi, N.; El Aouli, E.H.; Hafid, A. A c. 1710 Ma mafic sill emplaced into a quartzite and calcareous series from Ighrem, Anti-Atlas—Morocco: Evidence that the Taghdout passive margin sedimentary group is nearly 1 Ga older than previously thought. J. Afr. Earth Sci. 2017, 127, 62–76. [Google Scholar] [CrossRef]
- Youbi, N.; Kouyaté, D.; Söderlund, U.; Ernst, R.E.; Soulaimani, A.; Hafid, A.; Ikenne, M.; El Bahat, A.; Bertrand, H.; Rkha Chaham, K.; et al. The 1750Ma Magmatic Event of the West African Craton (Anti-Atlas, Morocco). Precambrian Res. 2013, 236, 106–123. [Google Scholar] [CrossRef]
- Davies, J.H.F.L.; Marzoli, A.; Bertrand, H.; Youbi, N.; Ernesto, M.; Schaltegger, U. End-Triassic mass extinction started by intrusive CAMP activity. Nat. Commun. 2017, 8, 15596. [Google Scholar] [CrossRef] [Green Version]
- Knight, K.B.; Nomade, S.; Renne, P.R.; Marzoli, A.; Bertrand, H.; Youbi, N. The Central Atlantic Magmatic Province at the Triassic-Jurassic boundary: Paleomagnetic and 40Ar/39Ar evidence from Morocco for brief, episodic volcanism. Earth Planet. Sci. Lett. 2004, 228, 143–160. [Google Scholar] [CrossRef]
- Marzoli, A.; Callegaro, S.; Dal Corso, J.; Davies, J.H.F.L.; Chiaradia, M.; Youbi, N.; Bertrand, H.; Reisberg, L.; Merle, R.; Jourdan, F. The Central Atlantic Magmatic Province (CAMP): A Review. In The Late Triassic World: Earth in a Time of Transition; Tanner, L.H., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 91–125. [Google Scholar]
- Ernst, R.E. Large Igneous Provinces; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Ernst, R.; Bleeker, W. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: Significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Can. J. Earth Sci. 2010, 47, 695–739. [Google Scholar] [CrossRef]
- Bryan, S.E.; Ferrari, L. Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years. GSA Bull. 2013, 125, 1053–1078. [Google Scholar] [CrossRef] [Green Version]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Bonin, B. A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos 2007, 97, 1–29. [Google Scholar] [CrossRef]
- Ernst, R.E.; Jowitt, S.M. Large Igneous Provinces (LIPs) and Metallogeny. In Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings; Colpron, M., Bissig, T., Rusk, B.G., Thompson, J.F.H., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2013; Volume 17, pp. 17–51. [Google Scholar]
- Arndt, N.T.; Lesher, C.M.; Czamanske, G.K. Mantle-derived magmas and magmatic Ni-Cu-(PGE) deposits. In Economic Geology 100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richard, J.P., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 5–23. [Google Scholar]
- Barnes, S.J.; Holwell, D.A.; Le Vaillant, M. Magmatic Sulfide Ore Deposits. Elements 2017, 13, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Goodenough, K.M.; Schilling, J.; Jonsson, E.; Kalvig, P.; Charles, N.; Tuduri, J.; Deady, E.A.; Sadeghi, M.; Schiellerup, H.; Müller, A.; et al. Europe’s rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol. Rev. 2016, 72, 838–856. [Google Scholar] [CrossRef]
- Ernst, R.E.; Bell, K. Large igneous provinces (LIPs) and carbonatites. Mineral. Petrol. 2010, 98, 55–76. [Google Scholar] [CrossRef]
- Rao, N.V.C.; Lehmann, B. Kimberlites, flood basalts and mantle plumes: New insights from the Deccan Large Igneous Province. Earth-Sci. Rev. 2011, 107, 315–324. [Google Scholar] [CrossRef]
- Barton, M.D. 13.20—Iron Oxide(–Cu–Au–REE–P–Ag–U–Co) Systems A2—Holland, Heinrich, D. In Treatise on Geochemistry (Second Edition); Turekian, K.K., Ed.; Elsevier: Oxford, UK, 2014; pp. 515–541. [Google Scholar]
- Camprubí, A. Tectonic and Metallogenetic History of Mexico. In Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings; Colpron, M., Bissig, T., Rusk, B.G., Thompson, J.F.H., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2013; Volume 17, pp. 201–243. [Google Scholar]
- Camprubí, A.; Albinson, T. Epithermal deposits in México—Update of current knowledge, and an empirical reclassification. Geol. Soc. Am. Spec. Pap. 2007, 422, 377–415. [Google Scholar]
- Wilkinson, J.J.; Simmons, S.F.; Stoffell, B. How metalliferous brines line Mexican epithermal veins with silver. Sci. Rep. 2013, 3, 2057. [Google Scholar] [CrossRef]
- Ballèvre, M.; Le Goff, E.; Hébert, R. The tectonothermal evolution of the Cadomian belt of northern Brittany, France: A Neoproterozoic volcanic arc. Tectonophysics 2001, 331, 19–43. [Google Scholar] [CrossRef]
- Linnemann, U.; Pereira, F.; Jeffries, T.E.; Drost, K.; Gerdes, A. The Cadomian Orogeny and the opening of the Rheic Ocean: The diacrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 2008, 461, 21–43. [Google Scholar] [CrossRef]
- Walsh, G.J.; Benziane, F.; Aleinikoff, J.N.; Harrison, R.W.; Yazidi, A.; Burton, W.C.; Quick, J.E.; Saadane, A. Neoproterozoic tectonic evolution of the Jebel Saghro and Bou Azzer—El Graara inliers, eastern and central Anti-Atlas, Morocco. Precambrian Res. 2012, 216–219, 23–62. [Google Scholar] [CrossRef]
- Boyer, C.; Leblanc, M. Les appareils émissifs de la formation volcanique infracambriennes de Ouarzazate, Anti-Atlas (Maroc). Comptes rendus hebdomadaires des séances de l’Académie des sciences 1977, 285, 641–644. [Google Scholar]
- Moume, W.; Youbi, N.; Marzoli, A.; Bertrand, H.; Gärtner, A.; Linnemann, U.; Gerdes, A.; Ernst, R.; Söderlund, U.; Hachimi Hind, E.; et al. The distribution of the Central Iapetus Magmatic Province (CIMP) into West African craton: U-Pb dating, geochemistry and petrology of Douar Eç-çour and Imiter mafic Dyke Swarms (High and Anti-Atlas, Morocco). In Proceedings of the 2nd Colloquium of the International Geoscience Programme (IGCP638), Casablanca, Morocco, 7–12 November 2017. [Google Scholar]
- Puffer, J.H. A late Neoproterozoic eastern Laurentian superplume: Location, size, chemical composition, and environmental impact. Am. J. Sci. 2002, 302, 1–27. [Google Scholar] [CrossRef]
- Barbey, P.; Oberli, F.; Burg, J.P.; Nachit, H.; Pons, J.; Meier, M. The Palaeoproterozoic in western Anti-Atlas (Morocco): A clarification. J. Afr. Earth Sci. 2004, 39, 239–245. [Google Scholar] [CrossRef]
- Burkhard, M.; Caritg, S.; Helg, U.; Robert-Charrue, C.; Soulaimani, A. Tectonics of the Anti-Atlas of Morocco. Comptes Rendus Geosci. 2006, 338, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Missenard, Y.; Zeyen, H.; Frizon de Lamotte, D.; Leturmy, P.; Petit, C.; Sébrier, M.; Saddiqi, O. Crustal versus asthenospheric origin of relief of the Atlas Mountains of Morocco. J. Geophys. Res. Solid Earth 2006, 111, B03401. [Google Scholar] [CrossRef]
