210Pb and 210Po in Geological and Related Anthropogenic Materials: Implications for Their Mineralogical Distribution in Base Metal Ores
Abstract
:1. Introduction
2. Crustal Distribution of 210Pb and 210Po
2.1. Magmatic Rocks and Related Hydrothermal Systems
2.2. Sedimentary Environments
3. 210Pb and 210Po from Anthropogenic Sources
3.1. 210Pb and 210Po in Uranium Mill Tailings
3.2. 210Pb and 210Po in Copper and Polymetallic Ores and Products of Their Mining and Processing
3.3. 210Pb and 210Po in Mining and Processing of Phosphates
3.4. 210Pb and 210Po Associated with Oil and Gas Production
3.5. 210Pb and 210Po from Combustion of Coal and Other Solid Fuels
3.6. 210Pb and 210Po from Exploitation of Mineral Sands
3.7. 210Pb and 210Po in Other Anthropogenic Materials
4. Mineral Repositories for 210Pb and 210Po
4.1. Re-Incorporation of Radionuclides into Parent Minerals
4.2. Migration and Precipitation as New Minerals
4.3. Sulphates, Carbonates, and Other Potential Hosts
4.4. Clay Minerals, Iron-Manganese-Oxides and Organics
5. Discussion
5.1. Geochemical Behaviour of Daughter Radionuclides
5.2. Research Trends and Future Directions
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lehto, J.; Hou, X. Chemistry and Analysis of Radionuclides–Laboratory Techniques and Methodology; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Cowart, J.B.; Burnett, W.C. The distribution of uranium and thorium decay-series radionuclides in the environment–A review. J. Environ. Q. 1994, 23, 651–662. [Google Scholar] [CrossRef]
- Strominger, D.; Hollander, J.M.; Seaborg, G.T. Table of isotopes. Rev. Mod. Phys. 1958, 30, 585. [Google Scholar] [CrossRef]
- Fry, C.; Thoennessen, M. Discovery of the thallium, lead, bismuth, and polonium isotopes. At. Data Nucl. Data Tables 2013, 99, 365–389. [Google Scholar] [CrossRef]
- Harrison, J.; Leggett, R.; Lloyd, D.; Phipps, A.; Scott, B. Polonium-210 as a poison. J. Radiol. Prot. 2007, 27, 17–40. [Google Scholar] [CrossRef] [PubMed]
- Figgins, P.E. The Radiochemistry of Polonium. National Academy of Sciences Nuclear Science Series; U.S. Atomic Energy Commission: Washington, DC, USA, 1961.
- Lane, D.J.; Cook, N.J.; Grano, S.R.; Ehrig, K. Selective leaching of penalty elements from copper concentrates: A review. Miner. Eng. 2016, 98, 110–121. [Google Scholar] [CrossRef]
- International Atomic Energy Agency (IAEA). Regulations for the Safe Transport of Radioactive Material; IAEA: Vienna, Austria, 2012. [Google Scholar]
- Parfenov, Y.D. Polonium 210 in the environment and in the human organism. At. Energy Rev. 1974, 12, 75–143. [Google Scholar] [PubMed]
- Coppin, F.; Roussel-Debet, S. Comportement du 210Po en milieu terrestre: Revue bibliographique. Radioprotection 2004, 39, 39–58. [Google Scholar] [CrossRef]
- Landa, E.R. Naturally occurring radionuclides from industrial sources: Characteristics and fate in the environment. Radioact. Environ. 2007, 10, 211–237. [Google Scholar]
- Persson, B.R.R.; Holm, E. Polonium-210 and lead-210 in the terrestrial environment: A historical review. J. Environ. Radioact. 2011, 102, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, M. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: A Review. J. Environ. Radioact. 2011, 102, 500–513. [Google Scholar] [CrossRef] [PubMed]
- Shannon, L.V.; Cherry, R.D.; Orren, M.J. Polonium-210 and lead-210 in the marine environment. Geochim. Cosmochim. Acta 1970, 34, 701–711. [Google Scholar] [CrossRef]
- Nozaki, Y.; Thomson, J.; Turekian, K.K. The distribution of 210Pb and 210Po in the surface waters of the Pacific Ocean. Earth Plan. Sci. Lett. 1976, 32, 304–312. [Google Scholar] [CrossRef]
- Bacon, M.P.; Brewer, P.G.; Spencer, D.W.; Murray, J.W.; Goddard, J. Lead-210, polonium-210, manganese and iron in the Cariaco Trench. Deep Sea Res. Part A Oceanogr. Res. Pap. 1980, 27, 119–135. [Google Scholar] [CrossRef]
