Comprehensive Analysis of External Dependency in Terms of Material Criticality by Employing Total Material Requirement: Sulfuric Acid Production in Japan as a Case Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electricity Generation
3.2. Manufacturing Processes of Sulfuric Acid Production in Japan
3.2.1. Metal Sulfide Roasting and Smelting (MSRS)
3.2.2. Sulfur Combustion (SC)
3.2.3. Overall Sulfuric Acid
3.2.4. Sensitivity Analysis
3.3. Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Organization for Economic Co-operation and Development (OECD). Material Resources, Productivity and the Environment; OECD: Paris, France, 2013; Available online: http://www.oecd.org/greengrowth/MATERIAL%20RESOURCES,%20PRODUCTIVITY%20AND%20THE%20ENVIRONMENT_key%20findings.pdf (accessed on 25 April 2017).
- Lutter, S.; Lieber, M.; Giljum, S. Global Material Flow Database; Technical Report, Version 2015.1; Vienna University of Economics and Business: Vienna, Austria, 2015; Available online: http://www.materialflows.net/fileadmin/docs/materialflows.net/WU_MFA_Technical_report_2015.1_final.pdf (accessed on 25 April 2017).
- Organization for Economic Co-operation and Development (OECD). OECD Environmental Outlook to 2050; OECD: Paris, France, 2011; Available online: http://www.oecd.org/environment/indicators-modelling-outlooks/49082173.pdf (accessed on 25 April 2017).
- Roelich, K.; Dawson, D.A.; Purnell, P.; Knoeri, C.; Revell, R.; Busch, J.; Steinberger, J.K. Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity. Appl. Energy 2014, 123, 378–386. [Google Scholar] [CrossRef]
- Erdmann, L.; Graedel, T.E. Criticality of non-fuel minerals: A review of major approaches and analyses. Environ. Sci. Technol. 2011, 45, 7620–7630. [Google Scholar] [CrossRef] [PubMed]
- Glöser, S.; Espinoza, L.T.; Grandenberger, C.; Faulstich, M. Raw material criticality in the contextof classic risk assessment. Resour. Policy 2015, 44, 35–46. [Google Scholar] [CrossRef]
- Nassar, N.T.; Barr, R.; Browning, M.; Diao, Z.; Friedlander, E.; Harper, E.M.; Henly, C.; Kavlak, G.; Kwatra, S.; Jun, C.; et al. Criticality of the geological copper family. Environ. Sci. Technol. 2012, 46, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Graedel, T.E.; Barr, R.; Chandler, C.; Chase, T.; Choi, J.; Christoffersen, L.; Friedlander, E.; Henly, C.; Jun, C.; Nassar, N.T.; et al. Methodology of metal criticality determination. Environ. Sci. Technol. 2012, 46, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Graedel, T.E.; Nuss, P. Employing considerations of criticality in product design. JOM 2014, 66, 2360–2366. [Google Scholar] [CrossRef]
- Nassar, N.T.; Du, X.; Graedel, T.E. Criticality of the rare earth elements. J. Ind. Ecol. 2015, 19, 1044–1054. [Google Scholar] [CrossRef]
- European Commission. Critical Raw Materials for the EU, Brussel; European Commission: Brussel, Belgium, 2010; Available online: http://www.euromines.org/files/what-we-do/sustainable-development-issues/2010-report-critical-raw-materials-eu.pdf (accessed on 25 April 2017).
- European Commission. Tracking the Challenges in Commodity Markets and on Raw Materials, COM; European Commission: Brussel, Belgium, 2011; Available online: http://www.insg.org/presents/Mr_Anciaux_Apr11.pdf (accessed on 25 April 2017).