- Bourque, H.; Barbanson, L.; Sizaret, S.; Branquet, Y.; Ramboz, C.; Ennaciri, A.; El Ghorfi, M.; Badra, L. A contribution to the synsedimentary versus epigenetic origin of the Cu mineralizations hosted by terminal Neoproterozoic to Cambrian formations of the Bou Azzer–El Graara inlier: New insights from the Jbel Laassel deposit (Anti Atlas, Morocco). J. Afr. Earth Sci. 2015, 107, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Pouit, G. Paléogéographie et répartition des minéralisations stratiformes de cuivre dans l’Anti-Atlas occidental (Maroc). Chronique de la Recherche Minière 1966, 34, 279–289. [Google Scholar]
- Borisenko, A.S.; Lebedev, V.I.; Borovikov, A.A.; Pavlova, G.G.; Kalinin, Y.A.; Nevol’ko, P.A.; Maacha, L.; Kostin, A.V. Forming conditions and age of native silver deposits in Anti-Atlas (Morocco). Dokl. Earth Sci. 2014, 456, 663–666. [Google Scholar] [CrossRef]
- Oberthur, T.; Melcher, F.; Henjes-Kunst, F.; Gerdes, A.; Stein, H.; Zimmerman, A.; El Ghorfi, M. Hercynian age of the cobalt-nickel-arsenide-(gold) ores, Bou Azzer, Anti-Atlas, Morocco: Re-Os, Sm-Nd, and U-Pb age determinations. Econ. Geol. 2009, 104, 1065–1079. [Google Scholar] [CrossRef]
- Essarraj, S.; Boiron, M.-C.; Cathelineau, M.; Banks, D.A.; Benharref, M. Penetration of surface-evaporated brines into the Proterozoic basement and deposition of Co and Ag at Bou Azzer (Morocco): Evidence from fluid inclusions. J. Afr. Earth Sci. 2005, 41, 25–39. [Google Scholar] [CrossRef]
- Essarraj, S.; Boiron, M.-C.; Cathelineau, M.; Tarantola, A.; Leisen, M.; Boulvais, P.; Maacha, L. Basinal Brines at the Origin of the Imiter Ag-Hg Deposit (Anti-Atlas, Morocco): Evidence from LA-ICP-MS Data on Fluid Inclusions, Halogen Signatures, and Stable Isotopes (H, C, O). Econ. Geol. 2016, 111, 1753–1781. [Google Scholar] [CrossRef]
- Abia, E.H.; Nachit, H.; Marignac, C.; Ibhi, A.; Saadi, S.A. The polymetallic Au-Ag-bearing veins of Bou Madine (Jbel Ougnat, eastern Anti-Atlas, Morocco): Tectonic control and evolution of a Neoproterozoic epithermal deposit. J. Afr. Earth Sci. 2003, 36, 251–271. [Google Scholar] [CrossRef]
- Al Ansari, A.E.; Sagon, J.P. Le gisement d’or de Tiouit (Jbel Saghro, Anti-Atlas, maroc). Un système mésothermal polyphasé à sulfures-or et hématite-or dans une granodiorite potassique d’âge Protérozoïque supérieur. Chronique de la Recherche Minière 1997, 527, 3–25. [Google Scholar]
- Leblanc, M.; Lbouabi, M. Native silver mineralization along a rodingite tectonic contact between serpentinite and quartz diorite (Bou Azzer, Morocco). Econ. Geol. 1988, 83, 1379–1391. [Google Scholar] [CrossRef]
- Levresse, G.; Cheilletz, A.; Gasquet, D.; Reisberg, L.; Deloule, E.; Marty, B.; Kyser, K. Osmium, sulphur, and helium isotopic results from the giant Neoproterozoic epithermal Imiter silver deposit, Morocco: Evidence for a mantle source. Chem. Geol. 2004, 207, 59–79. [Google Scholar] [CrossRef]
- Marcoux, E.; Wadjinny, A. Le gisement Ag–Hg de Zgounder (Jebel Siroua, Anti-Atlas, Maroc): Un épithermal néoprotérozoïque de type Imiter. Comptes Rendus Geosci. 2005, 337, 1439–1446. [Google Scholar] [CrossRef]
- Tuduri, J. Processus de formation et relations spatio-temporelles des minéralisations à or et argent en contexte volcanique Précambrien (Jbel Saghro, Anti-Atlas, Maroc). Implications sur les relations déformation-magmatisme-volcanisme-hydrothermalisme. Ph.D. Thesis, University of Orléans, Orléans, France, 2005. [Google Scholar]
- Tuduri, J.; Chauvet, A.; Barbanson, L.; Labriki, M.; Dubois, M.; Trapy, P.-H.; Lahfid, A.; Poujol, M.; Melleton, J.; Badra, L.; et al. Structural control, magmatic-hydrothermal evolution and formation of hornfels-hosted, intrusion-related gold deposits: Insight from the Thaghassa deposit in Eastern Anti-Atlas, Morocco. Ore Geol. Rev. 2018, 97, 171–198. [Google Scholar] [CrossRef] [Green Version]
- Essarraj, S.; Boiron, M.-C.; Cathelineau, M.; Banks, D.A.; El Boukhari, A.; Chouhaidi, M.Y. Brines related to Ag deposition in the Zgounder silver deposit (Anti-Atlas, Morocco). Eur. J. Mineral. 1998, 10, 1201–1214. [Google Scholar] [CrossRef]
- Levresse, G.; Bouabdellah, M.; Gasquet, D.; Cheilletz, A. Basinal Brines at the Origin of the Imiter Ag-Hg Deposit (Anti-Atlas, Morocco): Evidence from LA-ICP-MS Data on Fluid Inclusions, Halogen Signatures, and Stable Isotopes (H, C, O)—A Discussion. Econ. Geol. 2017, 112, 1269–1272. [Google Scholar] [CrossRef]
- Cheilletz, A.; Levresse, G.; Gasquet, D.; Azizi-Samir, M.R.; Zyadi, R.; Archibald, A.D.; Farrar, E. The giant Imiter silver deposit: Neoproterozoic epithermal mineralization in the Anti-Atlas, Morocco. Miner. Depos. 2002, 37, 772–781. [Google Scholar] [CrossRef]
- Pelleter, E.; Cheilletz, A.; Gasquet, D.; Mouttaqi, A.; Annich, M.; Camus, Q.; Deloule, E.; Ouazzani, L.; Bounajma, H.; Ouchtouban, L. U/Pb Ages of Magmatism in the Zgounder Epithermal Ag–Hg Deposit, Sirwa Window, Anti-Atlas, Morocco. In Mineral Deposits of North Africa; Bouabdellah, M., Slack, J.F., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 143–165. [Google Scholar]
- Ahmed, A.H.; Arai, S.; Ikenne, M. Mineralogy and Paragenesis of the Co-Ni Arsenide Ores of Bou Azzer, Anti-Atlas, Morocco. Econ. Geol. 2009, 104, 249–266. [Google Scholar] [CrossRef]
- Ennaciri, A.; Barbanson, L.; Touray, J.C. Mineralized hydrothermal solution cavities in the Co-As Ait Ahmane mine (Bou Azzer, Morocco). Miner. Depos. 1995, 30, 75–77. [Google Scholar] [CrossRef]
- Leblanc, M. Co-Ni arsenide deposits, with accessory gold, in ultramafic rocks from:Morocco. Can. J. Earth Sci. 1986, 23, 1592–1602. [Google Scholar] [CrossRef]
- Thiéblemont, D.; Chêne, F.; Liégeois, J.-P.; Ouabadi, A.; Le Gall, B.; Maury, R.C.; Jalludin, M.; Ouattara Gbélé, C.; Tchaméni, R.; Fernandez-Alonso, M. Geological Map of Africa at 1:10 Million Scale, 35th International Geology Congress ed; CCGM-BRGM: Orléans, France, 2016. [Google Scholar]
- Hollard, H.; Choubert, G.; Bronner, G.; Marchand, J.; Sougy, J. Carte géologique du Maroc, échelle: 1/1.000.000. Notes et Mémoires du Service Géologique du Maroc 1985, 260. [Google Scholar]
- Mouttaqi, A.; Rjimati, E.; Maacha, A.; Michard, A.; Soulaimani, A.; Ibouh, H. Les principales mines du Maroc. Notes et Mémoires du Service Géologique du Maroc 2011, 564, 375. [Google Scholar]