- Bacon, M.P.; Huh, C.-A.; Fleer, A.P.; Deuser, W.G. Seasonality in the flux of natural radionuclides and plutonium in the deep Sargasso Sea. Deep Sea Res. Part A Oceanogr. Res. Pap. 1985, 32, 273–286. [Google Scholar] [CrossRef]
- González-Labajo, J.; Bolívar, J.P.; García-Tenorio, R. Natural radioactivity in waters and sediments from a Spanish mining river. Radiat. Phys. Chem. 2001, 61, 643–644. [Google Scholar] [CrossRef]
- Balistrieri, L.S.; Murray, J.W.; Paul, B. The geochemical cycling of stable Pb, 210Pb, and 210Po in seasonally anoxic Lake Sammamish, Washington, USA. Geochim. Cosmochim. Acta 1995, 59, 4845–4861. [Google Scholar] [CrossRef]
- Andrews, J.N.; Ford, D.J.; Hussain, N.; Trivedi, D.; Youngman, M.J. Natural radioelement solution by circulating groundwaters in the Stripa granite. Geochim. Cosmochim. Acta 1989, 53, 1791–1802. [Google Scholar] [CrossRef]
- Harada, K.; Burnett, W.C.; LaRock, P.A.; Cowart, J.B. Polonium in Florida groundwater and its possible relationship to the sulfur cycle and bacteria. Geochim. Cosmochim. Acta 1989, 53, 143–150. [Google Scholar] [CrossRef]
- Lehto, J.; Kelokaski, P.; Vaaramaa, K.; Jaakkola, T. Soluble and particle-bound 210Po and 210Pb in groundwaters. Radiochim. Acta 1999, 85, 149–155. [Google Scholar] [CrossRef]
- Seiler, R.L.; Stillings, L.L.; Cutler, N.; Salonen, L.; Outola, I. Biogeochemical factors affecting the presence of 210Po in groundwater. Appl. Geochem. 2011, 26, 526–539. [Google Scholar] [CrossRef]
- Ortega, X.; Vallés, I.; Serrano, I. Natural radioactivity in drinking water in Catalonia (Spain). Environ. Int. 1997, 22 (Suppl. 1), S347–S354. [Google Scholar] [CrossRef]
- Katzlberger, C.; Wallner, G.; Irlweck, K. Determination of 210Pb, 210Bi and 210Po in natural drinking water. J. Radioanal. Nucl. Chem. 2001, 249, 191–196. [Google Scholar]
- Skwarzec, B.; Strumińska, D.I.; Boryło, A. Radionuclides of 210Po, 234U and 238U in drinking bottled mineral water in Poland. J. Radioanal. Nucl. Chem. 2003, 256, 361–364. [Google Scholar] [CrossRef]
- Simon, S.L.; Ibrahim, S.A. The plant/soil concentration ratio for calcium, radium, lead, and polonium: Evidence for non-linearity with reference to substrate concentration. J. Environ. Radioact. 1987, 5, 123–142. [Google Scholar] [CrossRef]
- Martínez-Aguirre, A.; García-Orellana, I.; García-León, M. Transfer of natural radionuclides from soils to plants in a marsh enhanced by the operation of non-nuclear industries. J. Environ. Radioact. 1997, 35, 149–171. [Google Scholar] [CrossRef]
- Malczewski, D.; Źaba, J. 222Rn and 220Rn concentrations in soil gas of Karkonosze-Izera Block (Sudetes, Poland). J. Environ. Radioact. 2007, 92, 144–164. [Google Scholar] [CrossRef] [PubMed]
- Heyraud, M.; Cherry, R.D.; Oschadleus, H.-D.; Augustyn, C.J.; Cherry, M.I.; Sealy, J.C. Polonium-210 and Lead-210 in edible molluscs from near the Cape of Good Hope: Sources of variability in polonium-210 concentrations. J. Environ. Radioact. 1994, 24, 253–272. [Google Scholar] [CrossRef]
- Thomas, P.A.; Gates, T.E. Radionuclides in the lichen-caribou-human food chain near uranium mining operations in northern Saskatchewan, Canada. Environ. Health Perspect. 1999, 107, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.P. Polonium (210Po) and lead (210Pb) in marine organisms and their transfer in marine food chains. J. Environ. Radioact. 2011, 102, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Rosner, G.; Bunzl, K.; Hötzl, H.; Winkler, R. Low level measurements of natural radionuclides in soil samples around a coal-fired power plant. Nucl. Instrum. Meth. Phys. Res. 1984, 223, 585–589. [Google Scholar] [CrossRef]
