Concentration and Distribution of Cadmium in Coals of China
Abstract
:1. Introduction
2. Abundance of Cadmium in Coals
2.1. Abundance of Cadmium in Chinese Coals
2.2. Comparison with the Cadmium Abundance in the World’s Coals
3. Distribution Characteristics of Cadmium in Chinese Coals
3.1. Distribution Characteristics of Cadmium in Chinese Coals in Different Areas
3.2. Distribution Characteristics of Cadmium in Chinese Coals in Different Coal-Forming Periods
4. Modes of Occurrence of Cadmium in Chinese Coals
4.1. Sulfides Minerals Association
4.2. Silicate Minerals Association
4.3. Organic Matter Association
4.4. Other Minerals Association
5. Genetic Factors of Cadmium Enrichment in Chinese Coals
5.1. Marine-Environment-Controlled Cadmium Enrichment
5.2. Hydrothermal-Fluid-Controlled Cadmium Enrichment
5.3. Source-Rock-Controlled Cadmium Enrichment
5.4. Volcanic-Ash-Controlled Cadmium Enrichment
5.5. Groundwater-Controlled Cadmium Enrichment
6. Conclusions
- (1)
- The arithmetic mean cadmium content in coals of China was 0.43 μg/g. Take the coal reserves into consideration, the weighted average value of cadmium in coal was estimated as 0.28 μg/g, a little higher than the world average.
- (2)
- Cadmium was highly enriched in the coals formed during the Late Permian in the Southern area. It was highly enriched in Hunan and Chongqing, and enriched in Sichuan. Cadmium in coals formed in the Early and Middle Jurassic from the Northwestern area was depleted. Xinjiang, Qinghai, and Gansu had the cleanest coals associated with cadmium.
- (3)
- The modes of occurrence of cadmium in Chinese coals are quite complex. Cadmium showed a positive correlation with sulfur content in coal, indicating a sulfide affinity. The sulfides and silicates were the primary hosts of cadmium in the coals of China. Organically associated cadmium was identified in low-rank coals. Furthermore, carbonates and other minerals also contained cadmium in some coalfields.
- (4)
- The marine environment had a huge impact on the cadmium accumulation in Southern area during the Late Permian. In addition, hydrothermal fluids, source rocks and volcanic ash also influenced the content of cadmium in some coalfields in China.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Galunin, E.; Ferreti, J.; Zapelini, I.; Vieira, I.; Tarley, C.R.T.; Abrao, T.; Santos, M.J. Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: Environmental risk assessment. J. Hazard. Mater. 2014, 265, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Feng, C.T.; Zeng, G.M.; Zhong, M.Z.; Gao, X.; Li, X.D.; He, X.Y.; Li, X.; Fang, Y.L.; Mo, D. Atmospheric deposition of mercury and cadmium impacts on topsoil in a typical coal mine city, Lianyuan, China. Chemosphere 2017, 189, 198–205. [Google Scholar] [CrossRef] [PubMed]
- An, L.H.; Wang, J.B.; Fu, Q.; Wang, C.Y.; Zhang, L.; Li, Z.C.; Zheng, B.H.; Shang, J.J. Impacts of environmental cadmium pollution on reproduction system: A review of recent research. Environ. Health 2011, 28, 89–92. [Google Scholar]
- Tinkov, A.A.; Filippini, T.; Ajsuvakova, O.P.; Aaseth, J.; Gluhcheva, Y.G.; Ivanova, J.M.; Bjorklund, G.; Skalnaya, M.G.; Gatiatulina, E.R.; Popova, E.V.; et al. The role of cadmium in obesity and diabetes. Sci. Total Environ. 2017, 601, 741–755. [Google Scholar] [CrossRef] [PubMed]
- Akesson, A.; Berglund, M.; Schutz, A.; Bjellerup, P.; Bremme, K.; Vahter, M. Cadmium exposure in pregnancy and lactation in relation to iron status. Am. J. Public Health 2002, 92, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Nogawa, K.; Yamada, Y.; Honda, R.; Ishizaki, M.; Tsuritani, I.; Kawano, S.; Kato, T. The relationship between Itai-itai disease among inhabitants of the Jinzu River Basin and cadmium in rice. Toxicol. Lett. 1983, 17, 263–266. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Chou, C.L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y.P. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Swaine, D.J. Why trace elements are important. Fuel Process. Technol. 2000, 65, 21–33. [Google Scholar] [CrossRef]
- Finkelman, R.B. Modes of occurrence of potentially hazardous elements in coal—Levels of confidence. Fuel Process. Technol. 1994, 39, 21–34. [Google Scholar] [CrossRef]
- Li, W.W.; Tang, Y.G.; Deng, X.J.; Yu, X.L.; Jiang, S. Geochemistry of the trace elements in the high-organic-sulfur coals from Chenxi Coalfield. J. China Coal Soc. 2013, 38, 1227–1233. (In Chinese) [Google Scholar]
- Dai, S.F.; Xie, P.P.; Jia, S.H.; Ward, C.R.; Hower, J.C.; Yan, X.Y.; French, D. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geol. Rev. 2017, 80, 1–17. [Google Scholar] [CrossRef]
- Wang, X.S.; Qin, Y. Study on mode of occurrence of trace elements in coal in China. Energy Environ. Protec. 2003, 17, 3–5. (In Chinese) [Google Scholar]
- Bai, X.F. The Distributions, Modes of Occurrence and Volatility of Trace Elements in Coals of China. Ph.D. Thesis, China Coal Research Institute, Beijing, China, 2003. (In Chinese). [Google Scholar]
- Bai, X.F.; Li, W.H.; Chen, Y.F.; Jiang, Y. The general distributions of trace elements in Chinese coals. Coal Qual. Technol. 2007, 1, 1–4. (In Chinese) [Google Scholar]
- Tang, X.Y.; Huang, W.H. Trace Elements in Chinese Coal; The Commercial Press: Beijing, China, 2004; Volume 4, pp. 95–99. ISBN 7-100-04014-0. (In Chinese) [Google Scholar]
- Ren, D.Y.; Zhao, F.H.; Wang, Y.Q.; Yang, S.J. Distributions of minor and trace elements in Chinese coals. Int. J. Coal Geol. 1999, 40, 109–118. [Google Scholar] [CrossRef]