- Thomas, R.J.; Chevallier, L.P.; Gresse, P.G.; Harmer, R.E.; Eglington, B.M.; Armstrong, R.A.; de Beer, C.H.; Martini, J.E.J.; de Kock, G.S.; Macey, P.H.; et al. Precambrian evolution of the Sirwa Window, Anti-Atlas Orogen, Morocco. Precambrian Res. 2002, 118, 1–57. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M.; Goldfarb, R.J.; Zhang, L. Structural geometry of orogenic gold deposits: Implications for exploration of world-class and giant deposits. Geosci. Front. 2018, 9, 1163–1177. [Google Scholar] [CrossRef]
- Hart, C.J. Reduced intrusion-related gold systems. In Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Special Publication; Geological Association of Canada, Mineral Deposits Division: St. John’s, NL, Canada, 2007; pp. 95–112. [Google Scholar]
- Kontak, D.; O’Reilly, G.; MacDonald, M.; Horne, R.; Smith, P. Gold in the Meguma Terrane, Southern Nova Scotia: Is There a Continuum between Mesothermal Lode Gold and Intrusion-related Gold Systems? In Proceedings of the 49th Annual Meeting of the GAC-MAC, St. Catharines, ON, Canada, 12–14 May2004; p. 128. [Google Scholar]
- Lang, J.R.; Baker, T. Intrusion-related gold systems: The present level of understanding. Miner. Depos. 2001, 36, 477–489. [Google Scholar] [CrossRef]
- Walshe, J.; Neumayr, P.; Cooke, D. Two boxes we don’t need: Orogenic and intrusion-related gold systems. In Proceedings of the STOMP 2005: Structure, Tectonics and Ore Mineralisation Processes, Townsville, Australia, 29 August–2 September 2005; EGRU: Townsville, Australia, 2005; p. 143. [Google Scholar]
- Boiron, M.-C.; Cathelineau, M.; Banks, D.A.; Fourcade, S.; Vallance, J. Mixing of metamorphic and surficial fluids during the uplift of the Hercynian upper crust: Consequences for gold deposition. Chem. Geol. 2003, 194, 119–141. [Google Scholar] [CrossRef]
- Vallance, J.; Cathelineau, M.; Boiron, M.C.; Fourcade, S.; Shepherd, T.J.; Naden, J. Fluid-rock interactions and the role of late Hercynian aplite intrusion in the genesis of the Castromil gold deposit, northern Portugal. Chem. Geol. 2003, 194, 201–224. [Google Scholar] [CrossRef]
- Baker, T.; Lang, J.R. Fluid inclusion characteristics of intrusion-related gold mineralization, Tombstone–Tungsten magmatic belt, Yukon Territory, Canada. Mineral. Depos. 2001, 36, 563–582. [Google Scholar] [CrossRef]
- Chauvet, A.; Volland-Tuduri, N.; Lerouge, C.; Bouchot, V.; Monié, P.; Charonnat, X.; Faure, M. Geochronological and geochemical characterization of magmatic-hydrothermal events within the Southern Variscan external domain (Cévennes area, France). Int. J. Earth Sci. 2012, 101, 69–86. [Google Scholar] [CrossRef]
- Mustard, R.; Ulrich, T.; Kamenetsky, V.S.; Mernagh, T. Gold and metal enrichment in natural granitic melts during fractional crystallization. Geology 2006, 34, 85–88. [Google Scholar] [CrossRef]
- Gouiza, M.; Charton, R.; Bertotti, G.; Andriessen, P.; Storms, J.E.A. Post-Variscan evolution of the Anti-Atlas belt of Morocco constrained from low-temperature geochronology. Int. J. Earth Sci. 2017, 106, 593–616. [Google Scholar] [CrossRef]
- Teixell, A.; Ayarza, P.; Zeyen, H.; Fernàndez, M.; Arboleya, M.-L. Effects of mantle upwelling in a compressional setting: The Atlas Mountains of Morocco. Terra Nova 2005, 17, 456–461. [Google Scholar] [CrossRef]
- Choubert, G. Histoire géologique du Précambrien de l’Anti-Atlas de l’Archéen à l’aurore des temps primaires. Notes et Mémoires du Service Géologique du Maroc 1963, 162, 352. [Google Scholar]
- Gasquet, D.; Levresse, G.; Cheilletz, A.; Azizi-Samir, M.R.; Mouttaqi, A. Contribution to a geodynamic reconstruction of the Anti-Atlas (Morocco) during Pan-African times with the emphasis on inversion tectonics and metallogenic activity at the Precambrian-Cambrian transition. Precambrian Res. 2005, 140, 157–182. [Google Scholar] [CrossRef]
- Hefferan, K.; Soulaimani, A.; Samson, S.D.; Admou, H.; Inglis, J.; Saquaque, A.; Latifa, C.; Heywood, N. A reconsideration of Pan African orogenic cycle in the Anti-Atlas Mountains, Morocco. J. Afr. Earth Sci. 2014, 98, 34–46. [Google Scholar] [CrossRef]
- Leblanc, M.; Lancelot, J.R. Interprétation géodynamique du domaine panafricain (Précambrien terminal) de l’Anti-Atlas (Maroc) à partir de données géologiques et géochronologiques. Can. J. Earth Sci. 1980, 17, 142–155. [Google Scholar] [CrossRef]
- Saquaque, A.; Benharref, M.; Abia, H.; Mrini, Z.; Reuber, I.; Karson, J.A. Evidence for a Panafrican volcanic arc and wrench fault tectonics in Jbel Saghro, Morocco. Geol. Rundsch. 1992, 81, 1–13. [Google Scholar] [CrossRef]
- Blein, O.; Baudin, T.; Chèvremont, P.; Soulaimani, A.; Admou, H.; Gasquet, P.; Cocherie, A.; Egal, E.; Youbi, N.; Razin, P.; et al. Geochronological constraints on the polycyclic magmatism in the Bou Azzer-El Graara inlier (Central Anti-Atlas Morocco). J. Afr. Earth Sci. 2014, 99, 287–306. [Google Scholar] [CrossRef]
- El Hadi, H.; Simancas, J.F.; Martínez-Poyatos, D.; Azor, A.; Tahiri, A.; Montero, P.; Fanning, C.M.; Bea, F.; González-Lodeiro, F. Structural and geochronological constraints on the evolution of the Bou Azzer Neoproterozoic ophiolite (Anti-Atlas, Morocco). Precambrian Res. 2010, 182, 1–14. [Google Scholar] [CrossRef]
- Inglis, J.D.; D’Lemos, R.S.; Samson, S.D.; Admou, H. Geochronological constraints on late Precambrian intrusions, metamorphism, and tectonism in the Anti-Atlas mountains. J. Geol. 2005, 113, 439–450. [Google Scholar] [CrossRef]
- Inglis, J.D.; MacLean, J.S.; Samson, S.D.; D’Lemos, R.S.; Admou, H.; Hefferan, K. A precise U-Pb zircon age for the BleIda granodiorite, Anti-Atlas, Morocco: Implications for the timing of deformation and terrane assembly in the eastern Anti-Atlas. J. Afr. Earth Sci. 2004, 39, 277. [Google Scholar] [CrossRef]
- Saquaque, A.; Admou, H.; Karson, J.; Hefferan, K.; Reuber, I. Precambrian accretionary tectonics in the Bou Azzer-El Graara region, Anti-Atlas, Morocco. Geology 1989, 17, 1107–1110. [Google Scholar] [CrossRef]
- Gasquet, D.; Ennih, N.; Liégeois, J.-P.; Soulaimani, A.; Michard, A. The Pan-African Belt. In Continental Evolution: The Geology of Morocco; Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2008; pp. 33–64. [Google Scholar]
- Álvaro, J.J.; Benziane, F.; Thomas, R.; Walsh, G.J.; Yazidi, A. Neoproterozoic–Cambrian stratigraphic framework of the Anti-Atlas and Ouzellagh promontory (High Atlas), Morocco. J. Afr. Earth Sci. 2014, 98, 19–33. [Google Scholar] [CrossRef]