- Blengini, G.A.; Nuss, P.; Dewulf, J.; Nita, V.; Peirò, L.T.; Vidal-Legaz, B.; Latunussa, C.; Mancini, L.; Blagoeva, D.; Pennington, D.; et al. EU methodology for critical raw materials assessment: Policy needs and proposed solutions for incremental improvements. Resour. Policy 2017, 53, 12–19. [Google Scholar] [CrossRef]
- Malinauskiene, M.; Kliopova, I.; Hugi, C.; Staniškis, J.K. Geostrategic supply risk and economic importance as drivers for implementation of industrial ecology measures in a nitrogen fertilizer production company. J. Ind. Ecol. 2017. [Google Scholar] [CrossRef]
- Hatayama, H.; Tahara, K. Criticality assessment of metals for Japan’s resource strategy. Mater. Trans. 2015, 56, 229–235. [Google Scholar] [CrossRef]
- Goe, M.; Gaustad, G. Identifying critical materials for photovoltaics in the US: A multi-metric approach. Appl. Energy 2014, 123, 387–396. [Google Scholar] [CrossRef]
- New Energy and Industrial Technology Development Organization (NEDO). Trend Report of Development in Materials for Substitution of Scarce Metals; Report No. 08007835-0 08007838-0; Shinko Research Co. Ltd.: Tokyo, Japan, 2009. [Google Scholar]
- Rosenau-Tornow, D.; Buchholz, P.; Riemann, A.; Wagner, M. Assessing the long-term supply risks for raw materials—A combined evaluation of past and future trends. Resour. Policy 2009, 34, 161–175. [Google Scholar] [CrossRef]
- Dewulf, J.; Blengini, G.A.; Pennington, D.; Nuss, P.; Nassar, N.T. Criticality on the international scene: Quo vadis? Resour. Policy 2016, 50, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.L.; Tzimas, E.; Kara, H.; Willis, P.; Kooroshy, J. The potential risks from metals bottlenecks to the deployment of Strategic Energy Technology. Energy Policy 2013, 55, 556–564. [Google Scholar] [CrossRef]
- Achzet, B.; Helbig, C. How to evaluate raw material supply risk—An overview. Resource Policy 2013, 38, 435–447. [Google Scholar] [CrossRef]
- Behrens, A.; Giljum, S.; Kovanda, J.; Niza, S. The material basis of the global economy: Worldwide patterns of natural resource extraction and their implications for sustainable resource use policies. Ecol. Econ. 2007, 64, 444–453. [Google Scholar] [CrossRef]
- Henckens, M.L.C.M.; Driessen, P.P.J.; Ryngaert, C.; Worrell, E. The set-up of international agreement on the conservation and sustainable use of geologically scarce mineral resources. Resour. Policy 2016, 49, 92–101. [Google Scholar] [CrossRef]
- Le Billion, P. The political ecology of war: Natural resources and armed conflicts. Political Geogr. 2001, 20, 561–584. [Google Scholar] [CrossRef]
- Bleischwitz, R.; Dittrich, M.; Pierducca, C. Coltan from Central Africa, international trade and implications for any certification. Resour. Policy 2012, 37, 19–29. [Google Scholar] [CrossRef]
- Hollins, O. Material Security—Ensuring Resource Availability for the UK Economy; C-Tech Innovation: Capenhurst, UK, 2008; Available online: http://www.oakdenehollins.com/pdf/material_security.pdf (accessed on 16 May 2017).
- U.S. National Research Council. Minerals, Critical Minerals, and the U.S. Economy; National Academic Sciences: Washington, DC, USA, 2008; Available online: http://trade.ec.europa.eu/doclib/docs/2008/october/tradoc_140822.pdf (accessed on 25 April 2017).