- Ren, D.Y.; Zhao, F.H.; Dai, S.F.; Zhang, J.Y.; Luo, K.L. Geochemistry of Trace Elements in Coal; Science Press: Beijing, China, 2006; Volume 3, pp. 249–256. ISBN 7-03-017621-9. (In Chinese) [Google Scholar]
- Dai, S.F.; Ren, D.Y.; Li, S.S.; Song, J.F.; Wu, Z.H. Concentrations of minor elements and regional distribution of arsenic in Late Paleozoic coals from North China Platform. J. China Univ. Min. Technol. 2003, 32, 111–114. (In Chinese) [Google Scholar]
- Li, D.H.; Tang, Y.G.; Chen, K.; Deng, T.; Cheng, F.P.; Liu, D. Distribution of twelve toxic trace elements in coals from Southwest China. J. China Univ. Min. Technol. 2006, 35, 15–20. (In Chinese) [Google Scholar]
- Fu, X.G.; Wang, J.; Tan, F.W.; Feng, X.L.; Zeng, S.Q. Minerals and potentially hazardous trace elements in the Late Triassic coals from the Qiangtang Basin, China. Int. J. Coal Geol. 2013, 116, 93–105. [Google Scholar] [CrossRef]
- Dai, S.F.; Zhang, W.G.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Song, W.J.; Wang, X.B.; Li, X.; Zhao, L.X.; Kang, H.; et al. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. Int. J. Coal Geol. 2013, 109, 77–100. [Google Scholar] [CrossRef]
- Shao, L.Y.; Jones, T.; Gayer, R.; Dai, S.F.; Li, S.S.; Jiang, Y.F.; Zhang, P.F. Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan Coalfield, southern China. Int. J. Coal Geol. 2003, 55, 1–26. [Google Scholar] [CrossRef]
- Zeng, R.S.; Zhuang, X.G.; Koukouzas, N.; Xu, W.D. Characterization of trace elements in sulphur-rich Late Permian coals in the Heshan Coalfield, Guangxi, South China. Int. J. Coal Geol. 2005, 61, 87–95. [Google Scholar] [CrossRef]
- Mao, J.H.; Xu, H.L. The Prediction and Evaluation of Coal Resource in China; Science Press: Beijing, China, 1999; Volume 5, pp. 238–242. ISBN 7-03-007589-7. (In Chinese) [Google Scholar]
- Tang, Y.G.; Yin, Z.R.; Chang, C.X.; Zhang, Y.Z.; Song, H.B.; Wang, S.Q.; Hao, L. Distribution of trace elements in the Kailuan Coalfield. J. China Coal Soc. 2005, 20, 80–84. (In Chinese) [Google Scholar]
- Zhuang, X.G.; Xiang, C.F.; Zeng, R.S.; Xu, W.D. Comparative studies of trace elements in coals from three different types of basins. Acta Petrol. Mineral. 1999, 18, 255–263. (In Chinese) [Google Scholar]
- Tong, L.H.; Yan, J.P.; Tang, X.Y. Trace elements in Huainan coal and the distribution characteristics. Min. Saf. Environ. Protect. 2004, 31, 94–96. (In Chinese) [Google Scholar]
- Liu, W.Z.; Zhu, D.J.; Kong, W.H.; Chen, J. The Evaluation of trace elements’ clean level of 11 Coal in Huainan Bureau. Mod. Min. 2009, 37, 47–52. (In Chinese) [Google Scholar]
- Chen, J.; Chen, P.; Liu, W.Z. The occurrences and environmental effects of 12 kinds of trace elements in Huainan Coal-mining Area. Coal Geol. Explor. 2009, 37, 47–52. (In Chinese) [Google Scholar]
- Lu, J.J.; Chen, P.; Liu, Z.; Wu, Y.S. Study of Trace elements in coals from Huainan based on mathematical statistics analysis. Coal Technol. 2014, 33, 296–298. (In Chinese) [Google Scholar]
- Chen, J.; Liu, W.Z.; Chen, P. Organic affinity of trace elements in coal from No.10 coal-bed at western Huagou, Guoyang. Coal Geol. Explor. 2010, 38, 16–24. (In Chinese) [Google Scholar]
- Jiang, S.; Liu, W.Z.; Yang, J.P.; Wang, S.; Fan, J.K.; Zhang, W.Y. Trace Elements in Coal and Environmental Significance Analysis in Huagouxi Minefield, Huaibei. Coal Geol. China 2010, 22, 10–14. (In Chinese) [Google Scholar]
- Yang, J.Y. The periodic law of trace elements in coal—A case study of the 5 Coal from the Weibei Coalfield. Sci. China 2011, 41, 1444–1453. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.B.; Dai, S.F.; Ren, D.Y.; Yang, J.Y. Mineralogy and geochemistry of al-hydroxide/oxyhydroxide mineral-bearing coals of Late Paleozoic age from the Weibei Coalfield, southeastern Ordos Basin, North China. Appl. Geochem. 2011, 26, 1086–1096. [Google Scholar] [CrossRef]
- Zhou, G.Q.; Jiang, Y.F.; Liu, M.X. Sapropelic coal petrologic, quality and trace element Characteristics in Datun Mining Area, Xuzhou. Coal Geol. China 2011, 23, 7–9. (In Chinese) [Google Scholar]
- Zhao, J.; Guang, T.; Li, J.L.; Wang, J.X. The distribution and occurrence state of Cd, Cr and Tl of 9# Coal in Pingshuo Mine Area. J. Hebei Univ. Eng. 2011, 28, 56–59. (In Chinese) [Google Scholar]
- Song, D.Y.; Qin, Y.; Zhang, J.Y.; Wang, W.F.; Zhang, C.G. Concentration and distribution of trace elements in some coals from northern China. Int. J. Coal Geol. 2007, 69, 179–191. [Google Scholar] [CrossRef]
- Yang, N.; Tang, S.H.; Zhang, S.H.; Chen, Y.Y. Modes of occurrence and abundance of trace elements in Pennsylvanian coals from the Pingshuo Mine, Ningwu Coalfield, Shanxi province, China. Minerals 2016, 6, 40. [Google Scholar] [CrossRef]
- Sun, B.L.; Zeng, F.G.; Li, M.F.; Qi, F.H. Geochemistry characteristics of trace elements & rare earth elements(REEs) of No. 8 coal and parting in Malan Coal Mine, Xishan Coalfield. J. China Coal Soc. 2010, 35, 110–116. (In Chinese) [Google Scholar]
- Zhang, Z.F.; Fan, J.C.; Jin, J.F. The occurrence of cobalt, cadmium, nickel, manganese, and copper in coal. Coal Anal. Utiliz. 1991, 4, 10–13. (In Chinese) [Google Scholar]
- Zhang, J.Y.; Zheng, C.G.; Ren, D.Y.; Chou, C.L.; Liu, J.; Zeng, R.S.; Wang, Z.P.; Zhao, F.H.; Ge, Y.T. Distribution of potentially hazardous trace elements in coals from Shanxi province, China. Fuel 2004, 83, 129–135. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Dai, S.F.; Wang, X.B.; Zhao, L.; Zhou, G.Q.; Zhang, L.L.; Ai, L.Q. Geochemical characteristic study on high and low sulfur coal seam sections in Jining, Shandong. Coal Geol. China 2011, 23, 1–10. (In Chinese) [Google Scholar]