- Sahu, S.K.; Tiwari, M.; Bhangare, R.C.; Pandit, G.G. Enrichment and particle size dependence of polonium and other naturally occurring radionuclides in coal ash. J. Environ. Radioact. 2014, 138, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.P. Lead precipitates from natural gas production installations. J. Geochem. Explor. 1998, 62, 193–200. [Google Scholar] [CrossRef]
- Schmidt, A.P.; Hartog, F.A.; Van Os, B.J.H.; Schuiling, R.D. Production of 210Pb from a Slochteren sandstone gas reservoir. Appl. Geochem. 2000, 15, 1317–1329. [Google Scholar] [CrossRef]
- Al Attar, L.; Doubal, W.; Al Abdullah, J.; Khalily, H.; Abdul Ghani, B.; Safia, B. Characterization of NORM solid waste produced from the petroleum industry. Environ. Tech. 2015, 36, 1104–1113. [Google Scholar] [CrossRef] [PubMed]
- Seen, A.; Townsend, A.; Atkinson, B.; Ellison, J.; Harrison, J.; Heijnis, H. Determining the history and sources of contaminants in sediments in the Tamar Estuary, Tasmania, using 210Pb dating and stable Pb isotope analyses. Environ. Chem. 2004, 1, 49–54. [Google Scholar] [CrossRef]
- Schindler, M.; Kamber, B.S. High-resolution lake sediment reconstruction of industrial impact in a world-class mining and smelting center, Sudbury, Ontario, Canada. Appl. Geochem. 2013, 37, 102–116. [Google Scholar] [CrossRef]
- Matthews, K.M.; Kim, C.-K.; Martin, P. Determination of 210Po in environmental materials: A review of analytical methodology. Appl. Radiat. Isot. 2007, 65, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Henricsson, F.; Ranebo, Y.; Holm, E.; Roos, P. Aspects on the analysis of 210Po. J. Environ. Radioact. 2011, 102, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Flynn, W.W. The determination of low levels of polonium-210 in environmental materials. Anal. Chim. Acta 1968, 43, 221–227. [Google Scholar] [CrossRef]
- Clayton, R.F.; Bradley, E.J. A cost effective method for the determination of 210Po and 210Pb in environmental materials. Sci. Total Environ. 1995, 173–174, 23–28. [Google Scholar] [CrossRef]
- Jia, G.G.; Torri, G. Determination of 210Pb and 210Po in soil or rock samples containing refractory matrices. Appl. Radiat. Isot. 2007, 65, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.G.; Belli, M.; Blasi, M.; Marchetti, A.; Rosamilia, S.; Sansone, U. Determination of 210Pb and 210Po in mineral and biological environmental samples. J. Radioanal. Nucl. Chem. 2001, 247, 491–499. [Google Scholar] [CrossRef]
- Jia, G.G.; Belli, M.; Liu, S.; Sansone, U.; Xu, C.H.; Rosamilia, S.; Xiao, X.; Gaudino, S.; Chen, L.; Yang, H. The fractionation and determination procedures for the speciation of 210Pb and 210Po in soil samples. Anal. Chim. Acta 2006, 562, 51–58. [Google Scholar] [CrossRef]
- Pud’homme, F.; Morency, M.; Freyer, K.; Weiss, H.; Bourne, J.; Daus, B.; Fontaine, D.; Mattusch, J.; Mineau, R.; Préda, M.; et al. Surfactant separation as a technique for physical and chemical characterization of ore processing residues. Sci. Total Environ. 1999, 243/244, 9–20. [Google Scholar]
- Allard, P.; Aiuppa, A.; Bani, P.; Métrich, N.; Bertagnini, A.; Gauthier, P.-J.; Shinohara, H.; Sawyer, G.; Parello, F.; Bagnato, E.; et al. Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc. J. Volc. Geotherm. Res. 2016, 322, 119–143. [Google Scholar] [CrossRef]
- Lambert, G.; Le Cloarec, M.-F.; Ardouin, B.; Le Roulley, J.-C. Volcanic emission of radionuclides and magma dynamics. Earth Plan. Sci. Lett. 1985, 76, 185–192. [Google Scholar] [CrossRef]
- Gauthier, P.-J.; Le Cloarec, M.-F.; Condomines, M. Degassing processes at Stromboli volcano inferred from short-lived disequilibria (210Pb–210Bi–210Po) in volcanic gases. J. Volc. Geotherm. Res. 2000, 102, 1–19. [Google Scholar] [CrossRef]
- Rubin, K.H.; Macdougall, J.D.; Perfit, M.R. 210Po–210Pb dating of recent volcanic eruptions on the sea floor. Nature 1994, 368, 841–844. [Google Scholar] [CrossRef]