- Thomason, J.S.; Atwell, R.J.; Bajiraktari, Y.; Bell, J.B.; Barnett, D.S.; Karvonides, N.S.J.; Niles, M.F.; Schwartz, E.L. From national Defense Stockpile (NDS) to Strategic Materials Security Program (SMSP): Evidence and Analytic Support; IDA Paper P-4593; Institute for Defense Analyses: Alexandria, VA, USA, 2010; Volume 1. [Google Scholar]
- Henßler, M.; Bach, V.; Berger, M.; Finkbeiner, M.; Ruhland, K. Resource efficiency assessment-comparing a plug-in hybrid with a conventional combustion engine. Resources 2016, 5, 5. [Google Scholar] [CrossRef]
- Yamasue, E.; Minamino, R.; Tanikawa, H.; Daigo, I.; Okumura, H.; Ishihara, K.; Brunner, P.H. Quality Evaluation of Steel, Aluminum, and Road Material Recycled from End-of-Life Urban Building in Japan in Terms of Total Material Requirement. J. Ind. Ecol. 2013, 17, 555–565. [Google Scholar] [CrossRef]
- Adriaanse, A.; Bringezu, S.; Hammond, A.; Moriguchi, Y.; Rodenburg, R.D.; Schütz, H. Resources Flows: The Material Basis of Industrial Economies; World Resources Institute: Washington, DC, USA, 1997. [Google Scholar]
- Eurostat; Statistical Office of the European Communities. Economywide Material Flow Accounts and Derived Indicators (Edition 2000). A Methodological Guide; European Communities: Luxembourg, 2000. [Google Scholar]
- Kalmykova, Y.; Plme, U.; Fedje, K.K.; Yu, S. Total material requiement assessment of phosphorous sources from phosphate ore and urban sinks: Sewage sludge and MSW incineration fly ash. Int. J. Environ. Res. 2015, 9, 561–566. [Google Scholar]
- Yamasue, E.; Matsubae, K.; Nakajima, K.; Hshimoto, S.; Nagasaka, T. Using total material requirement to evaluate the potential for recyclability of phosphorous in steelmaking dephosphorization slag. J. Ind. Ecol. 2013, 17, 722–730. [Google Scholar] [CrossRef]
- Matsubae-Yokoyama, K.; Kubo, H.; Nakajima, K.; Nagasaka, T. A material flow analysis of phosphorus in Japan: The iron and steel industry as a major phophorous source. J. Ind. Ecol. 2009, 13, 687–705. [Google Scholar] [CrossRef]
- Yamasue, E.; Matsubae, K.; Nakajima, K.; Daigo, I.; Ishihara, K.N. Total material requirement of scrap steel from end-of-life vehicle. J. Iron Steel Inst. Jpn. 2014, 100, 778–787. [Google Scholar] [CrossRef]
- Nuss, P.; Gardner, K.H.; Bringezu, S. Environmental implications and costs of municipal solid waste-derived ethylene. J. Ind. Ecol. 2013, 17, 912–925. [Google Scholar] [CrossRef]
- Carruth, M.A.; Allwood, J.M.; Moynihan, M.C. The technical potential for reducing metal requirements through lightweight product design. Resour. Conserv. Recycl. 2011, 57, 48–60. [Google Scholar] [CrossRef]
- Saurat, M.; Bringezu, S. Platinum group metal flows of Europe, part 1: Global supply, use in industry, and shifting of environmental impacts. J. Ind. Ecol. 2008, 12, 754–767. [Google Scholar] [CrossRef]
- Dai, J.; Chen, B. Materials flows analysis of fossil fuels in China during 2000–2007. Procedia Environ. Sci. 2010, 2, 1818–1926. [Google Scholar] [CrossRef]
- Bringezu, S.; Schütz, H.; Steger, S.; Baudisch, J. International comparison of resource use and its relation to economic growth: The development of total material requirement, direct material inputs and hidden flows and the structure of TMR. Eclo. Econ. 2004, 52, 97–124. [Google Scholar] [CrossRef]
- Garmendia, E.; Urkidi, L.; Arto, I.; Barcena, I.; Bermejo, R.; Hoyos, D.; Lago, R. Tracing the impacts of a northern open economy on the global environment. Ecol. Econ. 2016, 126, 169–181. [Google Scholar] [CrossRef]