- Wang, X.B.; Zhang, L.L.; Jiang, Y.F.; Wei, J.P.; Chen, Z.J. Mineralogical and geochemical characteristics of the Early Permian Upper No. 3 coal from Southwestern Shandong, China. Minerals 2016, 6, 58. [Google Scholar] [CrossRef]
- Zeng, R.S.; Zhuang, X.G.; Yang, S.K. The coal characteristics in the middle of Luxi Coalbearing District. Coal Geol. China 2000, 12, 11–16. (In Chinese) [Google Scholar]
- Yang, L.; Liu, C.Y.; Li, H.Y. Geochemistry of trace elements and rare earth elements of coal in Chenjiashan Coal Mine. Coal geol. Explor. 2008, 36, 10–14. (In Chinese) [Google Scholar]
- Mo, Q.X.; Du, M.L.; Wang, S.L.; Liu, J.; Yang, J.L.; Shang, H.T. Modes of occurrence and cleaning potential of hazardous trace in Huanglong Coal. J. Xi’an Univ. Sci. Technol. 2012, 32, 214–220. (In Chinese) [Google Scholar]
- Dou, T.H.; Xiao, D.X.; Dong, Y.Q.; Zhang, S.A.; Zhang, Q.L. Prelimitary study on the trace elements in coals of Dongsheng Mining District, Shenfu Coalfield. Coal Geol. Explor. 1998, 26, 11–15. (In Chinese) [Google Scholar]
- Wang, H.J. The primary study on the distribution of harmful elements in Shendong coals. Coal Qual. Technol. 2007, 5, 7–9. (In Chinese) [Google Scholar]
- Bai, X.F.; Li, W.H.; Yang, T.R.; Xu, Y.L. Study on distribution and modes of occurrence of trace elements in Datong Jurassic 10-11# Coals. Coal Conver. 2002, 25, 92–95. (In Chinese) [Google Scholar]
- Liu, S.; Zhao, F.H.; Sun, F.M.; Lin, W.C. Distribution of minor and trace elements in Jurassic coal from the Datong Coalfield of Shanxi province. China Min. Mag. 2009, 18, 98–100. (In Chinese) [Google Scholar]
- Yang, J.Y. The 6# Coal of Heidaigou from Junger Coalfield in Inner Mongolia: The action of trace element separation in the coal facies. J. Fuel Chem. Technol. 2008, 36, 646–652. (In Chinese) [Google Scholar]
- Yang, N.; Tang, S.H.; Zhang, S.H.; Chen, Y.Y. Mineralogical and geochemical compositions of the No. 5 Coal in Chuancaogedan Mine, Junger Coalfield, China. Minerals 2015, 5, 788–800. [Google Scholar] [CrossRef]
- Xiao, L.; Zhao, B.; Duan, P.P.; Shi, Z.X.; Ma, J.L.; Lin, M.Y. Geochemical characteristics of trace elements in the No. 6 Coal Seam from the Chuancaogedan Mine, Jungar Coalfield, Inner Mongolia, China. Minerals 2016, 6, 28. [Google Scholar] [CrossRef]
- Dai, S.F.; Jiang, Y.F.; Ward, C.R.; Gu, L.D.; Seredin, V.V.; Liu, H.D.; Zhou, D.; Wang, X.B.; Sun, Y.Z.; Zou, J.H.; et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Dai, S.F.; Li, D.; Chou, C.L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.W.; Sun, Y.Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Chou, C.L.; Li, S.S.; Jiang, Y.F. Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Zou, J.H.; Liu, D.; Tian, H.M.; Liu, F.; Li, T.; Yang, H.Y. Geochemistry of trace and rare earth elements in the Late Paleozoic Coal from Adaohai Mine, Inner Mongolia. J. China Coal Soc. 2013, 38, 1012–1018. (In Chinese) [Google Scholar]
- Dai, S.F.; Li, T.J.; Jiang, Y.F.; Ward, C.R.; Hower, J.C.; Sun, J.H.; Liu, J.J.; Song, H.J.; Wei, J.P.; Li, Q.Q.; et al. Mineralogical and geochemical compositions of the Pennsylvanian Coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. Int. J. Coal Geol. 2015, 137, 92–110. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Li, Y.H.; Zhou, Y.Y. Deformation characteristics and kinematic analysis in Yanqi Basin. Coal Geol. Explor. 2004, 32, 8–10. (In Chinese) [Google Scholar]
- Kong, H.L.; Zeng, R.S.; Zhuang, X.G. Study of trace elements of coal in Beipiao District, Liaoning province. Mod. Geol. 2001, 15, 415–420. (In Chinese) [Google Scholar]
- Dai, S.F.; Liu, J.J.; Ward, C.R.; Hower, J.C.; Xie, P.P.; Jiang, Y.F.; Hood, M.M.; O’Keefe, J.M.K.; Song, H.J. Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geol. Rev. 2015, 71, 318–349. [Google Scholar] [CrossRef]
- Dai, S.F.; Wang, X.B.; Seredin, V.V.; Hower, J.C.; Ward, C.R.; O’Keefe, J.M.K.; Huang, W.H.; Li, T.; Li, X.; Liu, H.D.; et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int. J. Coal Geol. 2012, 90, 72–99. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Zhang, H.L.; Du, J.L.; Huo, C.; Pan, H.Y.; Ding, L. Distribution characteristics of trace elements in coal of Inner Mongolia Baiyinhua Coalfield. J. China Coal Soc. 2016, 41, 310–315. (In Chinese) [Google Scholar]
- Gao, Y.; Bai, X.W.; Wang, Y. Distribution and occurrence of trace elements in 14# Huolinhe Coal. Coal Conver. 2015, 38, 1–5. (In Chinese) [Google Scholar]
- Li, B.Q.; Zhuang, X.G.; Li, J.; Querol, X.; Font, O.; Moreno, N. Geological controls on mineralogy and geochemistry of the Late Permian coals in the Liulong Mine of the Liuzhi Coalfield, Guizhou province, Southwest China. Int. J. Coal Geol. 2016, 154, 1–15. [Google Scholar] [CrossRef]
- Wang, R.X. Geological controls on mineralogy and geochemistry of an Early Permian coal from the Songshao mine, Yunnan province, Southwestern China. Minerals 2016, 6, 66. [Google Scholar] [CrossRef]
- Dai, S.F.; Zhang, W.G.; Ward, C.R.; Seredin, V.V.; Hower, J.C.; Li, X.; Song, W.J.; Wang, X.B.; Kang, H.; Zheng, L.C.; et al. Mineralogical and geochemical anomalies of Late Permian coals from the Fusui Coalfield, Guangxi province, Southern China: Influences of terrigenous materials and hydrothermal fluids. Int. J. Coal Geol. 2013, 105, 60–84. [Google Scholar] [CrossRef]