- Choubert, G. In Essai d’application de la notion d’Infracambrien aux formations anciennes de l’Anti-Atlas (Maroc). In Proceedings of the 19th International Geological Congress, Alger, Algeria, 8–15 September 1952; pp. 33–71. [Google Scholar]
- Soulaimani, A.; Michard, A.; Ouanaimi, H.; Baidder, L.; Raddi, Y.; Saddiqi, O.; Rjimati, E.C. Late Ediacaran–Cambrian structures and their reactivation during the Variscan and Alpine cycles in the Anti-Atlas (Morocco). J. Afr. Earth Sci. 2014, 98, 94–112. [Google Scholar] [CrossRef]
- Soulaimani, A.; Bouabdelli, M.; Piqué, A. The Upper Neoproterozoic-Lower Cambrian continental extension in the Anti-Atlas (Morocco). Bulletin de la Société Géologique de France 2003, 174, 83–92. [Google Scholar] [CrossRef]
- Chèvremont, P.; Blein, O.; Razin, P.; Baudin, T.; Barbanson, L.; Gasquet, D.; Soulaimani, A.; Admou, H.; Youbi, N.; Bouabdelli, M.; et al. Carte géologique du Maroc (1/50 000), feuille de Bou Azer. Notes et Mémoires du Service Géologique du Maroc 2013, 535bis, 153. [Google Scholar]
- Ducrot, J.; Lancelot, J.R. Problème de la limite Précambrien–Cambrien: Étude radiochronologique par la méthode U–Pb sur zircons du volcan du Jbel Boho (Anti-Atlas marocain). Can. J. Earth Sci. 1977, 14, 2771–2777. [Google Scholar] [CrossRef]
- Maloof, A.C.; Schrag, D.P.; Crowley, J.L.; Bowring, S.A. An expanded record of Early Cambrian carbon cycling from the Anti-Atlas Margin, Morocco. Can. J. Earth Sci. 2005, 42, 2195–2216. [Google Scholar] [CrossRef] [Green Version]
- Fekkak, A.; Pouclet, A.; Ouguir, H.; Ouazzani, H.; Badra, L.; Gasquet, D. Géochimie et signification géotectonique des volcanites du Cryogénien inférieur du Saghro (Anti-Atlas oriental, Maroc). Geodin. Acta 2001, 13, 1–13. [Google Scholar]
- Ouguir, H.; Macaudière, J.; Dagallier, G. Le Protérozoïque supérieur d’Imiter, Saghro oriental, Maroc: Un contexte géodynamique d’arrière arc. J. Afr. Earth Sci. 1996, 22, 173–189. [Google Scholar] [CrossRef]
- Baidder, L.; Raddi, Y.; Tahiri, M.; Michard, A. Devonian extension of the Pan-African crust north of the West African craton, and its bearing on the Variscan foreland deformation: Evidence from eastern Anti-Atlas (Morocco). Geol. Soc. Lond. Spec. Publ. 2008, 297, 453–465. [Google Scholar] [CrossRef]
- Malusà, M.G.; Polino, R.; Feroni, A.C.; Ellero, A.; Ottria, G.; Baidder, L.; Musumeci, G. Post-Variscan tectonics in eastern Anti-Atlas (Morocco). Terra Nova 2007, 19, 481–489. [Google Scholar] [CrossRef]
- Michard, A.; Soulaimani, A.; Hoepffner, C.; Ouanaimi, H.; Baidder, L.; Rjimati, E.C.; Saddiqi, O. The South-Western Branch of the Variscan Belt: Evidence from Morocco. Tectonophysics 2010, 492, 1–24. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Tavakoli-Shirazi, S.; Leturmy, P.; Averbuch, O.; Mouchot, N.; Raulin, C.; Leparmentier, F.; Blanpied, C.; Ringenbach, J.-C. Evidence for Late Devonian vertical movements and extensional deformation in northern Africa and Arabia: Integration in the geodynamics of the Devonian world. Tectonics 2013, 32, 107–122. [Google Scholar] [CrossRef] [Green Version]
- Alvaro, J.J.; Macouin, M.; Ezzouhairi, H.; Charif, A.; Ayad, N.A.; Ribeiro, M.L.; Ader, M. Late Neoproterozoic carbonate productivity in a rifting context: The Adoudou Formation and its associated bimodal volcanism onlapping the western Saghro inlier, Morocco. Geol. Soc. Lond. Spec. Publ. 2008, 297, 285–302. [Google Scholar] [CrossRef]
- Álvaro, J.J. Late Ediacaran syn-rift/post-rift transition and related fault-driven hydrothermal systems in the Anti-Atlas Mountains, Morocco. Basin Res. 2013, 25, 348–360. [Google Scholar] [CrossRef]
- Sebti, S.; Saddiqi, O.; El Haimer, F.Z.; Michard, A.; Ruiz, G.; Bousquet, R.; Baidder, L.; Frizon de Lamotte, D. Vertical movements at the fringe of the West African Craton: First zircon fission track datings from the Anti-Atlas Precambrian basement, Morocco. Comptes Rendus Geosci. 2009, 341, 71–77. [Google Scholar] [CrossRef]
- Caritg, S.; Burkhard, M.; Ducommun, R.; Helg, U.; Kopp, L.; Sue, C. Fold interference patterns in the Late Palaeozoic Anti-Atlas belt of Morocco. Terra Nova 2004, 16, 27–37. [Google Scholar]
- Levresse, G.; Bouabdellah, M.; Cheilletz, A.; Gasquet, D.; Maacha, L.; Tritlla, J.; Banks, D.; Moulay Rachid, A.S. Degassing as the Main Ore-Forming Process at the Giant Imiter Ag–Hg Vein Deposit in the Anti-Atlas Mountains, Morocco. In Mineral Deposits of North Africa; Bouabdellah, M., Slack, J.F., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 85–106. [Google Scholar]
- Tuduri, J.; Chauvet, A.; Ennaciri, A.; Barbanson, L. Modèle de formation du gisement d’argent d’Imiter (Anti-Atlas oriental, Maroc). Nouveaux apports de l’analyse structurale et minéralogique. Comptes Rendus Geosci. 2006, 338, 253–261. [Google Scholar] [CrossRef]
- Bouabdellah, M.; Maacha, L.; Jébrak, M.; Zouhair, M. Re/Os Age Determination, Lead and Sulphur Isotope Constraints on the Origin of the Bouskour Cu–Pb–Zn Vein-Type Deposit (Eastern Anti-Atlas, Morocco) and Its Relationship to Neoproterozoic Granitic Magmatism. In Mineral Deposits of North Africa; Bouabdellah, M., Slack, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 277–290. [Google Scholar]
- Hindermeyer, J.; Choubert, G.; Destombes, J.; Gauthier, H. Carte géologique de l’Anti-Atlas oriental: Feuille Dadès et Jbel Saghro 1/200 000. Notes et Mémoires du Service Géologique du Maroc 1977, 161. [Google Scholar]
- Baidada, B.; Ikenne, M.; Barbey, P.; Soulaimani, A.; Cousens, B.; Haissen, F.; Ilmen, S.; Alansari, A. SHRIMP U–Pb zircon geochronology of the granitoids of the Imiter Inlier: Constraints on the Pan-African events in the Saghro massif, Anti-Atlas (Morocco). J. Afr. Earth Sci. 2018. [Google Scholar] [CrossRef]
- De Wall, H.; Kober, B.; Errami, E.; Ennih, N.; Greiling, R.O. Age de mise en place et contexte géologique des granitoïdes de la boutonnière d’Imiter (Saghro oriental, Anti-Atlas, Maroc). In Proceedings of the 2ème Colloque International 3MA (Magmatisme, Métamorphisme & Minéralisations Associées), Marrakech, Maroc, 10–12 May 2001; p. 19. [Google Scholar]
- O’Connor, E.; Barnes, R.; Beddoe-Stephens, B.; Fletcher, T.; Gillespie, M.; Hawkins, M.; Loughlin, S.; Smith, M.; Smith, R.; Waters, C. Geology of the Drâa, Kerdous, and Boumalne districts, Anti-Atlas, Morocco; British Geological Survey: Nottingham, UK, 2010; p. 310.