- Arto, I. Using total material requirement to reduce the global environmental burden. J. Ind. Ecol. 2009, 13, 775–790. [Google Scholar] [CrossRef]
- Graedel, T.E.; Reck, B.K. Six years of criticality assessments: what have we learned so far? J. Ind. Ecol. 2015, 20, 692–699. [Google Scholar] [CrossRef]
- Harper, E.M.; Kavlak, G.; Burmeister, L.; Eckelman, M.J.; Erbis, S.; Espinoza, V.S.; Nuss, P.; Graedel, T.E. Criticality of the geological zinc, tin, and lead family. J. Ind. Ecol. 2015, 19, 628–644. [Google Scholar] [CrossRef]
- Kolotzek, C.; Helbig, C.; Thorenz, A.; Reller, A.; Tuma, A. A company-oriented model for the assessment of raw material supply risks, environmental impact and social implications. J. Clean. Prod. 2018, 176, 566–580. [Google Scholar] [CrossRef]
- Bach, V.; Berger, M.; Henssler, M.; Kirchner, M.; Leiser, S.; Mohr, L.; Rother, E.; Ruhland, K.; Schneider, L.; Tikana, L.; et al. Integrated method to assess resource efficiency—ESSENZ. J. Clean. Prod. 2016, 137, 118–130. [Google Scholar] [CrossRef]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in life cycle assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Mudd, G.M. Global trends and environmental issues in nickel mining: Sulfides versus laterites. Ore Geol. Rev. 2010, 38, 9–26. [Google Scholar] [CrossRef]
- Prior, T.; Giurco, D.; Mudd, G.M.; Mason, L.; Behrisch, J. Resource depletion, peak minerals and the implications for sustainable resource management. Glob. Environ. Chang. 2012, 22, 577–587. [Google Scholar] [CrossRef]
- Mudd, G.M. Gold mining in Australia: Linking historical trends and environmental and resources sustainability. Environ. Sci. Policy 2007, 10, 629–644. [Google Scholar] [CrossRef]
- Bridge, G. Contested terrain: Mining and the environment. Annu. Rev. Environ. Resour. 2004, 29, 205–259. [Google Scholar] [CrossRef]
- Morley, N.; Eartherley, D. Material Security: Ensuring Resource Availability to the UK Economy; Oakedene Hollins; C-Tech Innovation Ltd.: Chester, UK, 2008. [Google Scholar]
- Hischier, R.; Weidema, B.; Althaus, H.; Bauer, C.; Doka, G.; Dones, R.; Frischknecht, R.; Hellweg, S.; Humbert, S.; Jungbluth, N.; et al. Implementation of Life Cycle Impact Assessment Methods. 2007. Available online: http://esu-services.ch/fileadmin/download/publicLCI/03_LCIA-Implementation.pdf (accessed on 16 October 2017).
- Northey, S.; Mohr, S.; Mudd, G.M.; Weng, Z.; Giurco, D. Modeling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 2014, 83, 190–201. [Google Scholar] [CrossRef]
- Norgate, T.; Haque, N. Energy and greenhouse gas impacts of mining and mineral processing operations. J. Clean. Prod. 2010, 18, 266–274. [Google Scholar] [CrossRef]
- De Vries, M.; de Boer, I.J.M. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Hatayama, H.; Tahara, K. Evaluating the sufficiency of Japan’s mineral resource entitlements for supply risk mitigation. Resour. Policy 2015, 44, 72–80. [Google Scholar] [CrossRef]
- Prime Minister of Japan and His Cabinet. Resource Securement Strategy; Prime Minister of Japan and His Cabinet: Tokyo, Japan, 2012; Available online: http://www.kantei.go.jp/jp/singi/package/dai15/sankou01.pdf (accessed on 27 April 2017).
- Ashar, N.G.; Golwalkar, K.R. A Practical Guide to the Manufacture of Sulfuric Acid, Oleums, and Sulfonating Agents; Springer: Berlin, Germany, 2013; Available online: http://www.springer.com/978-3-319-02041-9 (accessed on 13 May 2017).
