Looking Like Gold: Chlorite and Talc Transformation in the Golden Slip Ware Production (Swat Valley, North-Western Pakistan)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Ceramic Body
- fine paste: in which inclusions are scarce, with a c:f (coarse:fine) ratio of 20:80, mainly composed by silt-sized angular crystals of quartz, associated to rare plagioclase, opaque minerals and mica flakes (muscovite and biotite), and fine sand-sized fragments of rounded quartzite (Figure 2a), embedded into an optically active micromass with a speckled b-fabric (birefringent fabric); scarce pores as vughs and channels occur in the groundmass;
- quartzite-rich paste: with inclusions with a c:f ratio of about 40:60, showing a bi-modal grain-size distribution, with silt-sized fraction composed predominantly by quartz associated to scarce plagioclase, opaque minerals and white and brown micas, showing a grain-size gap with the coarse sand-sized fragments of quartzite (Figure 2b); the groundmass is characterised by a higher porosity, with vughs and channels reaching larger size than in the fine paste;
- amphibolite-rich paste: characterised by abundant inclusions (c:f ratio of about 40:60), with a bimodal grain-size distribution, in which silty and fine sand-sized grains predominantly of quartz and associated plagioclase, opaque minerals and micas flakes showing a grain-size gap with the sand-sized fragments of amphibolite (Figure 2c); also in this case the porosity is higher and reaches larger size than in the fine paste.
3.2. The Slip
3.3. Firing Experiments
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Rye, O. Pottery Technology: Principles and Reconstruction; Taraxacum Inc.: Washington, DC, USA, 1981; ISBN 978-0960282227. [Google Scholar]
- Santacreu, A.D.; Trias, C.M.; Rosselló, G.J. Formal Analysis and Typological Classification in the Study of Ancient Pottery. In The Oxford Handbook of Archaeological Ceramic Analysis; Oxford Handbooks in Archaeology: Oxford, UK, 2016; ISBN 978-0199681532. [Google Scholar]
- Schreiber, T. Athenian Vase Construction—A Potter’s Analysis; The J. Paul Getty Museum: Malibu, CA, USA, 1999; ISBN 978-0892364664. [Google Scholar]
- Mirguet, C.; Dejoie, C.; Roucau, C.; De Parseval, P.; Teat, S.J.; Sciau, P. Nature and Microstructure of Gallic Imitations of Sigillata Slips from the La Graufesenque Workshop. Archaeometry 2009, 51, 748–762. [Google Scholar] [CrossRef]
- Leon, Y.; Sciau, P.; Goudeau, P.; Tamura, N.; Webb, S.; Mehta, A. The Nature of Marbled Terra Sigillata Slips: A Combined μXRF and μXRD Investigation. Appl. Phys. A Mater. Sci. Proc. 2010, 99, 419–425. [Google Scholar] [CrossRef]
- Meirer, F.; Liu, Y.; Pouyet, E.; Fayard, B.; Cotte, M.; Sanchez, C.; Andrews, J.C.; Mehta, A.; Sciau, P. Full-field XANES Analysis of Roman Ceramics to Estimate Firing Conditions: A Novel Probe to Study Hierarchical Heterogeneous Materials. J. Anal. At. Spectrom. 2013, 28, 1870–1883. [Google Scholar] [CrossRef]
- Olivieri, L.M. The Last Phases at Barikot: Domestic Cults and Preliminary Chronology. Data from the 2012 Excavation Campaign in Swat. J. Inner Asian Art Archaeol. 2015, 6, 1–40. [Google Scholar] [CrossRef]
- Olivieri, L.M. The Last Phases at Barikot: Urban Cults and Sacred Architecture. Data from the Spring 2013 Excavation Campaign in Swat. J. Inner Asia Art Archaeol. 2017, 7, 7–30. [Google Scholar] [CrossRef]