- Dai, S.F.; Xie, P.P.; Ward, C.R.; Yan, X.Y.; Guo, W.M.; French, D.; Graham, I.T. Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan Coalfield, Guangxi, China. Ore Geol. Rev. 2017, 88, 235–250. [Google Scholar] [CrossRef]
- Zhuang, X.G.; Gong, J.Q.; Zeng, R.S.; Kong, H.L. Contrast research on trace elements of Late Permian and Late Jurassic coals in North-eastern Jiangxi province. Coal Geol. China 2001, 13, 15–17. (In Chinese) [Google Scholar]
- Zhuang, X.G.; Gong, J.Q.; Wang, Z.Q.; Zeng, R.S.; Xu, W.D. Trace Elements of the Late Permian coal in the Shuicheng and Liuzhi Coalfields, Guizhou. Geol. Sci. Technol. Inf. 2001, 20, 53–58. (In Chinese) [Google Scholar]
- Feng, X.B.; Hong, Y.T.; Ni, J.Y. The concentrations of trace elements in coal in Guizhou province. Environ. Chem. 1998, 17, 339–344. (In Chinese) [Google Scholar]
- Zeng, R.S.; Zhao, J.H.; Zhuang, X.G. Quality of Late Permian coal and its controlling factors in Shuicheng Mining District of Liupanshui Area. Guizhou. Acta Petrol. Sin. 1998, 14, 144–153. (In Chinese) [Google Scholar]
- Qin, S.J.; Gao, K.; Wang, J.X.; Li, Y.H.; Lu, J.F. Geochemistry of the associated elements in the Late Permian coal from the Huoshaopu and Jinjia Mines, Southwestern Guizhou. J. China Coal Soc. 2016, 41, 1507–1516. (In Chinese) [Google Scholar]
- Dai, S.F.; Ren, D.; Tang, Y.G.; Yue, M.; Hao, L.M. Concentration and distribution of elements in Late Permian coals from Western Guizhou province, China. Int. J. Coal Geol. 2005, 61, 119–137. [Google Scholar] [CrossRef]
- Song, D.Y.; Zhang, J.Y.; Zheng, C.G. Geochemistry of hazardous trace elements in coals from Guizhou province. Coal Conver. 2007, 30, 13–17. (In Chinese) [Google Scholar]
- Wei, X.F.; Zhang, G.P.; Li, L.; Xiang, M.; Cai, Y.B. Distribution and enrichment of trace elements in coal combustion products from Southwestern Guizhou. Environ. Sci. 2012, 33, 1457–1462. (In Chinese) [Google Scholar]
- Zhang, J.Y.; Ren, D.Y.; Zhu, Y.M.; Chou, C.L.; Zeng, R.S.; Zheng, B.S. Mineral matter and potentially hazardous trace elements in coals from Qianxi Fault Depression Area in Southwestern Guizhou, China. Int. J. Coal Geol. 2004, 57, 49–61. [Google Scholar] [CrossRef]
- Song, D.Y.; Zhang, X.K.; Zhang, J.Y.; Zheng, C.G. Migration characteristics of hazardous trace elements in coal in the process of flotation. J. China Coal Soc. 2010, 35, 1170–1176. [Google Scholar]
- Yang, J.Y. Contents and occurrence modes of trace elements in the Late Permian coals from Pu’an Coalfield, Guizhou Province. J. Fuel Chem. Technol. 2006, 34, 129–135. (In Chinese) [Google Scholar]
- Dai, S.F.; Chou, C.L.; Yue, M.; Luo, K.L.; Ren, D.Y. Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield, Guizhou, China: Influence from siliceous and iron-rich calcic hydrothermal fluids. Int. J. Coal Geol. 2005, 61, 241–258. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T. Major and trace element geochemistry of coals and intra-seam claystones from the Songzao Coalfield, SW China. Minerals 2015, 5, 870–893. [Google Scholar] [CrossRef]
- Dai, S.F.; Wang, X.B.; Chen, W.M.; Li, D.H.; Chou, C.L.; Zhou, Y.P.; Zhu, C.S.; Li, H.; Zhu, X.W.; Xing, Y.W.; et al. A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, Southwestern China: Mineralogical and geochemical relations with underlying mafic tuffs. Int. J. Coal Geol. 2010, 83, 430–445. [Google Scholar] [CrossRef]
- Chen, J.; Chen, P.; Yao, D.X.; Liu, Z.; Wu, Y.S.; Liu, W.Z.; Hu, Y.B. Mineralogy and geochemistry of Late Permian coals from the Donglin Coal Mine in the Nantong Coalfield in Chongqing, Southwestern China. Int. J. Coal Geol. 2015, 149, 24–40. [Google Scholar] [CrossRef]
- Luo, Y.B.; Zheng, M.P. Origin of minerals and elements in the Late Permian Coal Seams of the Shiping Mine, Sichuan, Southwestern China. Minerals 2016, 6, 74. [Google Scholar] [CrossRef]
- Zhuang, X.G.; Su, S.C.; Xiao, M.G.; Li, J.; Alstuey, A.; Querol, X. Mineralogy and geochemistry of the Late Permian coals in the Huayingshan Coal-bearing area, Sichuan province, China. Int. J. Coal Geol. 2012, 94, 271–282. [Google Scholar] [CrossRef]
- Dai, S.F.; Li, T.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhou, Y.P.; Zhang, M.Q.; Song, X.L.; Song, W.J.; Zhao, C.L. Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, Eastern Yunnan, China. Int. J. Coal Geol. 2014, 121, 53–78. [Google Scholar] [CrossRef]
- Wang, X.B.; Dai, S.F.; Chou, C.L.; Zhang, M.Q.; Wang, J.M.; Song, X.L.; Wang, W.; Jiang, Y.F.; Zhou, Y.P.; Ren, D.Y. Mineralogy and geochemistry of Late Permian coals from the Taoshuping Mine, Yunnan province, China: Evidences for the sources of minerals. Int. J. Coal Geol. 2012, 96, 49–59. [Google Scholar] [CrossRef]
- Shao, L.Y.; Wang, J.; Hou, H.H.; Zhang, M.Q.; Wang, H.; Baruch, S.; David, L.; Zhou, Y.P. Geochemistry of the C1 Coal of the Late Permian during mass extinction in Xuanwei, Yunnan. Acta Geol. Sin. 2015, 89, 163–179. (In Chinese) [Google Scholar]
- Dai, S.F.; Ren, D.Y.; Zhou, Y.P.; Chou, C.L.; Wang, X.B.; Zhao, L.; Zhu, X.W. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chem. Geol. 2008, 255, 182–194. [Google Scholar] [CrossRef]
- Dai, S.F.; Tian, L.W.; Chou, C.L.; Zhou, Y.P.; Zhang, M.Q.; Zhao, L.; Wang, J.M.; Yang, Z.; Cao, H.Z.; Ren, D.Y. Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuan wei, Yunnan, China: Occurrence and origin of quartz and chamosite. Int. J. Coal Geol. 2008, 76, 318–327. [Google Scholar] [CrossRef]
- Dai, S.F.; Liu, J.J.; Ward, C.R.; Hower, J.C.; French, D.; Jia, S.H.; Hood, M.M.; Garrison, T.M. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan province, China, with emphasis on enrichment of rare metals. Int. J. Coal Geol. 2016, 166, 71–95. [Google Scholar] [CrossRef]