- Schiavo, A.; Taj Eddine, K.; Algouti, A.; Benvenuti, M.; Dal Piaz, G.V.; Eddebi, A.; El Boukhari, A.; Laftouhi, N.; Massironi, M.; Ounaimi, H.; et al. Carte géologique du Maroc au 1/50000, feuille Imtir. Notes et Mémoires du Service Géologique du Maroc 2007, 518. [Google Scholar]
- Charlot, R.; Choubert, G.; Faure-Muret, A.; Tisserant, D. Etude géochronologique du Précambrien de l’Anti-Atlas (Maroc). Notes et Mémoires du Service Géologique du Maroc 1970, 30, 99–134. [Google Scholar]
- Choubert, G. Sur le Précambrien marocain. Comptes rendus hebdomadaires des séances de l’Académie des sciences 1945, 221, 249–251. [Google Scholar]
- Hindermeyer, J. Le Précambrien I et le Précambrien II du Saghro. Comptes rendus hebdomadaires des séances de l’Académie des sciences 1953, 237, 921–923. [Google Scholar]
- Hindermeyer, J. Le Précambrien III du Saghro. Comptes rendus hebdomadaires des séances de l’Académie des sciences 1953, 237, 1024–1026. [Google Scholar]
- Derré, C.; Lécolle, M. Altérations hydrothermales dans le Protérozoïque supérieur du Saghro (Anti-Atlas oriental). Relations avec les minéralisations. Chronique de la Recherche Minière 1999, 536–537, 39–61. [Google Scholar]
- Fekkak, A.; Boualoul, M.; Badra, L.; Amenzou, M.; Saquaque, A.; El-Amrani, I.E. Origine et contexte géotectonique des dépôts détritiques du Groupe Néoprotérozoïque inférieur de Kelaat Mgouna (Anti-Atlas Oriental, Maroc). J. Afr. Earth Sci. 2000, 30, 295–311. [Google Scholar] [CrossRef]
- Fekkak, A.; Pouclet, A.; Badra, L. The Pre-Panafrican rifting of Saghro (Anti-Atlas, Morocco): Exemple of the middle Neoproterozoic Basin of Boumalne. Bulletin de la Société Géologique de France 2002, 173, 25–35. [Google Scholar] [CrossRef]
- Fekkak, A.; Pouclet, A.; Benharref, M. The Middle Neoproterozoic Sidi Flah Group (Anti-Atlas, Morocco): Synrift deposition in a Pan-African continent/ocean transition zone. J. Afr. Earth Sci. 2003, 37, 73–87. [Google Scholar] [CrossRef]
- Fekkak, A.; Pouclet, A.; Ouguir, H.; Badra, L.; Gasquet, D. The Kelaat Mgouna early Neoproterozoic Group (Saghro, Anti-Atlas, Morocco): Witness of an initial stage of the pre-Pan-African extension. Bulletin de la Société Géologique de France 1999, 170, 789–797. [Google Scholar]
- Marini, F.; Ouguir, H. Un nouveau jalon dans l’histoire de la distension pré-panafricaine au Maroc: Le Précambrien II des boutonnières du Jbel Saghro nord-oriental (Anti-Atlas, Maroc). Comptes Rendus de l’Académie des Sciences Série II Mécanique-physique Chimie, Sciences de l’univers, Sciences de la Terre 1990, 310, 577–582. [Google Scholar]
- Errami, E.; Bonin, B.; Laduron, D.; Lasri, L. Petrology and geodynamic significance of the post-collisional Pan-African magmatism in the Eastern Saghro area (Anti-Atlas, Morocco). J. Afr. Earth Sci. 2009, 55, 105–124. [Google Scholar] [CrossRef]
- Liégeois, J.-P.; Fekkak, A.; Bruguier, O.; Errami, E.; Ennih, N. The Lower Ediacaran (630–610 Ma) Saghro group: An orogenic transpressive basin development during the early metacratonic evolution of the Anti-Atlas (Morocco). In Proceedings of the IGCP485 4th Meeting, Algiers, Algeria, 2 September 2006; p. 57. [Google Scholar]
- Ighid, L.; Saquaque, A.; Reuber, I. Plutons syn-cinématiques et la déformation panafricaine majeure dans le Saghro oriental (boutonnière d’Imiter, Anti-Atlas, Maroc). Comptes Rendus de l’Académie des Sciences Série II Mécanique-physique Chimie, Sciences de l’univers Sciences de la Terre 1989, 309, 615–620. [Google Scholar]
- El Baghdadi, M.; El Boukhari, A.; Jouider, A.; Benyoucef, A.; Nadem, S. Calc-alkaline arc I-type granitoid associated with S-type granite in the Pan-African belt of eastern Anti-Atlas (Saghro and Ougnat, South Morocco). Gondwana Res. 2003, 6, 557–572. [Google Scholar] [CrossRef]
- Errami, E.; Olivier, P. The Iknioun granodiorite, tectonic marker of Ediacaran SE-directed tangential movements in the Eastern Anti-Atlas, Morocco. J. Afr. Earth Sci. 2012, 69, 1–12. [Google Scholar] [CrossRef]
- Karl, A.; de Wall, H.; Rieger, M.; Schmitt, T.; Errami, E.; Kober, B.; Greiling, R.O. Petrography and geochemistry of the Bou Teglimt, Taouzzakt and Igoudrane intrusions in the Eastern Saghro (Anti Atlas, Morocco). In Magmatic evolution of a Neoproterozoic island-arc: Syn- to post-orogenic igneous activity in the Anti-Atlas (Morocco); de Wall, H., Greiling, R.O., Eds.; Forschungszentrum Jülich, International Cooperation, Scientific Series: Jülich, Germany, 2001; Volume 45, pp. 243–253. [Google Scholar]
- Ouguir, H.; Macaudière, J.; Dagallier, G.; Qadrouci, A.; Leistel, J.-M. Cadre structural du gîte Ag-Hg d’Imiter (Anti-Atlas, Maroc); implication métallogénique. Bulletin de la Société Géologique de France 1994, 165, 233–248. [Google Scholar]
- Massironi, M.; Moratti, G.; Algouti, A.; Benvenuti, M.; Dal Piaz, G.V.; Eddebi, A.; El Boukhari, A.; Laftouhi, N.; Ounaimi, H.; Schiavo, A.; et al. Carte géologique du Maroc au 1/50000, feuille Boumalne. Notes et Mémoires du Service Géologique du Maroc 2007, 521. [Google Scholar]
- Leistel, J.-M.; Qadrouci, A. Le gisement argentifère d’Imiter (Protérozoïque supérieur de l’Anti-Atlas, Maroc). Contrôles des mineralisations, hypothèses génétiques et perspectives pour l’exploration. Chronique de la Recherche Minière 1991, 502, 5–22. [Google Scholar]
- Benkirane, Y. Les minéralisations à W (Sn, Mo, Au, Bi, Ag, Cu, Pb, Zn) du granite de Taourirt-Tamellalt dans leur cadre géologique, la boutonnière protérozoïque du SE de Boumalne du Dadès (Saghro oriental, Anti-Atlas, Maroc). In 3ème Cycle; Université de Paris VI: Paris, France, 1987. [Google Scholar]
- Lécolle, M.; Derré, C.; Nerci, K. The Proterozoic sulphide alteration pipe of Sidi Flah and its host series. New data for the geotectonic evolution of the Pan-African Belt in the eastern Anti-Atlas (Morocco). Ore Geol. Rev. 1991, 6, 501–536. [Google Scholar] [CrossRef]
- Benziane, F. Lithostratigraphie et évolution géodynamique de l’anti-Atlas (Maroc) du paléoprotérozoïque au néoprotérozoïque: Exemples de la boutonnière de Tagragra Tata et du Jebel Saghro. In 3ème Cycle; Université de Chambéry: Chambéry, France, 2007. [Google Scholar]
- Bajja, A. Volcanisme syn à post orogénique du Néoprotérozoïque de l’Anti-Atlas: Implications pétrogénétiques et géodynamiques. Ph.D. Thesis, Université Chouaib Doukkali, El Jadida, Maroc, 1998. [Google Scholar]
- Benharref, M. Le Précambrien de la boutonnière d’El Kelaa des M’Gouna (Saghro, Anti-Atlas, Maroc). Pétrographie et structures de l’ensemble. Implications lithostratigraphiques et géodynamiques. In 3ème Cycle; Université Cadi Ayyad: Marrakech, Maroc, 1991. [Google Scholar]
- Bouladon, J.; Jouravsky, G. Les ignimbrites du Précambrien III de Tiouine et du sud marocain. Notes et Mémoires du Service Géologique du Maroc 1954, 120, 37–59. [Google Scholar]
- Fauvelet, E.; Hindermeyer, J. Note préliminaire sur les granites associés à des coulées rhyolitiques au Sud de Ouarzazate (Anti-Atlas central) et dans le Sarho. C. R. Hebd. Seances Acad. Sci. 1952, 234, 2626–2628. [Google Scholar]
- Mifdal, A.; Peucat, J. Datation U-Pb et Rb-Sr du volcanisme acide de l’Anti-Atlas marocain et du socle sous-jacent dans la région de Ouarzazate. Apport au problème de la limite Précambrien-Cambrien. Sci. Géol. Bull. 1985, 38, 185–200. [Google Scholar]