- Olivieri, L.M. Physiology and meaning of pottery deposits in urban contexts (Barikot, Swat): Archaeological fieldnotes with an addendum on the lásana/λάσανα pottery forms. Ancient Pakistan 2018, in press. [Google Scholar]
- Callieri, P.; Olivieri, L.M. Ceramics from the Excavations in the Historic Settlement at Bīr-koṭ-ghwaṇḍai (Barikot), Swat, Pakistan (1984–1992), ACT-Field School Reports and Memoirs, Special Volume, 2; Sang-e-Meel Publications: Lahore, Pakistan, 2018; in press. [Google Scholar]
- Allchin, F.R. Technical Description and Evaluation of the Pots and Potsherds. In Ancient Buddhist Scrolls from Gandhāra. The British Library Kharoṣṭhī Fragments; Salomon, R., Ed.; University of Washington Press: Seattle, WA, USA, 1999; pp. 183–187. ISBN 978-0295977690. [Google Scholar]
- Whitbread, I.K. A proposal for the systematic description of thin sections towards the study of ancient ceramic technology. In Archaeometry: Proceedings of the 25th International Symposium; Maniatis, Y., Ed.; Elsevier: Amsterdam, The Netherlands, 1989; pp. 127–138. [Google Scholar]
- Whitbread, I.K. Greek Transport Amphorae—A Petrological and Archaeological Study; Fitch Laboratory Occasional Paper; British School at Athens: Athina, Greece, 1995; Volume 4, ISBN 9780904887136. [Google Scholar]
- Quinn, P.S. Ceramic Petrography: The Interpretation of Archaeological Pottery & Related Artefacts in Thin-Sections; Archaeopress: Oxford, UK, 2013; ISBN 978-1905739592. [Google Scholar]
- Fauth, F.; Peral, I.; Popescu, C.; Knapp, M. The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffr. 2013, 28, S360–S370. [Google Scholar] [CrossRef]
- Rius, J.; Labrador, A.; Crespi, A.; Frontera, C.; Vallcorba, O.; Melgarejo, J.C. Capabilities of through-the-substrate microdiffraction: Application of Patterson-function direct methods to synchrotron data from polished thin sections. J. Synchrotron Radiat. 2011, 18, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Rius, J.; Vallcorba, O.; Frontera, C.; Peral, I.; Crespi, A.; Miravitlles, C. Application of synchrotron through-the-substrate microdiffraction to crystals in polished thin sections. IUCrJ 2015, 2, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Vallcorba, O.; Casas, L.; Colombo, F.; Frontera, C.; Rius, J. First terrestrial occurrence of the complex phosphate chladniite: Crystal-structure refinement by synchrotron through-the-substrate microdiffraction. Eur. J. Mineral. 2017, 29, 287–293. [Google Scholar] [CrossRef]
- Maritan, L.; Nodari, L.; Mazzoli, C.; Milano, A.; Russo, U. Influence of firing conditions on ceramic products: Experimental study on clay rich in organic matter. Appl. Clay Sci. 2006, 31, 1–15. [Google Scholar] [CrossRef]
- Gosselain, O.P. Bonfire of the enquiries: Pottery firing temperatures in archaeology: What for? J. Archaeol. Sci. 1992, 19, 243–259. [Google Scholar] [CrossRef]
- Gualtieri, A.; Bellotto, M.; Artioli, G.; Clark, M. Kinetic study of the kaolinite mullite reaction sequence. Part I: Kaolinite dehydroxylation. Phys. Chem. Miner. 1995, 22, 207–214. [Google Scholar] [CrossRef]
- Aras, A. The change of phase composition in kaolinite- and illite-rich clay-based ceramic bodies. Appl. Clay Sci. 2004, 24, 257–269. [Google Scholar] [CrossRef]
- Nodari, L.; Marcuz, E.; Maritan, L.; Mazzoli, C.; Russo, U. Hematite nucleation and growth in the firing of carbonate-rich clay for pottery production. J. Eur. Ceram. Soc. 2007, 27, 4665–4673. [Google Scholar] [CrossRef]
- Cultrone, G.; Sebastián, E.; Elert, K.; de la Torre, M.J.; Cazalla, O.; Rodriguez-Navarro, C. Influence of mineralogy and firing temperature in the porosity of bricks. J. Eur. Ceram. Soc. 2004, 34, 547–564. [Google Scholar] [CrossRef]