- Le Cloarec, M.-F.; Gauthier, P.-J. Merapi Volcano, Central Java, Indonesia: A case study of radionuclide behavior in volcanic gases and its implications for magma dynamics at andesitic volcanoes. J. Geophys. Res. 2003, 108, 2243. [Google Scholar] [CrossRef]
- Gill, J.B.; Williams, R.W. Th isotope and U-series studies of subduction-related volcanic rocks. Geochim. Cosmochim. Acta 1990, 54, 1427–1442. [Google Scholar] [CrossRef]
- Berlo, K.; Turner, S. 210Pb–226Ra disequilibria in volcanic rocks. Earth Plan. Sci. Lett. 2010, 296, 155–164. [Google Scholar] [CrossRef]
- Turner, S.; Reagan, M.; Vigier, N.; Bourdon, B. Origins of 210Pb–226Ra disequilibria in basalts: New insights from the 1978 Asal Rift eruption. Geochem. Geophys. Geosyst. 2012, 13, Q07002. [Google Scholar] [CrossRef]
- Artemieva, I.M.; Thybo, H.; Jakobsen, K.; Sørensen, N.K.; Nielsen, L.S.K. Heat production in granitic rocks: Global analysis based on a new data compilation GRANITE2017. Earth-Sci. Rev. 2017, 172, 1–26. [Google Scholar] [CrossRef]
- Le Cloarec, M.-F.; Pennisi, M.; Corazza, E.; Lambert, G. Origin of fumarolic fluids emitted from a nonerupting volcano: Radionuclide constraints at Vulcano (Aeolian Islands, Italy). Geochim. Cosmochim. Acta 1994, 58, 4401–4410. [Google Scholar] [CrossRef]
- Voltaggio, M.; Tuccimei, P.; Branca, M.; Romoli, L. U-series disequilibrium radionuclides in sulphur incrustations from the fumarolic field of Vulcano Island. Geochim. Cosmochim. Acta 1998, 62, 2111–2127. [Google Scholar] [CrossRef]
- Garavelli, A.; Laviano, R.; Vurro, F. Sublimate deposition from hydrothermal fluids at the Fossa crater (Vulcano, Italy). Eur. J. Miner. 1997, 9, 423–432. [Google Scholar] [CrossRef]
- Vurro, F.; Garavelli, A.; Garbarino, C.; Moëlo, Y.; Borodaev, Y.S. Rare sulfosalts from Vulcano, Aeolian Islands, Italy. II. Mozgovaite, PbBi4(S,Se)7, a new mineral species. Can. Miner. 1999, 37, 1499–1506. [Google Scholar]
- Borodaev, Y.S.; Garavelli, A.; Garbarino, C.; Grillo, S.M.; Mozgova, N.N.; Organova, N.I.; Trubkin, N.V.; Vurro, F. Rare sulfosalts from Vulcano, Aeolian Islands, Italy. III. Wittite and cannizzarite. Can. Miner. 2000, 38, 23–34. [Google Scholar] [CrossRef]
- Garavelli, A.; Mozgova, N.N.; Orlandi, P.; Bonaccorsi, E.; Pinto, D.; Moëlo, Y.; Borodaev, Y.S. Rare sulfosalts from vulcano, Aeolian Islands, Italy. VI. Vurroite, Pb20Sn2(Bi,As)22S54Cl6, a new mineral species. Can. Miner. 2005, 43, 703–711. [Google Scholar] [CrossRef]
- Boisson, F.; Miquel, J.-C.; Cotret, O.; Fowler, S.W. 210Po and 210Pb cycling in a hydrothermal vent zone in the coastal Aegean Sea. Sci. Total Environ. 2001, 281, 111–119. [Google Scholar] [CrossRef]
- Charmasson, S.; Sarradin, P.-M.; Le Faouder, A.; Agarande, M.; Loyen, J.; Desbruyères, D. High levels of natural radioactivity in biota from deep-sea hydrothermal vents: A preliminary communication. J. Environ. Radioact. 2009, 100, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Begy, R.C.; Dumitru, O.A.; Simon, H.; Steopoaie, I. An improved procedure for the determination of 210Po by alpha spectrometry in sediments samples from Danube Delta. J. Radioanal. Nucl. Chem. 2015, 303, 2553–2557. [Google Scholar] [CrossRef]
- Farmer, J.G.; MacKenzie, A.B.; Graham, M.C.; Macgregor, K.; Kirika, A. Development of recent chronologies and evaluation of temporal variations in Pb fluxes and sources in lake sediment and peat cores in a remote, highly radiogenic environment, Cairngorm Mountains, Scottish Highlands. Geochim. Cosmochim. Acta 2015, 156, 25–49. [Google Scholar] [CrossRef]
- Franklin, R.L.; Fávaro, D.I.T.; Damatto, S.R. Trace metal and rare earth elements in a sediment profile from the Rio Grande Reservoir, São Paulo, Brazil: Determination of anthropogenic contamination, dating, and sedimentation rates. J. Radioanal. Nucl. Chem. 2015, 307, 99–110. [Google Scholar] [CrossRef]