- Acocella, V. Understanding caldera structure and development: An overview of analogue models compared to natural calderas. Earth-Sci. Rev. 2007, 85, 125–160. [Google Scholar] [CrossRef]
- Lipman, P.W. The roots of ash flow calderas in western north america: Windows into the tops of granitic batholiths. J. Geophys. Res. Solid Earth 1984, 89, 8801–8841. [Google Scholar] [CrossRef]
- Lipman, P.W. Subsidence of ash-flow calderas: Relation to caldera size and magma-chamber geometry. Bull. Volcanol. 1997, 59, 198–218. [Google Scholar] [CrossRef]
- Williams, H. Calderas and their origin. University of California publications. Bull. Dep. Geol. Sci. 1941, 25, 239–346. [Google Scholar]
- Acocella, V.; Korme, T.; Salvini, F.; Funiciello, R. Elliptic calderas in the Ethiopian Rift: Control of pre-existing structures. J. Volcanol. Geotherm. Res. 2003, 119, 189–203. [Google Scholar] [CrossRef]
- Holohan, E.P.; Troll, V.R.; Walter, T.R.; Münn, S.; McDonnell, S.; Shipton, Z.K. Elliptical calderas in active tectonic settings: An experimental approach. J. Volcanol. Geotherm. Res. 2005, 144, 119–136. [Google Scholar] [CrossRef]
- Ross, C.S.; Smith, R.L. Ash-flow tuffs: Their origin, geologic relations and identification. Geol. Surv. Prof. Pap. 1961, 366, 81. [Google Scholar]
- Smith, R.L. Ash flows. Geol. Soc. Am. Bull. 1960, 71, 795–842. [Google Scholar] [CrossRef]
- Smith, R.L.; Bailey, R.A. Resurgent cauldrons. Geol. Soc. Am. Mem. 1968, 116, 613–662. [Google Scholar]
- Bellier, O.; Sébrier, M. Relationship between tectonism and volcanism along the Great Sumatran Fault Zone deduced by image analyses. Tectonophysics 1994, 233, 215–231. [Google Scholar] [CrossRef]
- Chesner, C.A.; Rose, W.I. Stratigraphy of the Toba Tuffs and the evolution of the Toba Caldera Complex, Sumatra, Indonesia. Bull. Volcanol. 1991, 53, 343–356. [Google Scholar] [CrossRef]
- Ferrari, L.; Valencia-Moreno, M.; Bryan, S. Magmatism and tectonics of the Sierra Madre Occidental and its relation with the evolution of the western margin of North America. Geol. Soc. Am. Spec. Pap. 2007, 422, 1–39. [Google Scholar]
- Ferrari, L.; Lopez-Martinez, M.; Rosas-Elguera, J. Ignimbrite flare-up and deformation in the southern Sierra Madre Occidental, western Mexico: Implications for the late subduction history of the Farallon plate. Tectonics 2002, 21. [Google Scholar] [CrossRef]
- Lécuyer, F.; Bellier, O.; Gourgaud, A.; Vincent, P.M. Tectonique active du Nord-Est de Sulawesi(Indonésie) et contrôle structural de la caldeira de Tondano. Comptes Rendus de l’Academie des Sciences Ser. IIA Earth Planet. Sci. 1997, 325, 607–613. [Google Scholar] [CrossRef]
- Van Wyk de Vries, B.; Merle, O. Extension induced by volcanic loading in regional strike-slip zones. Geology 1998, 26, 983–986. [Google Scholar] [CrossRef]
- Tuduri, J.; Chauvet, A.; Barbanson, L.; Labriki, M.; Badra, L. In Atypical gold mineralization within the Neoproterozoic of Morocco. Structural and mineralogical constraints from the Thaghassa prospect (Boumalne inlier, Jbel Saghro, Eastern Anti-Atlas). In Proceedings of the Mineral Exploration and Sustainable Development, Athens, Greece, 24–28 August 2003; Eliopoulos, D.G., Ed.; Millpress: Athens, Greece; pp. 537–540. [Google Scholar]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals; Society for Sedimentary Geology: Broken Arrow, OK, USA, 1994; Volume 31, p. 199. [Google Scholar]
- Lécolle, M.; Derré, C.; Rjimati, E.C.; Fonteilles, M.; Azza, A.; Benanni, A. Une altération hydrothermale peralumineuse à silicates, phosphates et rutile dans le Protérozoïque supérieur du Saghro (Anti-Atlas, Maroc). Genèse et implications métallogéniques. Comptes Rendus de l’Académie des Sciences Série II Mécanique-physique Chimie Sciences de l’univers Sciences de la Terre 1993, 316, 123–130. [Google Scholar]
- Tuduri, J.; Dubois, M.; Try, E.; Chauvet, A.; Barbanson, L.; Ennaciri, A. The porphyry to epithermal transition in atypical late Neoproterozoic REE-Au-Ag-Te occurrences. Acta Mineral.-Petrogr. Abstr. Ser. 2010, 6, 288. [Google Scholar]
- Delapierre, A. Etude de la minéralisation aurifère d’Isamlal (Jbel Saghro, Anti-Atlas, Maroc). In Mem. Diplôme; Université de Lausanne: Lausanne, Switzerland, 2000; p. 128. [Google Scholar]
- Leloix, C. Etude des minéralisations aurifères épithermales d’Isamlal. District de Kelaat M’Gouna (Anti-Atlas, Maroc). In Rapport Reminex; Université d’Orléans: Orléans, France, 1999; p. 44. [Google Scholar]
- Sizaret, S. Etude des minéralisations aurifères d’Isamlal (district de Kelâa M’Gouna, Anti-Atlas, Maroc). Master’s Thesis, Université d’Orléans, Orléans, France, 1999. [Google Scholar]
- Gaspard, E. Etude du prospect d’Isamlal (Anti-Atlas Oriental- Maroc): Caractérisation d’un porphyre à Au-Cu-Mo. Master’s Thesis, Université d’Orléans—ENAG, Orléans, France, 2014. [Google Scholar]
- Try, E.; Dubois, M.; Tuduri, J.; Ventalon, S.; Potdevin, J.-L.; Chauvet, A.; Barbanson, L. The transition between porphyric and epithermal styles: Insights from F.I. of the Kelâa M’Gouna prospect, Morocco. In Proceedings of the ECROFI-XX 20th Biennial Conferences, Granada, Spain, 21–27 September 2009; Volume 20, pp. 261–262. [Google Scholar]
- Tomczyk, C. Âge de mise en place et modèle génétique du stockwerk du prospect à Au-Ag-Te de Kelâa M’Gouna (Maroc). Master’s Thesis, University of Lille, Lille, France, 2010. [Google Scholar]
- Dong, G.; Morrison, G.; Jaireth, S. Quartz textures in epithermal veins, Queensland; classification, origin and implication. Econ. Geol. 1995, 90, 1841–1856. [Google Scholar] [CrossRef]
- Etoh, J.; Izawa, E.; Watanabe, K.; Taguchi, S.; Sekine, R. Bladed quartz and its relationship to gold mineralization in the Hishikari low-sulfidation epithermal gold deposit, Japan. Econ. Geol. 2002, 97, 1841–1851. [Google Scholar] [CrossRef]
- André-Mayer, A.-S.; Leroy, J.L.; Bailly, L.; Chauvet, A.; Marcoux, E.; Grancea, L.; Llosa, F.; Rosas, J. Boiling and vertical mineralization zoning: A case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern Peru. Mineral. Depos. 2002, 37, 452–464. [Google Scholar] [CrossRef]
- Chauvet, A.; Bailly, L.; André, A.-S.; Monié, P.; Cassard, D.; Tajada, F.; Vargas, J.; Tuduri, J. Internal vein texture and vein evolution of the epithermal Shila-Paula district, southern Peru. Mineral. Depos. 2006, 41, 387–410. [Google Scholar] [CrossRef] [Green Version]
- Simmons, S.F.; Christenson, B.W. Origins of calcite in a boiling geothermal system. Am. J. Sci. 1994, 294, 361–400. [Google Scholar] [CrossRef]
- Saule, A. La Zones des Dykes, Anti-Atlas Marocain: Caractérisation des fluides minéralisateurs et du gisement. Master’s Thesis, Institut National Polytechnique de Lorraine, Nancy, France, 2012. [Google Scholar]
- Albinson, T.; Norman, D.I.; Cole, D.; Chomiak, B. Controls on Formation of Low-Sulfidation Epithermal Deposits in Mexico: Constraints from Fluid Inclusion and Stable Isotope Data. In New Mines and Discoveries in Mexico and Central America; Society of Economic Geologists: Littleton, CO, USA, 2001; Volume 8, pp. 1–32. [Google Scholar]
- Guillou, J.-J.; Monthel, J.; Picot, P.; Pillard, F.; Protas, J.; Samana, J.-C. L’imitérite, Ag2HgS2, nouvelle espèce minérale; propriétés et structure cristalline. Bull. Mineral. 1985, 108, 457–464. [Google Scholar]