- Merchant Research and Consulting Ltd. Sulfuric Acid Market in Japan: 2017–2021 Review; Merchant Research and Consulting Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Messick, D.L. World Sulphur Outlook. 2012. Available online: http://www.firt.org/sites/default/files/DonMessick_Sulphur_Outlook.pdf (accessed on 7 September 2017).
- The Federation of Electric Power Company in Japan. Graphical Filp-chart of Nuclear & Energy Related Topics 2011; The Federation of Electric Power Company in Japan: Tokyo, Japan, 2011; Available online: http://www.fepc.or.jp/library/pamphlet/zumenshu/pdf/all_english.pdf (accessed on 9 May 2017).
- UN Comtrade. Mineral Fuels, Oils, Distillation Products; UN Comtrade: New York, NY, USA, 2016; Available online: https://comtrade.un.org/ (accessed on 8 April 2017).
- Nakajima, K.; Ijima, K.; Halada, K. Estimation of Total Material Requirement: Energy Resources and Industrial Materials; NIMS-EMS Material Data for the Environment, No. 10; National Institute for Materials Science: Tsukuba, Japan, 2006. Available online: http://www.nims.go.jp/genso/0ej00700000039eq-att/0ej00700000039of.pdf (accessed on 11 May 2017).
- BAng, W.; Choong, W.L.; Ng, T.S. Energy security: Definitions, dimensions and indexes. Renew. Sustain. Energy Rev. 2015, 42, 1077–1093. [Google Scholar]
- The World Bank Group. Worldwide Governance Indicators. 2017. Available online: http://info.worldbank.org/governance/wgi/index.aspx#home (accessed on 10 May 2017).
- Lefevre, N. Measuring the energy security implications of fossil fuel resource concentration. Energy Policy 2010, 38, 1635–1644. [Google Scholar] [CrossRef]
- Japan Environmental Management Association for Industry. JEMAI-LCA Pro. 2005. Available online: http://www.jemai.or.jp/ (accessed on 12 May 2017).
- Halada, K.; Iijima, K.; Natagiri, N.; Okura, T. An approximate estimation of total material requirement of metals. J. Japan Inst. Met. Mater. 2001, 65, 564–670. [Google Scholar] [CrossRef]
- Wuppertal Institut for Climate, Environment and Energy. Material Intensity of Materials, Fuels, Transport Services, Food; Wuppertal Institut: Wuppertal, Germany, 2011. [Google Scholar]
- Uchiyama, Y.; Yamamoto, H. Energy Analysis on Power Generation Plants; Economic Research Center, Rep. No. Y90015; Central Research Institute of Electric Power Industry: Tokyo, Japan, 1991. [Google Scholar]
- The Sulfxuric Acid Association in Japan. Sulfuric Acid Demand and Supply. 2017. Available online: http://www.ryusan-kyokai.org/ (accessed on 20 July 2017). (In Japanese).
- Franks, D.; Brereton, D.; Moran, C.J. Managing the cumulative impacts of coal mining on regional communities and environments in Australia. Impact Assess. Proj. Apprais. 2010, 28, 299–312. [Google Scholar] [CrossRef]
- Brereton, D.; Forbes, P. Monitoring the impact of mining on local communities: A Hunter Valley case study. In Proceedings of the Minerals Council of Australia Inaugural Sustainable Development Conference, Melbourne, Australia, 26–28 October 2004. [Google Scholar]
- Ministry of Finance. Trade Statistics of Japan. 2017. Available online: http://www.customs.go.jp/toukei/info/index_e.htm (accessed on 11 July 2017).
- Ogawa, M.; Kato, M.; Majima, M.; Awazu, T.; Yata, H.; Ooe, M. Copper Recycling Technique Using Electrochemical Processes. SEI Tech. Rev. 2017, 190, 84–87. [Google Scholar]
- Frias, C.; Mejias, A.; Martin, D.; Diaz, G. Solvent Extraction Applied to Mixed Copper and Zinc Bearing Materials. 2010. Available online: https://ddtp.tecnicasreunidas.es/wp-content/uploads/2016/11/P-Solutions-for-primary-zinc-materials-MIXED-ORES.pdf (accessed on 21 December 2017).