- Jones, P.; Maiti, K.; McManus, J. Lead-210 and Polonium-210 disequilibria in the northern Gulf of Mexico hypoxic zone. Mar. Chem. 2015, 169, 1–15. [Google Scholar] [CrossRef]
- Swarzenski, P.W. 210Pb Dating. In Encyclopedia of Scientific Dating Methods; Rink, W.J., Thompson, J.W., Eds.; Springer: Berlin, Germany, 2015; pp. 626–631. [Google Scholar]
- Dahlkamp, F.J. Uranium Ore Deposits; Springer: Berlin, Germany, 1993; 460p. [Google Scholar]
- Martin, A.; Mead, S.; Wade, B.O. Nuclear Science and Technology: Materials Containing Natural Radionuclides in Enhanced Concentrations; Final report for European Commission Directorate-General, Environment, Nuclear Safety and Civil Protection; Alan Martin Associates: Penetanguishene, ON, Canada, 1997; 104p. [Google Scholar]
- Cooper, J.R.; Randle, K.; Sokhi, R.S. Radioactive Releases in the Environment: Impact and Assessment; John Wiley and Sons: Hoboken, NJ, USA, 2003; 773p. [Google Scholar]
- Cooper, M.B. Naturally Occurring Radioactive Materials (NORM) in Australian Industries–Review of Current Inventories and Future Generation: A Report Prepared for the Radiation Health and Safety Advisory Council; EnviroRad Services Pty. Ltd.: Beaumaris, Austrilia, 2005; 40p. [Google Scholar]
- García-Tenorio, R. 210Po and 210Pb in NORM mineral processing industries. In Proceedings of the EU-NORM 1st International Symposium, Tallinn, Estonia, 5–8 June 2012; pp. 202–209. [Google Scholar]
- Xhixha, G.; Bezzon, G.P.; Broggini, C.; Buso, G.P.; Caciolli, A.; Callegari, I.; De Bianchi, S.; Fiorentini, G.; Guastaldi, E.; Kaçeli Xhixha, M.; et al. The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization. J. Radioanal. Nucl. Chem. 2013, 295, 445–457. [Google Scholar] [CrossRef]
- Fernandes, H.M.; Franklin, M.R.; Veiga, L.H.S.; Freitas, P.; Gomiero, L.A. Management of uranium mill tailing: Geochemical processes and radiological risk assessment. J. Environ. Radioact. 1996, 30, 69–95. [Google Scholar] [CrossRef]
- Landa, E.R. Leaching of radionuclides from uranium ore and mill tailings. Uranium 1982, 1, 53–64. [Google Scholar]
- Landa, E.R. Uranium mill tailings: Nuclear waste and natural laboratory for geochemical and radioecological investigations. J. Environ. Radioact. 2004, 77, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Landa, E.R.; Bush, C.A. Geochemical hosts of solubilized radionuclides in uranium mill tailings. Hydrometallurgy 1990, 24, 361–372. [Google Scholar] [CrossRef]
- Shearer, S.D., Jr.; Lee, G.F. Leachability of radium-226 from uranium mill solids and river sediments. Health Phys. 1964, 10, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Seeley, F.G. Problems in the separation of radium from uranium mill tailings. Hydrometallurgy 1977, 2, 249–263. [Google Scholar] [CrossRef]
- Somot, S.; Pagel, M.; Thiry, J. Speciation of radium in uranium mill tailings from Ecarpière (Vendée, France). Comptes Rendues Acad. Sci. 1997, 325, 111–118. [Google Scholar]
- Landa, E.R.; Stieff, L.R.; Germani, M.S.; Tanner, A.B.; Evans, J.R. Intense alpha particle emitting crystallites in uranium mill wastes. Nucl. Geophys. 1994, 8, 443–454. [Google Scholar]
- Morrison, S.J.; Cahn, L.S. Mineralogical residence of alpha-emitting contamination and implications for mobilization from uranium mill tailings. J. Contam. Hydrol. 1991, 8, 1–21. [Google Scholar] [CrossRef]
- Campbell, K.M.; Gallegos, T.J.; Landa, E.R. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation. Appl. Geochem. 2015, 57, 206–235. [Google Scholar] [CrossRef]
- Lawrence, C.E. Measurement of 222Rn Exhalation Rates and 210Pb Deposition Rates in a Tropical Environment. Unpublished Ph.D. Thesis, Queensland University of Technology, Brisbane City, Australia, 2006. [Google Scholar]
- BHP Billiton Olympic Dam Expansion. Draft Environmental Impact Statement 2009. Appendix S. Uranium and Radiation. Available online: www.bhp.com (accessed on 10 April 2018).