- Guillou, J.-J.; Monthel, J.; Samama, J.-C.; Tijani, A. Morphologie et chronologie relative des associations minérales du gisement mercuro-argentifère d’Imiter (Anti-Atlas—Maroc). Notes et Mémoires du Service Géologique du Maroc 1988, 44, 215–228. [Google Scholar]
- Levresse, G. Contribution à l’établissement d’un modèle génétique des gisements d’Imiter (Ag-Hg), Bou Madine (Pb-Zn-Cu-Ag-Au), Bou Azzer (Co, Ni, As, Au, Ag) dans l’Anti-Atlas marocain. In 3ème Cycle; Institut National Polytechnique de Lorraine: Nancy, France, 2001. [Google Scholar]
- Baroudi, Z.; Beraaouz, E.H.; Rahimi, A.; Chouhaidi, M.Y. Minéralisations polymétalliques argentifères d’Imiter (Jbel Saghro, Maroc): Minéralogie, évolution des fluides minéralisateurs et mécanismes de dépôt. Chronique de la Recherche Minière 1999, 536–537, 91–111. [Google Scholar]
- Hulin, C.; Dubois, M.; Tuduri, J.; Chauvet, A.; Boulvais, P.; Gaouzi, A.; Mouhajir, M.; Essalhi, M.; Outhounjite, S. New fluid inclusions and oxygen isotope data to constrain a formation model for the Imiter Ag world class deposit (Anti-Atlas, Morocco). In Proceedings of the ECROFI XXII 22nd Biennial Conferences, Antalya, Turkey, 4–9 June 2013; pp. 78–79. [Google Scholar]
- Hulin, C.; Dubois, M.; Tuduri, J.; Chauvet, A.; Boulvais, P.; Gaouzi, A.; Mouhajir, M.; Essalhi, M.; Outhounjite, S. A fluid inclusion and stable isotope study of the world class Imiter silver deposit (Morocco). In Proceedings of the 24ème Réunion des Sciences de la Terre, Pau, France, 27–31 October 2014; p. 373. [Google Scholar]
- Tuduri, J.; Pourret, O.; Chauvet, A.; Barbanson, L.; Gaouzi, A.; Ennaciri, A. Rare earth elements as proxies of supergene alteration processes from the giant Imiter silver deposit (Morocco). In Let’s Talk Ore Deposits, Proceeding of the Eleventh Biennial SGA Meeting; Barra, F., Reich, M., Campos, E., Tornos, F., Eds.; Ediciones Universidad Católica del Norte: Antofagasta, Chile, 2011; Volume 2, pp. 826–828. [Google Scholar]
- Tuduri, J.; Pourret, O.; Boulvais, P.; Chauvet, A.; Barbanson, L.; Gaouzzi, A.; Hulin, C.; Dubois, M. A reassessment of fluid-mineral relations in the world-class Imiter silver deposit (Anti-Atlas, Morocco). In Proceedings of the SEG 2012 Conference, Lima, Peru, 23–26 September 2012; Society of Economic Geologists: Lima, Peru, 2012. [Google Scholar]
- Graybeal, F.T.; Vikre, P. A review of silver-rich mineral deposits and their metallogeny. In SEG Special Publication: The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries; Goldfarb, R.J., Marsh, E.E., Monecke, T., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2010; Volume 15, pp. 85–117. [Google Scholar]
- Azizi Samir, M.R.; Ferrandini, J.; Tane, J.L. Tectonique et volcanisme tardi-Pan Africains (580-560 M.a.) dans l’Anti-Atlas Central (Maroc): Interpretation geodynamique a l’echelle du NW de l’Afrique. J. Afr. Earth Sci. 1990, 10, 549–563. [Google Scholar] [CrossRef]
- Ducea, M.N.; Paterson, S.R.; DeCelles, P.G. High-Volume Magmatic Events in Subduction Systems. Elements 2015, 11, 99–104. [Google Scholar] [CrossRef]
- Harrison, R.W.; Yazidi, A.; Benziane, F.; Quick, J.E.; El Fahssi, A.; Stone, B.D.; Yazidi, M.; Saadane, A.; Walsh, G.J.; Aleinikoff, J.N.; et al. Carte géologique au 1/50 000, Feuille Tizgui. Notes et Mémoires du Service Géologique du Maroc 2008, 470, 131. [Google Scholar]
- McQuarrie, N.; Barnes, J.B.; Ehlers, T.A. Geometric, kinematic, and erosional history of the central Andean Plateau, Bolivia (15–17° S). Tectonics 2008, 27, TC3007. [Google Scholar] [CrossRef]
- Till, A.B.; Roeske, S.; Sample, J.C.; Foster, D.A. Exhumation Associated with Continental Strike-Slip Fault Systems; The Geological Society of America: Boulder, CO, USA, 2007; Volume 434, p. 264. [Google Scholar]
- Willett, S.D.; Brandon, M.T. On steady states in mountain belts. Geology 2002, 30, 175–178. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Monier, G.; Robert, J.L. Muscovite solid solutions in the system K2O, MgO, FeO, AL2O3, SiO2, H2O: An experimental study at 2 kbar PH2O and comparison with natural Li-free white micas. Mineral. Mag. 1986, 50, 257–266. [Google Scholar] [CrossRef]
- Cathelineau, M.; Nieva, D. A chlorite solid solution geothermometer: The Los Azufres (Mexico) geothermal system. Contrib. Mineral. Petrol. 1985, 91, 235–244. [Google Scholar] [CrossRef]
- Kranidiotis, P.; MacLean, W.H. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ. Geol. 1987, 82, 1898–1911. [Google Scholar] [CrossRef]
- Kretschmar, U.; Scott, S.D. Phase relations involving arsenopyrite in the system Fe-As-S and their application. Can. Mineral. 1976, 14, 364–386. [Google Scholar]
- Sundblad, K.; Zachrisson, E.; Smeds, S.A.; Berglund, S.; Aalinder, C. Sphalerite geobarometry and arsenopyrite geothermometry applied to metamorphosed sulfide ores in the Swedish Caledonides. Econ. Geol. 1984, 79, 1660–1668. [Google Scholar] [CrossRef]
- Lynch, G.; Ortega, J. Hydrothermal alteration and tourmaline-albite equilibria at the Coxheat porphyry Cu-Mo-Au deposit, Nova Scotia. Can. Mineral. 1997, 35, 79–94. [Google Scholar]
- Sillitoe, R.H. Porphyry Copper Systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Kouzmanov, K.; Pokrovski, G.S. Hydrothermal controls on metal distribution in porphyry Cu (-Mo-Au) systems. In Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe; Hedenquist, J.W., Harris, M., Camus, F., Eds.; Special Publications of the Society of Economic Geologists: Littleton, CO, USA, 2012; Volume 16, pp. 573–618. [Google Scholar]
- Rottier, B.; Kouzmanov, K.; Casanova, V.; Wälle, M.; Fontboté, L. Cyclic Dilution of Magmatic Metal-Rich Hypersaline Fluids by Magmatic Low-Salinity Fluid: A Major Process Generating the Giant Epithermal Polymetallic Deposit of Cerro de Pasco, Peru. Econ. Geol. 2018, 113, 825–856. [Google Scholar] [CrossRef]
- Scott, S.; Driesner, T.; Weis, P. Boiling and condensation of saline geothermal fluids above magmatic intrusions. Geophys. Res. Lett. 2017, 44, 1696–1705. [Google Scholar] [CrossRef]
- Letsch, D.; Large, S.J.E.; Buechi, M.W.; Winkler, W.; von Quadt, A. Ediacaran glaciations of the west African Craton—Evidence from Morocco. Precambrian Res. 2018, 310, 17–38. [Google Scholar] [CrossRef]
- Pinneker, Y.V.; Lomonosov, I.S. Concentrated brines of Siberian Platform and their counterparts in Asia, Europe, Africa and America. Int. Geol. Rev. 1968, 10, 431–442. [Google Scholar] [CrossRef]
- Richard, A.; Pettke, T.; Cathelineau, M.; Boiron, M.-C.; Mercadier, J.; Cuney, M.; Derome, D. Brine–rock interaction in the Athabasca basement (McArthur River U deposit, Canada): Consequences for fluid chemistry and uranium uptake. Terra Nova 2010, 22, 303–308. [Google Scholar] [CrossRef]
- Linnemann, U.; Pidal, A.P.; Hofmann, M.; Drost, K.; Quesada, C.; Gerdes, A.; Marko, L.; Gärtner, A.; Zieger, J.; Ulrich, J.; et al. A ~565 Ma old glaciation in the Ediacaran of peri-Gondwanan West Africa. Int. J. Earth Sci. 2018, 107, 885–911. [Google Scholar] [CrossRef]
- Vernhet, E.; Youbi, N.; Chellai, E.H.; Villeneuve, M.; El Archi, A. The Bou-Azzer glaciation: Evidence for an Ediacaran glaciation on the West African Craton (Anti-Atlas, Morocco). Precambrian Res. 2012, 196–197. [Google Scholar] [CrossRef]
- Starinsky, A.; Katz, A. The formation of natural cryogenic brines. Geochim. Cosmochim. Acta 2003, 67, 1475–1484. [Google Scholar] [CrossRef]