- Zhang, J.Y. Enrichment Mechanism and Pollution Restraining of Potentially Hazardous Trace Elements in Coal. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, 1999. (In Chinese). [Google Scholar]
- Tao, Z.P.; Yang, R.D.; Cheng, W. Analysis on element geochemistry characteristics and enrichment causes of the Late Triassic coal in Longtoushan Coal Mine in Zhenfeng county in Guizhou province. Coal Sci. Technol. Geol. Explor. 2015, 4, 45–50, (In Chinese with English abstract). [Google Scholar]
- Wang, X.B.; Li, D.; Lu, Y.F.; Zhang, Y. Geochemistry of late Triassic coals from the Changhebian mine in Chongqing, China. Coal Geol. Explor. 2007, 35, 4–8. (In Chinese) [Google Scholar]
- Wang, X.B. Geochemistry of Late Triassic coals in the Changhe Mine, Sichuan Basin, Southwestern China: Evidence for authigenic lanthanide enrichment. Int. J. Coal Geol. 2009, 80, 167–174. [Google Scholar] [CrossRef]
- Wang, D.L.; Zhang, Y.H. Jurassic Tariqik formation coal geochemical characteristics in Kuqa-Bay Coalfield, Xinjiang. Coal Geol. China 2012, 24, 6–14. (In Chinese) [Google Scholar]
- Zhao, S.H. The distribution mode of occurrence of potentially hazardous elements in Yili Coal. Xinjiang Geol. 2015, 33, 126–129. (In Chinese) [Google Scholar]
- Dai, S.F.; Yang, J.Y.; Ward, C.R.; Hower, J.C.; Liu, H.D.; Garrison, T.M.; French, D.; O’Keefe, J.M.K. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, Northwestern China. Ore Geol. Rev. 2015, 70, 1–30. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.G.; Querol, X.; Font, O.; Moreno, N.; Zhou, J.B.; Lei, G.M. High quality of Jurassic coals in the Southern and Eastern Junggar Coalfields, Xinjiang, NW China: Geochemical and mineralogical characteristics. Int. J. Coal Geol. 2012, 99, 1–15. [Google Scholar] [CrossRef]
- Jiang, Y.F.; Zhao, L.; Zhou, G.Q.; Wang, X.B.; Zhao, L.X.; Wei, J.P.; Song, H.J. Petrological, mineralogical, and geochemical compositions of Early Jurassic coals in the Yining Coalfield, Xinjiang, China. Int. J. Coal Geol. 2015, 152, 47–67. [Google Scholar] [CrossRef]
- Dai, S.F.; Hower, J.C.; Ward, C.R.; Guo, W.M.; Song, H.J.; O’Keefe, J.M.K.; Xie, P.P.; Hood, M.M.; Yan, X.Y. Elements and phosphorus minerals in the Middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. Int. J. Coal Geol. 2015, 144, 23–47. [Google Scholar] [CrossRef]
- Dai, S.F.; Wang, P.P.; Ward, C.R.; Tang, Y.G.; Song, X.L.; Jiang, J.H.; Hower, J.C.; Li, T.; Seredin, V.V.; Wagner, N.J.; et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang, Yunnan, Southwestern China: Key role of N2-CO2-mixed hydrothermal solutions. Int. J. Coal Geol. 2015, 152, 19–46. [Google Scholar] [CrossRef]
- Finkelman, R.B. Trace elements in coal—Environmental and health significance. Biol. Trace Elem. Res. 1999, 67, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Ketris, M.P.; Yudovich, Y.E. Estimations of clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Swaine, D.J. Trace Elements in Coal; Butterworths: London, UK, 1990; ISBN 0-408-03309-6. [Google Scholar]
- Liu, G.J.; Zheng, L.G.; Zhang, Y.; Qi, C.C.; Chen, Y.W.; Peng, Z.C. Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal Seam 3 of the Shanxi Formation, Yanzhou Coalfield, China. Int. J. Coal Geol. 2007, 71, 371–385. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Hou, X.Q.; Shao, L.Y. Geochemical and mineralogical anomalies of the Late Permian coal in the Zhijin Coalfield of Southwest China and their volcanic origin. Int. J. Coal Geol. 2003, 55, 117–138. [Google Scholar] [CrossRef]
- Tang, S.H.; Qin, Y.; Jiang, Y.F.; Wang, W.F.; Song, D.Y.; Liu, Z.Y.; Gao, F. Chinese Clean Coals’ Geological Characteristics; China Geological Publishing House: Beijing, China, 2006; Volume 10, p. 216. ISBN 7-116-04991-6. (In Chinese) [Google Scholar]
- Swaine, D.J. Trace-elements in coal and their dispersal during combustion. Fuel Process. Technol. 1994, 39, 121–137. [Google Scholar] [CrossRef]
- Lindahl, H.J.G.P.C. Cadmium: Mode of occurrence in Illinois Coals. Sci. New Ser. 1973, 181, 2. [Google Scholar]
- Bogdnov, V.V. Zur genese der mikroelemente in den kohle fuhrenden, Sammelwek: Materialy k 9. Sovest. Rabotn. Geol. Organ. Leningrad 1965, 7, 90–94. [Google Scholar]
- Kirsch, H.S.U.; Schwartz, G. The Origins of the Trace Elements Zinc, Cadmium and Vanadium in Bituminous Coals and Their Behavior during Combustion; VGB Kraftwerkstechnik: Leuna, Germany, 1980; Volume 60, pp. 734–744. [Google Scholar]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Ding, Z.H.; Finkelman, R.B.; Belkin, H.E.; Zheng, B.S.; Jin, Z.S.; Zhou, Y.S.; Zhou, D.X. A new kind of cadmium mineral was found. Geol. Geochem. 2002, 30, 95–96. (In Chinese) [Google Scholar]
- Yang, J.Y. Acid Removal rate of trace elements and its’ organic-inorganic affinity in coal-In a case of the Late Paleozoic Coal Seam 5 from Weibei. J. Fuel Chem. Technol. 2010, 38, 522–527. (In Chinese) [Google Scholar]
- Zhao, F.H.; Peng, S.P.; Li, D.H.; Tang, Y.G.; Ren, D.Y.; Xu, D.W. Quantitative study of organic affinity of elements in low rank coals. J. China Univ. Min. Technol. 2003, 32, 21–25. (In Chinese) [Google Scholar]
- Xu, D.W. Enrichment Mechanism and Environmental Impact of Chromium, Nickel and Other Hazardous Trace Elements in Coal from the Shenbei Coalfield. Master’s Thesis, China University of Mining and Technology, Beijing, China, 1999. (In Chinese). [Google Scholar]