- Weiss, H.; Morency, M.; Freyer, K.; Bourne, J.; Fontaine, D.; Ghaleb, B.; Mineau, R.; Möder, M.; Morgenstern, P.; Popp, P.; et al. Physical and chemical characterization of a complexly contaminated scrubber dust–A by-product of copper smelting in Sachsen-Anhalt, Germany. Sci. Total Environ. 1997, 203, 65–78. [Google Scholar] [CrossRef]
- Schreck, P. Flue dust from copper shale smelting in Central Germany: Environmental pollution and its prevention. In Proceedings of the International Mine Water Association Congress, Sevilla, Spain, 13–17 September 1999; pp. 163–167. [Google Scholar]
- Freyer, K.; Morency, M.; Weiss, H.; Treutler, H.C.; Bourne, J. High-Alpha-Active Particles in Industrial and Mining Residues. In Proceedings of the 10th International Congress of the International Radiation Protection Association on Harmonization of Radiation, Human Life and the Ecosystem, Japan Health Physics Society, Tokyo, Japan, 14–19 May 2000. [Google Scholar]
- Schubert, M.; Morgenstern, P.; Wennrich, R.; Freyer, K.; Paschke, A.; Weiss, H. The weathering behavior of complexly contaminated ore processing residues in the region of Mansfeld/Germany. Mine Water Environ. 2003, 22, 2–6. [Google Scholar] [CrossRef]
- Schubert, M.; Osenbrück, K.; Knöller, K. Using stable and radioactive isotopes for the investigation of contaminant metal mobilization in a metal mining district. Appl. Geochem. 2008, 23, 2945–2954. [Google Scholar] [CrossRef]
- Morency, M.; Weiss, H.; Freyer, K.; Bourne, J.; Fontaine, D.; Mineau, R.; Möder, M.; Morgenstern, P.; Popp, P.; Preda, M.; et al. Oxidation treatment of a sulphide-bearing scrubber dust from the Mansfeld Region, Germany: Organic and inorganic phase changes and multi-element partition coefficients between liquid and solid phases. Sci. Total Environ. 1998, 223, 87–97. [Google Scholar] [CrossRef]
- Chau, N.D.; Jodłowski, P.; Kalia, S.J.; Olko, P.; Chruściel, E.; Maksymowicz, A.; Waligórski, M.; Bilski, P.; Budzanowski, M. Natural radiation and its hazard in copper ore mines in Poland. Acta Geophys. 2008, 56, 505–517. [Google Scholar] [CrossRef]
- Hipkin, J.; Paynter, R.A. Radiation Exposures to the Workforce from Naturally Occurring Radioactivity in Industrial Processes. Radiat. Prot. Dosim. 1991, 36, 97–100. [Google Scholar] [CrossRef]
- Harvey, M.P.; Hipkin, J.; Simmonds, J.R.; Mayall, A.; Cabianca, T.; Fayers, C.; Haslam, I. Radiological Consequences of Waste Arising with Enhanced Natural Radioactivity Content from Special Metal and Ceramic Processes; European Commission: Environment, Nuclear Safety and Civil Protection; European Commission: Brussels, Belgium, 1994. [Google Scholar]
- Baxter, M.S.; MacKenzie, A.B.; East, B.W.; Scott, E.M. Natural decay series radionuclides in and around a large metal refinery. J. Environ. Radioact. 1996, 32, 115–133. [Google Scholar] [CrossRef]
- Rutherford, P.M.; Dudas, M.J.; Samek, R.A. Environmental impacts of phosphogypsum: A review. Sci. Total Environ. 1994, 149, 1–38. [Google Scholar] [CrossRef]
- Rutherford, P.M.; Dudas, M.J.; Arocena, J.M. Radium in phosphogypsum leachates. J. Environ. Q. 1995, 24, 307–314. [Google Scholar] [CrossRef]
- Rutherford, P.M.; Dudas, M.J.; Arocena, J.M. Heterogeneous distribution of radionuclides, barium and strontium in phosphogypsum by-product. Sci. Total Environ. 1996, 180, 201–209. [Google Scholar] [CrossRef]
- Poole, A.J.; Allington, D.J.; Baxter, A.J.; Young, A.K. The natural radioactivity of phosphate ore and associated waste products discharged into the eastern Irish Sea from a phosphoric acid production plant. Sci. Total Environ. 1995, 173–174, 137–149. [Google Scholar] [CrossRef]
- Sam, A.K.; Holm, E. The natural radioactivity in phosphate deposits from Sudan. Sci. Total Environ. 1995, 162, 173–178. [Google Scholar] [CrossRef]
- Burnett, W.C.; Schultz, M.H.; Hull, C.D. Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate. J. Environ. Radioact. 1996, 32, 33–51. [Google Scholar] [CrossRef]
- Hull, C.D.; Burnett, W.C. Radiochemistry of Florida phosphogypsum. J. Environ. Radioact. 1996, 32, 213–238. [Google Scholar] [CrossRef]
- Travesí, A.; Gascó, C.; Pozuelo, M.; Palomares, J.; García, M.R.; Pérez del Villar, L. Distribution of natural radioactivity within an estuary affected by releases from the phosphate industry. Stud. Environ. Sci. 1997, 68, 267–279. [Google Scholar]