Content | Subscript/Abbreviation | Unit |
---|---|---|
Number of input materials | j | - |
Number of output products | k | - |
Producing country | c | - |
Quantity of input material | kg, L, m3 | |
Quantity of output product | M | kg, L, m3 |
Quantity on a TMR basis | kg-TMR | |
Specific TMR | kg-TMR/kg, kg-TMR/L, kg-TMR/m3 | |
Unit price of product | $/kg | |
Allocation rate | - |
Energy Source | Share in Energy Mix (%) | Specific TMR (kg-TMR/kWh) |
---|---|---|
Oil | 13 | 1.738 |
Natural gas | 28 | 0.310 |
Coal | 25 | 4.761 |
Nuclear | 26 | 0.454 |
Hydro | 8 | 0 |
Electricity Generation | Quantity on a TMR Basis | ||||
---|---|---|---|---|---|
Ranking | Country | Share (%) | Ranking | Country | Share (%) |
1 | Australia | 25.9 | 1 | Australia | 46.9 |
2 | Indonesia | 9.36 | 2 | Indonesia | 14.1 |
3 | Canada | 8.58 | 3 | China | 6.88 |
4 | Japan | 7.68 | 4 | Canada | 6.10 |
5 | United Arab Emirates | 5.91 | 5 | Russian Federation | 4.96 |
6 | Saudi Arabia | 5.05 | 6 | Saudi Arabia | 4.01 |
7 | Qatar | 4.71 | 7 | United Arab Emirates | 3.72 |
8 | Malaysia | 4.48 | 8 | Qatar | 2.00 |
9 | Namibia | 3.94 | 9 | Iran, Islamic Republic | 1.53 |
10 | Niger | 3.93 | 10 | Kuwait | 1.18 |
MSRS Process | Quantity (kg) | Quantity on a TMR Basis (kg-TMR) | Specific TMR (kg-TMR/kg) |
---|---|---|---|
Sulfuric acid based on matte production | 1.66 | 17.1 | 10.3 |
Sulfuric acid based on conversion | 1.00 | 7.03 | 7.01 |
Sulfuric acid by the MSRS | - | - | 9.05 |
SC Process | Quantity (kg) | Quantity on A TMR Basis (kg-TMR) | Specific TMR (kg-TMR/kg) |
---|---|---|---|
Sulfur by SC | 0.195 | 0.406 | 2.08 |
Sulfuric acid by SC | 1.00 | 1.36 | 1.36 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosai, S.; Hashimoto, S.; Matsubae, K.; McLellan, B.; Yamasue, E. Comprehensive Analysis of External Dependency in Terms of Material Criticality by Employing Total Material Requirement: Sulfuric Acid Production in Japan as a Case Study. Minerals 2018, 8, 114. https://doi.org/10.3390/min8030114
Kosai S, Hashimoto S, Matsubae K, McLellan B, Yamasue E. Comprehensive Analysis of External Dependency in Terms of Material Criticality by Employing Total Material Requirement: Sulfuric Acid Production in Japan as a Case Study. Minerals. 2018; 8(3):114. https://doi.org/10.3390/min8030114
Chicago/Turabian StyleKosai, Shoki, Seiji Hashimoto, Kazuyo Matsubae, Benjamin McLellan, and Eiji Yamasue. 2018. "Comprehensive Analysis of External Dependency in Terms of Material Criticality by Employing Total Material Requirement: Sulfuric Acid Production in Japan as a Case Study" Minerals 8, no. 3: 114. https://doi.org/10.3390/min8030114
APA StyleKosai, S., Hashimoto, S., Matsubae, K., McLellan, B., & Yamasue, E. (2018). Comprehensive Analysis of External Dependency in Terms of Material Criticality by Employing Total Material Requirement: Sulfuric Acid Production in Japan as a Case Study. Minerals, 8(3), 114. https://doi.org/10.3390/min8030114