- Zhao, F.H. Study on the Mechanism of Distributions and Occurrence of Hazardous Minor and Trace Elements in Coals and Leaching Experiments of Coal Combustion Residues. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, 1997. (In Chinese). [Google Scholar]
- Chou, C.L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- Dai, S.F.; Li, D.H.; Ren, D.Y.; Tang, Y.G.; Shao, L.Y.; Song, H.B. Geochemistry of the Late Permian No. 30 Coal Seam, Zhijin Coalfield of Southwest China: Influence of a siliceous low-temperature hydrothermal fluid. Appl. Geochem. 2004, 19, 1315–1330. [Google Scholar] [CrossRef]
- Yang, W.Q. The preliminary analysis of the controlling factors on the coal-forming sedimentary environment and the sulfur content of the coals from Laochang Coal Mine in Yunnan. J. Xiangtan Min. Inst. 1987, 1, 78–86. (In Chinese) [Google Scholar]
- Classification for Coal Quality—Part 2: Sulfur Content, Chinese National Standard, Beijing; GB/T 15224.2-2004; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2004.
- Wang, Y.Q.; Mo, J.Y.; Ren, D.Y. Distribution of minor and trace elements in magmatic hydrothermal metamorphic coal of Meitian Coal Mine, Hunan province. Geochimica 1999, 28, 289–296. (In Chinese) [Google Scholar]
- Dai, S.F.; Ward, C.R.; Graham, I.T.; French, D.; Hower, J.C.; Zhao, L.; Wang, X.B. Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Sci. Rev. 2017, 175, 44–74. [Google Scholar] [CrossRef]
Publications | Number of Samples | Mean | Years |
---|---|---|---|
CCRI [13] | 1018 | 1.00 | 1980–1990 |
Ren et al. [16] | 36 | 0.46 | 1999 |
Tang et al. [15] | 1307 | 0.30 | 2003 |
Bai [13] | 1018 | 0.91 | 2003 |
Ren et al. [17] | 1317 | 0.24 | 2006 |
Bai et al. [14] | 1123 | 0.81 | 2007 |
Dai et al. [7] | 1384 | 0.25 | 2012 |
Coalfields/Province | Sample Number | Mean 1 (μg/g) | Coal-Distribution Area | Coal-Forming Period | CC 2 | Reference |
---|---|---|---|---|---|---|
Kailuan/Hebei | 48 | 0.2 | Northern | C2–P1 | 0.8 | Tang et al. [25], Zhuang et al. [26] |
Xingtai/Heibei | 2 | 0.31 | Northern | C2–P1 | 1.2 | Ren et al. [17] |
Huainan/Anhui | 50 | 0.07 | Northern | C2–P1 | 0.3 | Tong et al. [27], Tang et al. [15], Liu et al. [28], Chen et al. [29], Lu et al. [30] |
Huaibei/Anhui | 40 | 0.23 | Northern | C2–P1 | 0.9 | Chen et al. [31], Jiang et al. [32] |
Weibei/Shaanxi | 23 | 0.11 | Northern | C2–P1 | 0.4 | Yang et al. [33], Wang et al. [34] |
Pingdingshan/Henan | 1 | 0.1 | Northern | C2–P1 | 0.4 | Ren et al. [17] |
Datun/Jiangsu | 2 | 0.37 | Northern | C2–P1 | 1.5 | Zhou et al. [35] |
Xuzhou/Jiangsu | 5 | 0.03 | Northern | C2–P1 | 0.1 | Tang et al. [15] |
Ningwu/Shanxi | 285 | 0.2 | Northern | C2–P1 | 0.8 | Zhao et al. [36], Ren et al. [17], Song et al. [37], Yang et al. [38] |
Xishan/Shanxi | 21 | 0.47 | Northern | C2–P1 | 1.9 | Sun et al. [39] |
Hedong/Shanxi | 29 | 0.08 | Northern | C2–P1 | 0.3 | Ren et al. [17] |
Yangquan/Shanxi | 6 | 0.66 | Northern | C2–P1 | 2.6 | Ren et al. [17] |
Jincheng/Shanxi | 9 | 0.16 | Northern | C2–P1 | 0.6 | Ren et al. [17] |
Fenxi/Shanxi | 3 | 1.2 | Northern | C2–P1 | 4.8 | Zhang et al. [40] |
Hunyuan/Shanxi | 1 | 1.2 | Northern | C2–P1 | 4.8 | Zhang et al. [40] |
Lu’an/Shanxi | 1 | 0.05 | Northern | C2–P1 | 0.2 | Bai [13] |
Parts of mines in Shanxi/Shanxi | 78 | 1.09 | Northern | C2–P1 | 4.4 | Zhang et al. [41] |
Jining/Shandong | 59 | 0.39 | Northern | C2–P1 | 1.6 | Jiang et al. [42], Wang et al. [43] |
Juye/Shandong | 13 | 0.4 | Northern | C2–P1 | 1.6 | Wang et al. [43] |
Yanzhou/Shandong | 1 | 0.26 | Northern | C2–P1 | 1.0 | Bai [13] |
Feicheng and Xinwen/Shandong | 7 | 0.27 | Northern | C2–P1 | 1.1 | Zeng et al. [44] |
Shizuishan/Ningxia | 10 | 0.61 | Northern | C2–P1 | 2.4 | Song et al. [37], Ren et al. [17] |
Shitanjing/Ningxia | 14 | 0.43 | Northern | C2–P1 | 1.7 | Song et al. [37], Ren et al. [17] |
Taiyangcheng/Ningxia | 3 | 0.04 | Northern | C2–P1 | 0.2 | Ren et al. [17] |
Baijigou/Ningxia | 2 | 1.23 | Northern | C2–P1 | 4.9 | Song et al. [37] |
Chenjiashan/Shaanxi | 8 | 1.7 | Northern | J1-2 | 6.8 | Yang [45] |
Huanglong/Shaanxi | 46 | 0.15 | Northern | J1-2 | 0.6 | Mo et al. [46] |
Shendong/Shaanxi and Inner Mongolia | 730 | 0.03 | Northern | J1-2 | 0.1 | Dou et al. [47], Song et al. [37], Wang [48] |
Yima/Henan | 3 | 0.71 | Northern | J1-2 | 2.8 | Ren et al. [17] |
Datong/Shanxi | 39 | 0.17 | Northern | J1-2 | 0.7 | Bai [49], Zhang [41], Ren et al. [17], Song D.Y. [37], Liu [50] |
Rujigou/Ningxia | 3 | 1.15 | Northern | J1-2 | 4.6 | Song et al. [37], Ren et al. [17] |
Ciyaopu/Ningxia | 1 | 0.04 | Northern | J1-2 | 0.2 | Ren et al. [17] |
Huating/Gansu | 1 | 0.08 | Northern | J1-2 | 0.3 | Ren et al. [17] |
Fanci and Yuanqu/Shanxi | 3 | 2.2 | Northern | E–N | 8.8 | Zhang et al. [41], |
Jungar/Inner Mongolia | 122 | 0.11 | Northeastern | C2–P1 | 0.4 | Yang [51], Yang et al. [52],Xiao et al. [53], Dai et al. [54,55,56] |
Wuda/Inner Mongolia | 3 | 0.22 | Northeastern | C2–P1 | 0.9 | Ren et al. [17] |
Daqingshan/Inner Mongolia | 67 | 0.29 | Northeastern | C2–P1 | 1.2 | Zou et al. [57], Dai et al. [58] |
Baishan District/Jilin | 56 | 0.18 | Northeastern | C2–P1 | 0.7 | Wu et al. [59] |
Beipiao/Liaoning | 29 | 0.28 | Northeastern | J1-2 | 1.1 | Kong et al. [60] |
Shengli/Inner Mongolia | 43 | 0.07 | Northeastern | J3–K1 | 0.3 | Dai et al. [61,62] |
Baiyinhua/Inner Mongolia | 51 | 0.13 | Northeastern | J3–K1 | 0.5 | Zhang [63] |
Huolinhe/Inner Mongolia | 4 | 0.09 | Northeastern | J3–K1 | 0.4 | Ren et al. [17], Gao et al. [64] |
Dayan/Inner Mongolia | 3 | 0.08 | Northeastern | J3–K1 | 0.3 | Ren et al. [17] |