- Mazzilli, B.; Palmiro, V.; Saueia, C.; Nisti, M.B. Radiochemical characterization of Brazilian phosphogypsum. J. Environ. Radioact. 2000, 49, 113–122. [Google Scholar] [CrossRef]
- Silva, N.C.; Fernandes, E.A.N.; Ciprianai, M.; Taddei, M.H.T. The natural radioactivity of Brazilian phosphogypsum. J. Radioanal. Nucl. Chem. 2001, 249, 251–255. [Google Scholar]
- Beddow, H.; Black, S.; Read, D. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant. J. Environ. Radioact. 2006, 86, 289–312. [Google Scholar] [CrossRef] [PubMed]
- Aoun, M.; El Samrani, A.G.; Lartiges, B.S.; Kazpard, V.; Saad, Z. Releases of phosphate fertilizer industry in the surrounding environment: Investigation on heavy metals and polonium-210 in soil. J. Environ. Sci. 2010, 22, 1387–1397. [Google Scholar] [CrossRef]
- Hurst, F.J.; Arnold, W.D. A discussion of uranium control in phosphogypsum. Hydrometallurgy 1982, 9, 69–82. [Google Scholar] [CrossRef]
- Pennders, R.M.J.; Köster, H.W.; Lembrechts, J.F. Characteristics of 210Po and 210Pb in effluents from phosphate-processing industries: A first orientation. Radiat. Prot. Dosim. 1992, 45, 737–740. [Google Scholar] [CrossRef]
- International Atomic Energy Agency (IAEA). The Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation; IAEA Draft Technical Report; IAEA: Vienna, Austria, 2002. [Google Scholar]
- Zielinski, R.A.; Budahn, J.R. Mode of occurrence and environmental mobility of oil-field radioactive material at US Geological Survey research site B, Osage-Skiatook Project, northeastern Oklahoma. Appl. Geochem. 2007, 22, 2125–2137. [Google Scholar] [CrossRef]
- Al Attar, L.; Safia, B.; Abdul Ghani, B.; Al Abdullah, J. Recovery of NORM from scales generated by oil extraction. J. Environ. Radioact. 2016, 153, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.B.; Sloss, L.L. Trace Elements–Emissions from Coal Combustion and Gasification; IEA Coal Research: London, UK, 1992. [Google Scholar]
- Tadmore, J. Radioactivity from coal-fired power plants: A review. J. Environ. Radioact. 1986, 4, 177–204. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Ionizing Radiation: Sources and Biological Effects; United Nations: New York, NY, USA, 1982. [Google Scholar]
- Coles, D.G.; Ragaini, R.C.; Ondov, J.M. Behaviour of natural radionuclides in western coal-fired power plants. Environ. Sci. Tech. 1978, 12, 442–446. [Google Scholar] [CrossRef]
- Senior, C.L.; Helble, J.J.; Sarofim, A.F. Emissions of mercury, trace elements, and fine particles from stationary combustion sources. Fuel Proc. Technol. 2000, 65–66, 263–288. [Google Scholar] [CrossRef]
- Roeck, D.R.; Reavey, T.C.; Hardin, J.M. Partitioning of natural radionuclides in the waste streams of coal-fired utilities. Health Phys. 1987, 52, 311–323. [Google Scholar] [CrossRef] [PubMed]
- UNSCEAR. Sources and Effects of Ionizing Radiation. Report to the General Assembly with Scientific Annexes; United Nations: New York, NY, USA, 2010; Volume 1, 245p. [Google Scholar]
- Barber, D.E.; Giorgio, H.R. Gamma-ray Activity in Bituminous, Subbituminous and Lignite Coals. Health Phys. 1977, 32, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Fardy, J.; McOrist, G.; Farrar, Y. Neutron activation analysis and radioactivity measurements of Australian coals and fly ashes. J. Radioanal. Nucl. Chem. 1989, 133, 217–226. [Google Scholar] [CrossRef]
- Bhangare, R.; Tiwari, M.; Ajmal, P.; Sahu, S.; Pandit, G. Distribution of natural radioactivity in coal and combustion residues of thermal power plants. J. Radioanal. Nucl. Chem. 2014, 300, 17–22. [Google Scholar] [CrossRef]
- Lauer, N.E.; Hower, J.C.; Hsu-Kim, H.; Taggart, R.K.; Vengosh, A. Naturally occurring radioactive materials in coals and coal combustion residuals in the United States. Environ. Sci. Tech. 2015, 49, 11227–11233. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, R.A.; Finkelman, R.B. Radioactive Elements in Coal and Fly Ash: Abundance, Forms and Environmental Significance. U.S. Geological Survey Fact Sheet FS-163-97; 1997; 4p. Available online: http://greenwood.cr.usgs.gov/energy/factshts/163-97/FS-163-97.html (accessed on 11 May 2018).