- Faccenna, C.; Lorenzoni, S.; Olivieri, L.M.; Zanettin Lorenzoni, E. Geo-archaeology of the Swat valley (NWFP, Pakistan) in the Charbagh-Barikot Stretch: Primary note. East West 1993, 41, 1–4. [Google Scholar]
- Bayley, S.W. X-ray diffraction identification on the politypes of mica, serpentine and chlorite. Clays Clay Miner. 1988, 36, 193–213. [Google Scholar] [CrossRef]
- Hey, M.H. A review of the chlorites. Mineral. Mag. 1954, 30, 277–292. [Google Scholar] [CrossRef]
- Riccardi, M.P.; Messiga, B.; Duminuco, P. An approach to the dynamics of clay firing. Appl. Clay Sci. 1999, 15, 393–409. [Google Scholar] [CrossRef]
- Ewel, R.H.; Bunting, E.N.; Geller, R.F. Thermal decomposition of talc. J. Res. Natl. Bur. Stand. 1935, 15, 551–556. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock Forming Minerals, 3rd ed.; Longman Scientific & Technical: New York, NY, USA, 2013; ISBN 978-0903056274. [Google Scholar]
- Deldicque, D.; Rouzaud, J.N.; Velde, B. A Raman e HRTEM study of the carbonization of wood: A new Raman-based paleothermometer dedicated to archaeometry. Carbon 2016, 102, 319–329. [Google Scholar] [CrossRef]
Sample | Macrophase (Chronology) | Slip | Ceramic Body Paste |
---|---|---|---|
BKG 11 B-13-1078 | VIII/5b | chlorite-talc schist * (Tlc, Qz, Ill/Ms, Amp) (Tlc) [Tlc, Carb] 800–850 °C | amphibolite-rich (Qz, Fds, Ill/Ms, Amp, Hem) 750–900 °C |
BKG 11 K-105-1372 | VI/4b | chlorite-talc schist * (Tlc, En, Qz, Amp, Fds) (Tlc, En, Fo) [Tlc, Carb] 800–850 °C | amphibolite-rich (Qz, Amp, Fds, Ill/Ms) 750–900 °C |
BKG 11 K-105-1373 | chlorite-talc schist * (Ill/Ms, Qz, Fds) (Ill/Ms) [Carb, Ms] 850–900 °C | quartzite-rich (Qz, Fds, Ill/Ms) 750–900 °C | |
BKG 11 K-105-1663 | III/3a | chlorite-talc schist * (Qz, Fds) (En, Fo) [Carb, En] >900 °C | fine (Qz, Fds, Hem) >900 °C |
BKG 11 K-105-1673 | III/3a | chlorite-talc schist * [Carb, He] 800–850 °C | fine (Qz, Fds, Ill/Ms, Amp, Hem) 750–950 °C |
BKG 11 K-105-1687 | III/3a | chlorite-talc schist * (Tlc, Qz, Fds, Ill/Ms, Amp, Hem) [Tlc, Car] 800–850 °C | fine (Qz, Fds, Ill/Ms, Amp, Hem) 750–950 °C |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maritan, L.; Piovesan, R.; Dalconi, M.C.; Rius, J.; Crespi, A.; Vallcorba, O.; Casas, L.; Vidale, M.; Olivieri, L.M. Looking Like Gold: Chlorite and Talc Transformation in the Golden Slip Ware Production (Swat Valley, North-Western Pakistan). Minerals 2018, 8, 200. https://doi.org/10.3390/min8050200
Maritan L, Piovesan R, Dalconi MC, Rius J, Crespi A, Vallcorba O, Casas L, Vidale M, Olivieri LM. Looking Like Gold: Chlorite and Talc Transformation in the Golden Slip Ware Production (Swat Valley, North-Western Pakistan). Minerals. 2018; 8(5):200. https://doi.org/10.3390/min8050200
Chicago/Turabian StyleMaritan, Lara, Rebecca Piovesan, Maria Chiara Dalconi, Jordi Rius, Anna Crespi, Oriol Vallcorba, Lluís Casas, Massimo Vidale, and Luca Maria Olivieri. 2018. "Looking Like Gold: Chlorite and Talc Transformation in the Golden Slip Ware Production (Swat Valley, North-Western Pakistan)" Minerals 8, no. 5: 200. https://doi.org/10.3390/min8050200
APA StyleMaritan, L., Piovesan, R., Dalconi, M. C., Rius, J., Crespi, A., Vallcorba, O., Casas, L., Vidale, M., & Olivieri, L. M. (2018). Looking Like Gold: Chlorite and Talc Transformation in the Golden Slip Ware Production (Swat Valley, North-Western Pakistan). Minerals, 8(5), 200. https://doi.org/10.3390/min8050200