Yimin/Inner Mongolia | 8 | 0.12 | Northeastern | J3–K1 | 0.5 | Li et al. [65] |
Fuxin/Liaoning | 3 | 0.12 | Northeastern | J3–K1 | 0.5 | Ren et al. [17] |
Tiefa/Liaoning | 4 | 0.12 | Northeastern | J3–K1 | 0.5 | Ren et al. [17] |
Hegang/Heilongjiang | 3 | 0.08 | Northeastern | J3–K1 | 0.3 | Ren et al. [17] |
Jixi/Heilongjiang | 3 | 0.127 | Northeastern | J3–K1 | 0.5 | Ren et al. [17] |
Shuangyashan/Heilongjiang | 3 | 0.11 | Northeastern | J3–K1 | 0.4 | Ren et al. [17] |
Qitaihe/Heilongjiang | 3 | 0.27 | Northeastern | J3–K1 | 1.1 | Ren et al. [17] |
Shenbei/Liaoning | 2 | 0.07 | Northeastern | E–N | 0.3 | Ren et al. [17] |
Songshao/Yunnan | 12 | 0.36 | Southern | C2–P1 | 1.4 | Wang [66] |
Changguang/Zhejiang | 2 | 0.51 | Southern | P2 | 2.0 | Ren et al. [17] |
Shaoguan/Guangdong | 1 | 0.15 | Southern | P2 | 0.6 | Ren et al. [17] |
Heshan/Guangxi | 51 | 0.64 | Southern | P2 | 2.6 | Shao et al. [22], Dai et al. [21] |
Fusui/Guangxi | 19 | 0.84 | Southern | P2 | 3.4 | Dai et al. [67] |
Yishan/Guangxi | 22 | 1.55 | Southern | P2 | 6.2 | Dai et al. [68] |
Daye/Hubei | 2 | 0.36 | Southern | P2 | 1.4 | Ren et al. [17] |
Yong’an/Fujian | 5 | 0.19 | Southern | P2 | 0.8 | Ren et al. [17] |
Chenxi/Hunan | 15 | 5.01 | Southern | P2 | 20.0 | Li et al. [10] |
Meitian/Hunan | 10 | 3.8 | Southern | P2 | 15.2 | Tang et al. [15] |
Doulishan/Hunan | 1 | 0.38 | Southern | P2 | 1.5 | Ren et al. [17] |
Northeastern Jiangxi | 44 | 0.7 | Southern | P2 | 2.8 | Zhuang et al. [69] |
Feiling/Jiangxi | 2 | 0.05 | Southern | P2 | 0.2 | Ren et al. [17] |
Yinggangling/Jiangxi | 1 | 0.04 | Southern | P2 | 0.2 | Ren et al. [17] |
Liuzhi/Guizhou | 11 | 0.42 | Southern | P2 | 1.7 | Zhuang et al. [70], Ren et al. [17] |
Shuicheng/Guizhou | 58 | 0.42 | Southern | P2 | 1.7 | Zhuang et al. [70], Ren et al. [17], Feng [71], Zeng et al. [72] |
Liupanshui/Guizhou | 14 | 0.12 | Southern | P2 | 0.5 | Qin et al. [73], Feng [71] |
Zhijin/Guizhou | 24 | 0.52 | Southern | P2 | 2.1 | Dai, S. et al. [74] |
Nayong/Guizhou | 6 | 0.17 | Southern | P2 | 0.7 | Dai, S. et al. [74] |
Bijie/Guizhou | 3 | 0.07 | Southern | P2 | 0.3 | Dai, S. et al. [74] |
Southwest Guizhou | 64 | 2.46 | Southern | P2 | 9.8 | Song et al. [75], Wei et al. [76], Zhang et al. [77] |
Dahebian/Guizhou | 12 | 0.15 | Southern | P2 | 0.6 | Song et al. [78] |
Pu’an/Guizhou | 9 | 0.44 | Southern | P2 | 1.8 | Dai et al. [74], Yang [79] |
Qinglong/Guizhou | 4 | 0.1 | Southern | P2 | 0.4 | Dai et al. [74] |
Zhuzang/Guizhou | 2 | 0.05 | Southern | P2 | 0.2 | Dai et al. [74] |
Panjiang/Guizhou | 3 | 0.13 | Southern | P2 | 0.5 | Dai et al. [74] |
Dafang/Guizhou | 74 | 0.39 | Southern | P2 | 1.6 | Dai et al. [74,80] |
Xingren/Guizhou | 6 | 0.3 | Southern | P2 | 1.2 | Dai et al. [74] |
Songzao/Chongqing | 26 | 0.34 | Southern | P2 | 1.4 | Zhao et al. [81], Ren et al. [17], Dai et al. [82] |
Nantong/Chongqing | 24 | 0.33 | Southern | P2 | 1.3 | Chen et al. [83] |
Moxinpo/Chongqing | 8 | 31.19 | Southern | P2 | 124.8 | Dai et al. [11] |
Shiping/Sichuan | 6 | 5.91 | Southern | P2 | 23.6 | Luo et al. [84] |
Huayingshan/Sichuan | 20 | 0.25 | Southern | P2 | 1.0 | Zhuang et al. [85] |
Xinde/Yunnan | 7 | 0.47 | Southern | P2 | 1.9 | Dai et al. [86] |
Taoshuping/Yunnan | 17 | 0.21 | Southern | P2 | 0.8 | Wang et al. [87] |
Yantang/Yunnan | 24 | 0.26 | Southern | P2 | 1.0 | Shao et al. [88] |
Yanshan/Yunnan | 7 | 2.07 | Southern | P2 | 8.3 | Dai et al. [89] |
Laochang/Yunnan | 42 | 0.59 | Southern | P2 | 2.4 | Tang et al. [15] |
Xuanwei/Yunnan | 6 | 1.24 | Southern | P2 | 5.0 | Dai et al. [90] |
Guxu/Yunnan | 11 | 0.56 | Southern | P2 | 2.2 | Dai et al. [91] |
Zhenfeng/Guizhou | 5 | 0.26 | Southern | T3 | 1.0 | Zhang et al. [92], Tao et al. [93] |
Changhe/Chongqing | 16 | 0.22 | Southern | T3 | 0.9 | Wang et al. [94,95] |
Lewei/Sichuan | 2 | 0.1 | Southern | T3 | 0.4 | Ren et al. [17] |
Dayi/Sichuan | 1 | 0.2 | Southern | T3 | 0.8 | Ren et al. [17] |
Pingxiang/Jiangxi | 5 | 0.48 | Southern | T3 | 1.9 | Ren et al. [17] |
Kebao/Yunnan | 1 | 0.4 | Southern | E–N | 1.6 | Ren et al. [17] |
Chuxiong/Yunnan | 3 | 0.11 | Southern | E–N | 0.4 | Ren et al. [17] |
Huaning/Yunnan | 1 | 0.12 | Southern | E–N | 0.5 | Ren et al. [17] |
Kubai/Xinjiang | 11 | 0 | Northwestern | J1-2 | 0.0 | Wang et al. [96] |
Yili/Xinjiang | 77 | 0.07 | Northwestern | J1-2 | 0.3 | Zhao et al. [97], Dai et al. [98] |
Juggar/Xinjiang | 96 | 0 | Northwestern | J1-2 | 0.0 | Li et al. [99] |
Yining/Xinjiang | 16 | 0.04 | Northwestern | J1-2 | 1 | Jiang et al. [100] |
Muli/Qinghai | 18 | 0.12 | Northwestern | J1-2 | 0.5 | Dai et al. [101] |
Yuka/Qinghai | 1 | 0.04 | Northwestern | J1-2 | 0.2 | Ren et al. [17] |
Mole/Qinghai | 1 | 0.01 | Northwestern | J1-2 | 0.0 | Ren et al. [17] |
Jiangcang/Qinghai | 1 | 0.02 | Northwestern | J1-2 | 0.1 | Ren et al. [17] |
Datong/Qinghai | 1 | 0.03 | Northwestern | J1-2 | 0.1 | Ren et al. [17] |
Tumen/Tibet | 32 | 0.47 | Tibet-Western Yunnan | T3 | 1.9 | Fu et al. [20] |
Wuruoshan/Tibet | 12 | 0.2 | Tibet-Western Yunnan | T3 | 0.8 | Fu et al. [20] |
Hongshuihe/Tibet | 6 | 0.21 | Tibet-Western Yunnan | T3 | 0.8 | Fu et al. [20] |
Huaping/Yunnan | 1 | 0.21 | Tibet-Western Yunnan | T3 | 0.8 | Ren et al. [17] |
Chuanxi/Sichuan | 3 | 0.37 | Tibet-Western Yunnan | E-N | 1.5 | Ren et al. [17] |
Changning/Yunnan | 3 | 0.2 | Tibet-Western Yunnan | E-N | 0.8 | Ren et al. [17] |
Lanping/Yunnan | 3 | 0.34 | Tibet-Western Yunnan | E-N | 1.4 | Ren et al. [17] |
Lincang/Yunnan | 54 | 0.98 | Tibet-Western Yunnan | E-N | 3.9 | Dai et al. [102] |