- Toner, J.D.; Catling, D.C.; Sletten, R.S. The geochemistry of Don Juan Pond: Evidence for a deep groundwater flow system in Wright Valley, Antarctica. Earth Planet. Sci. Lett. 2017, 474, 190–197. [Google Scholar] [CrossRef]
- Belkacim, S.; Ikenne, M.; Souhassou, M.; Elbasbas, A.; Toummite, A. The Cu-Mo±Au mineralizations associated to the High-K calc-alkaline granitoids from Tifnoute valley (Siroua massif, anti-atlas, Morocco): An arc-Type porphyry in the late neoproterozoic series. J. Environ. Earth Sci. 2014, 4, 90–106. [Google Scholar]
- Loiselet, C.; Husson, L.; Braun, J. From longitudinal slab curvature to slab rheology. Geology 2009, 37, 747–750. [Google Scholar] [CrossRef]
- Manea, V.C.; Pérez-Gussinyé, M.; Manea, M. Chilean flat slab subduction controlled by overriding plate thickness and trench rollback. Geology 2012, 40, 35–38. [Google Scholar] [CrossRef]
- Merdith, A.S.; Collins, A.S.; Williams, S.E.; Pisarevsky, S.; Foden, J.D.; Archibald, D.B.; Blades, M.L.; Alessio, B.L.; Armistead, S.; Plavsa, D.; et al. A full-plate global reconstruction of the Neoproterozoic. Gondwana Res. 2017, 50, 84–134. [Google Scholar] [CrossRef]
- Boyden, J.A.; Müller, R.D.; Gurnis, M.; Torsvik, T.H.; Clark, J.A.; Turner, M.; Ivey-Law, H.; Watson, R.J.; Cannon, J.S. Next-generation plate-tectonic reconstructions using GPlates. In Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences; Keller, G.R., Baru, C., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 95–113. [Google Scholar]
- Domeier, M. A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Res. 2016, 36, 275–295. [Google Scholar] [CrossRef]
- Torsvik, T.H.; Cocks, L.R.M. Gondwana from top to base in space and time. Gondwana Res. 2013, 24, 999–1030. [Google Scholar] [CrossRef]
- Richards, J.P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 2009, 37, 247–250. [Google Scholar] [CrossRef]
- Richards, J.P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 2011, 40, 1–26. [Google Scholar] [CrossRef]
- Sillitoe, R.H.; Hedenquist, J.W. Linkages between volcanotectonic settings, ore-fluid compositions and epithermal precious metal deposits. In Volcanic, Geothermal and Ore-Forming Fluids; Rulers and Witnesses of Processes within the Earth; Simmons, S.F., Graham, I., Eds.; Society of Economic Geologist Special Publication: Littleton, CO, USA, 2003; Volume 10, pp. 315–343. [Google Scholar]
- Tosdal, R.; Richards, J. Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits. Rev. Econ. Geol. 2001, 14, 157–181. [Google Scholar]
- Menant, A.; Jolivet, L.; Tuduri, J.; Loiselet, C.; Bertrand, G.; Guillou-Frottier, L. 3D subduction dynamics: A first-order parameter of the transition from copper- to gold-rich deposits in the eastern Mediterranean region. Ore Geol. Rev. 2018, 94, 118–135. [Google Scholar] [CrossRef]
- Bryan, S.E.; Orozco-Esquivel, T.; Ferrari, L.; López-Martínez, M. Pulling apart the Mid to Late Cenozoic magmatic record of the Gulf of California: Is there a Comondú Arc? Geol. Soc. Lond. Spec. Publ. 2013, 385. [Google Scholar] [CrossRef]
- Thorkelson, D.J.; Breitsprecher, K. Partial melting of slab window margins: Genesis of adakitic and non-adakitic magmas. Lithos 2005, 79, 25–41. [Google Scholar] [CrossRef]
- de Silva, S. Arc magmatism, calderas, and supervolcanoes. Geology 2008, 36, 671–672. [Google Scholar] [CrossRef]
- Chauvet, A.; Alves Da Silva, F.C.; Faure, M.; Guerrot, C. Structural evolution of the Paleoproterozoic Rio Itapicuru granite-greenstone belt (Bahia, Brazil): The role of synkinematic plutons in the regional tectonics. Precambrian Res. 1997, 84, 139–162. [Google Scholar] [CrossRef]
- Hickman, A.H. Two contrasting granite-greenstone terranes in the Pilbara Craton, Australia: Evidence for vertical and horizontal tectonic regimes prior to 2900 Ma. Precambrian Res. 2004, 131, 153–172. [Google Scholar] [CrossRef]
- Van Kranendonk, M.J.; Collins, W.J.; Hickman, A.; Pawley, M.J. Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precambrian Res. 2004, 131, 173–211. [Google Scholar] [CrossRef]
- Nance, R.D.; Murphy, J.B.; Strachan, R.A.; Keppie, J.D.; Gutiérrez-Alonso, G.; Fernández-Suárez, J.; Quesada, C.; Linnemann, U.; D’lemos, R.; Pisarevsky, S.A. Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian v. West African connections. Geol. Soc. Lond. Spec. Publ. 2008, 297, 345–383. [Google Scholar] [CrossRef]
The Zone des Dykes Deposit | The Qal’at MGouna District | The Thaghassa Deposit | The Imiter Deposit | ||
---|---|---|---|---|---|
Stage I (strong magmatic affinities) | Not expressed | Granodiorite stock emplacement and fluid exsolution | Alkali-granite emplacement with quartz, K-feldspar, F-tourmaline, F-muscovite in miarolitic cavities and stockscheider (400 < T °C < 600) 1 | Aplite dyke emplacement (500 < T °C < 600 °C) 1 | Not expressed |
Stage II (intermediate stage between magmatic and hydrothermal conditions) | Not expressed | K-feldspar and magnetite alteration (disseminated and in veinlet stockwork) | Strong alteration with quartz, F-tourmaline, F-Cl-micas, andalusite, F-Cl apatite, monazite (250 < T °C < 400) 1 | Quartz, K-feldspar, muscovite, apatite, tourmaline and apatite (T °C < 500) 1 | Not expressed |
Stage III (hydrothermal) | Quartz, adularia veins with calcite, chlorite, sulfides and gold (210 < T °C < 280) 1 | Quartz stockwork with Cl-biotite, Cl-amphibole, muscovite, sulfides (Cu–Mo) and gold (160 < T °C < 460) 1 | Chlorite-rich breccias, thenAdularia, specularite, quartz veins with sulfides and ″gold″ (160 < T °C< 200) 1 | Striped quartz veins filled by quartz, sericite, sulfides and gold (300 < T °C < 450) 1 | Firstly, quartz-adularia veins with silver-rich sulfides and alloys (100 < T °C < 280) 1 and then dolomite-quartz veins with Ag-rich galena and sphalerite (60 < T °C < 110) 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuduri, J.; Chauvet, A.; Barbanson, L.; Bourdier, J.-L.; Labriki, M.; Ennaciri, A.; Badra, L.; Dubois, M.; Ennaciri-Leloix, C.; Sizaret, S.; et al. The Jbel Saghro Au(–Ag, Cu) and Ag–Hg Metallogenetic Province: Product of a Long-Lived Ediacaran Tectono-Magmatic Evolution in the Moroccan Anti-Atlas. Minerals 2018, 8, 592. https://doi.org/10.3390/min8120592
Tuduri J, Chauvet A, Barbanson L, Bourdier J-L, Labriki M, Ennaciri A, Badra L, Dubois M, Ennaciri-Leloix C, Sizaret S, et al. The Jbel Saghro Au(–Ag, Cu) and Ag–Hg Metallogenetic Province: Product of a Long-Lived Ediacaran Tectono-Magmatic Evolution in the Moroccan Anti-Atlas. Minerals. 2018; 8(12):592. https://doi.org/10.3390/min8120592
Chicago/Turabian StyleTuduri, Johann, Alain Chauvet, Luc Barbanson, Jean-Louis Bourdier, Mohamed Labriki, Aomar Ennaciri, Lakhlifi Badra, Michel Dubois, Christelle Ennaciri-Leloix, Stanislas Sizaret, and et al. 2018. "The Jbel Saghro Au(–Ag, Cu) and Ag–Hg Metallogenetic Province: Product of a Long-Lived Ediacaran Tectono-Magmatic Evolution in the Moroccan Anti-Atlas" Minerals 8, no. 12: 592. https://doi.org/10.3390/min8120592
APA StyleTuduri, J., Chauvet, A., Barbanson, L., Bourdier, J. -L., Labriki, M., Ennaciri, A., Badra, L., Dubois, M., Ennaciri-Leloix, C., Sizaret, S., & Maacha, L. (2018). The Jbel Saghro Au(–Ag, Cu) and Ag–Hg Metallogenetic Province: Product of a Long-Lived Ediacaran Tectono-Magmatic Evolution in the Moroccan Anti-Atlas. Minerals, 8(12), 592. https://doi.org/10.3390/min8120592