China | 2999 | 0.43 |
Coal-Distribution Area | C2–P1 | P2 | T3 | J1–2 | J3–K1 | E–N | Total |
---|---|---|---|---|---|---|---|
Northeastern area | 14.64 | - | - | 24.81 | 1226.34 | 45.9 | 1311.69 |
Northern area | 3829.18 | 2.12 | 8.51 | 2793.94 | 8.32 | 14.08 | 6656.16 |
Southern area | 13.87 | 761.89 | 35.92 | 1.55 | - | 165.16 | 978.4 |
Northwestern area | 12.86 | 0.88 | 0.14 | 1207.61 | 2.08 | - | 1223.57 |
Tibet–Western Yunnan area | 0.63 | 0.03 | 0.19 | - | 0.04 | 5.74 | 6.63 |
Total | 3871.16 | 765.92 | 44.77 | 4027.9 | 1236.79 | 230.89 | 10,176.45 |
Coal-Bearing Region | Coal-Forming Period | Sample Number | Mean 1 | Coal Reserve Percentage (%) | Weighted Mean Value |
---|---|---|---|---|---|
Northern area | C2–P1 | 713 | 0.33 | 37.6279 | 0.1245 |
P2 | 0 | - | 0.0208 | - | |
T3 | 0 | - | 0.0836 | - | |
J1-2 | 831 | 0.07 | 27.4550 | 0.0181 | |
J3–K1 | 0 | - | 0.0818 | - | |
E–N | 3 | 2.20 | 0.1384 | 0.0030 | |
Northeastern area | C2–P1 | 248 | 0.18 | 0.1439 | 0.0003 |
J1-2 | 29 | 0.28 | 0.2438 | 0.0007 | |
J3–K1 | 128 | 0.11 | 12.0508 | 0.0130 | |
E–N | 2 | 0.07 | 0.4510 | 0.0003 | |
Southern area | C2–P1 | 12 | 0.36 | 0.1363 | 0.0005 |
P2 | 663 | 1.27 | 7.4868 | 0.0951 | |
T3 | 29 | 0.26 | 0.3530 | 0.0009 | |
J1-2 | 0 | - | 0.0152 | - | |
E–N | 59 | 0.91 | 1.6230 | 0.0148 | |
Northwestern area | C2–P1 | 0 | - | 0.1264 | - |
P2 | 0 | - | 0.0086 | - | |
T3 | 0 | - | 0.0014 | - | |
J1-2 | 222 | 0.04 | 11.8667 | 0.0044 | |
J3–K1 | 0 | - | 0.0204 | - | |
Tibet-Western Yunnan area | C2–P1 | 0 | - | 0.0062 | - |
P2 | 0 | - | 0.0003 | - | |
T3 | 51 | 0.37 | 0.0019 | 0.000007 | |
J3–K1 | 0 | - | 0.0004 | - | |
E–N | 9 | 0.30 | 0.0564 | 0.00017 | |
China | C2–N | 2999 | 0.43 | 1 | 0.28 |
Administrative Division | Coal Reserve/109 t * | Sample Number | Mean (μg/g) | CC |
---|---|---|---|---|
Hebei | 185.6817 | 50 | 0.20 | 0.8 |
Anhui | 273.5978 | 90 | 0.14 | 0.6 |
Shaanxi | 1554.5631 | 77 | 0.30 | 1.2 |
Henan | 237.9768 | 4 | 0.56 | 2.2 |
Jiangsu | 37.0578 | 7 | 0.13 | 0.5 |
Shanxi | 2500.9125 | 478 | 0.38 | 1.5 |
Shandong | 266.4097 | 80 | 0.38 | 1.5 |
Ningxia | 309.3002 | 33 | 0.55 | 2.2 |
Gansu | 93.0968 | 1 | 0.08 | 0.3 |
Inner Mongolia | 2226.1413 | 301 | 0.15 | 0.6 |
Jilin | 23.0944 | 56 | 0.18 | 0.7 |
Liaoning | 70.6104 | 38 | 0.24 | 1.0 |
Heilongjiang | 200.7548 | 12 | 0.15 | 0.6 |
Yunnan | 240.9296 | 186 | 0.67 | 2.6 |
Zhejiang | 0.0559 | 2 | 0.51 | 2.0 |
Guangdong | 5.7982 | 1 | 0.15 | 0.6 |
Guangxi | 21.841 | 92 | 0.90 | 3.6 |
Hubei | 5.0041 | 2 | 0.36 | 1.4 |
Fujian | 10.6055 | 5 | 0.19 | 0.8 |
Hunan | 33.0624 | 26 | 4.37 | 17.5 |
Jiangxi | 14.0631 | 52 | 0.64 | 2.6 |
Guizhou | 508.0349 | 295 | 0.81 | 3.3 |
Chongqing 1 | 20.45 | 80 | 3.65 | 14.2 |
Sichuan 2 | 117.7701 | 32 | 1.31 | 5.5 |
Xinjiang | 1136.2286 | 200 | 0.03 | 0.1 |
Qinghai | 42.3046 | 22 | 0.10 | 0.4 |
Tibet | 0.9273 | 50 | 0.37 | 1.5 |
Coal-Distribution Area | Sample Number | Mean (μg/g) | Coal Reserve Percentage (%) |
---|---|---|---|
Northeastern area | 407 | 0.16 | 12.8 |
Northern area | 1547 | 0.19 | 65.4 |
Northwest area | 222 | 0.04 | 12 |
Southern area | 709 | 1.21 | 9.6 |
Tibet–Western Yunnan area | 114 | 0.65 | 0.06 |
Coal-Forming Period | Sample Number | Mean (μg/g) | Coal Reserve Percentage (%) |
---|---|---|---|
C2–P1 | 973 | 0.29 | 38.0 |
P2 | 663 | 1.27 | 7.5 |
J1–2 | 1082 | 0.07 | 12.1 |
J3–K1 | 128 | 0.11 | 39.6 |
T3 | 80 | 0.33 | 0.4 |
E–N | 73 | 0.87 | 2.3 |
Coalfields/Province | St,d 1 | CC | Coal-Distribution Area | Period | Reference |
---|---|---|---|---|---|
Chenxi/Hunan | 9.48 | 20.0 | Southern | P2 | Li et al. [10] |
Southwest Guizhou | 6.98 | 9.8 | Southern | P2 | Song et al. [75] |
Moxinpo/Chongqing | 2.89 | 124.8 | Southern | P2 | Dai et al. [11] |
Shiping/Sichuan | 2.79 | 23.6 | Southern | P2 | Luo et al. [84] |
Yanshan/Yunnan | 10.65 | 8.3 | Southern | P2 | Dai et al. [89] |
Yishan/Guangxi | 8.74 | 6.2 | Southern | P2 | Dai et al. [68] |
Heshan/Guangxi | 7.9 | 2.6 | Southern | P2 | Dai et al. [21] |
Fusui/Guangxi | 6.56 | 3.4 | Southern | P2 | Dai et al. [67] |
Guxu/Yunnan | 2.73 | 2.2 | Southern | P2 | Dai et al. [91] |
Zhijin/Guizhou | 1.15 | 2.1 | Southern | P2 | Dai et al. [74,120] |
Laochang/Yunnan | >2.5 | 2.4 | Southern | P2 | Tang et al. [15], Yang [121] |
Xuanwei/Yunnan | 0.18 | 5.0 | Southern | P2 | Dai et al. [90] |
Lincang/Yunnan | 1.78 | 3.9 | Tibet–Western Yunnan | P2 | Dai et al. [102] |
Shizuishan/Ningxia | 3.13 | 2.4 | Northern | C2–P1 | Song et al. [37] |
Baijigou/Ningxia | 0.14 | 4.9 | Northern | C2–P1 | Song et al. [37] |
Rujigou/Ningxia | 0.08 | 4.6 | Northern | J1–2 | Song et al. [37] |
Chenjiashan/Shaanxi | - | 6.8 | Northern | J1–2 | Yang et al. [45] |
Fanci and Yuanqu/Shanxi | - | 8.8 | Northern | E–N | Zhang et al. [41] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Huang, W.; Chen, P.; Tang, S.; Chen, X. Concentration and Distribution of Cadmium in Coals of China. Minerals 2018, 8, 48. https://doi.org/10.3390/min8020048
Shi J, Huang W, Chen P, Tang S, Chen X. Concentration and Distribution of Cadmium in Coals of China. Minerals. 2018; 8(2):48. https://doi.org/10.3390/min8020048
Chicago/Turabian StyleShi, Jing, Wenhui Huang, Ping Chen, Shuheng Tang, and Xiuyan Chen. 2018. "Concentration and Distribution of Cadmium in Coals of China" Minerals 8, no. 2: 48. https://doi.org/10.3390/min8020048
APA StyleShi, J., Huang, W., Chen, P., Tang, S., & Chen, X. (2018). Concentration and Distribution of Cadmium in Coals of China. Minerals, 8(2), 48. https://doi.org/10.3390/min8020048