- Długosz-Lisiecka, M. Excess of 210polonium activity in the surface urban atmosphere. Part (1) fluctuation of the 210Po excess in the air. Environ. Sci. Process. Impacts 2015, 17, 458–464. [Google Scholar]
- Długosz-Lisiecka, M. Excess of polonium-210 activity in the surface urban atmosphere. Part 2: Origin of 210Po excess. Environ. Sci. Process. Impacts 2015, 17, 465–470. [Google Scholar]
- Häsänen, E.; Pohjola, V.; Hahkala, M.; Zilliacus, R.; Wickström, K. Emissions from power plants fuelled by peat, coal, natural gas and oil. Sci. Total Environ. 1986, 54, 29–51. [Google Scholar] [CrossRef]
- Gallyas, M.; Török, I. Natural Radioactivity of Raw Materials and Products in the Cement Industry. Radiat. Prot. Dosim. 1986, 7, 69–71. [Google Scholar] [CrossRef]
- Stojanovska, Z.; Nedelkovskia, D.; Ristovab, M. Natural radioactivity and human exposure by raw materials and end product from cement industry used as building materials. Radiat. Meas. 2010, 45, 969–972. [Google Scholar] [CrossRef]
- Eštoková, A.; Palaščáková, L. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic. Int. J. Environ. Res. Public Health 2013, 10, 7165–7179. [Google Scholar] [CrossRef] [PubMed]
- Guillén, J.; Tejado, J.J.; Baeza, A.; Salas, A.; Muñoz-Muñoz, J.G. Environmental impact of a granite processing factory as source of naturally occurring radionuclides. Appl. Geochem. 2014, 47, 122–129. [Google Scholar] [CrossRef]
- Harrison, J.; Heijnis, H.; Caprarelli, G. Historical pollution variability from abandoned mine sites, Greater Blue Mountains World Heritage Area, New South Wales, Australia. Environ. Geol. 2003, 43, 680–687. [Google Scholar]
- Plater, A.J.; Appleby, P.G. Tidal sedimentation in the Tees estuary during the 20th century: Radionuclide and magnetic evidence of pollution and sedimentary response. Estuar. Coast. Shelf Sci. 2004, 60, 179–192. [Google Scholar] [CrossRef]
- Le Roux, G.; Weiss, D.; Grattan, J.; Givelet, N.; Krachler, M.; Cheburkin, A.; Rausch, N.; Kober, B.; Shotyk, W. Identifying the sources and timing of ancient and medieval atmospheric lead pollution in England using a peat profile from Lindow bog, Manchester. J. Environ. Monit. 2004, 6, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Cloy, J.M.; Farmer, J.G.; Graham, M.C.; MacKenzie, A.B.; Cook, G.T. A comparison of antimony and lead profiles over the past 2500 years in Flanders Moss ombrotrophic peat bog, Scotland. J. Environ. Monit. 2005, 7, 1137–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, B.; Alpay, S.; Gould, W.D.; Lortie, L.; Rosa, F. The onset of anthropogenic activity recorded in lake sediments in the vicinity of the Horne smelter in Quebec, Canada: Sulfur isotope evidence. Appl. Geochem. 2007, 22, 397–414. [Google Scholar] [CrossRef]
- Hansen, A.M. Lake sediment cores as indicators of historical metal(loid) accumulation–A case study in Mexico. Appl. Geochem. 2012, 27, 1745–1752. [Google Scholar] [CrossRef]
- Gray, J.E.; Pribil, M.J.; Van Metre, P.C.; Borrok, D.M.; Thapalia, A. Identification of contamination in a lake sediment core using Hg and Pb isotopic compositions, Lake Ballinger, Washington, USA. Appl. Geochem. 2013, 29, 1–12. [Google Scholar] [CrossRef]
- Weigel, F. Chemie des Poloniums. Angew. Chem. 1959, 71, 289–316. [Google Scholar] [CrossRef]
- Bagnall, K.W. The Chemistry of Polonium. In Advances in Inorganic Chemistry and Radiochemistry; Academic Press: New York, NY, USA, 1962; Volume 4, pp. 197–226. [Google Scholar]
- Golubev, V.N.; Chernyshev, I.V. Differential behavior of components of the 238U-206Pb and 235U-207Pb isotopic systems in polymineralic U ores. Geochem. Int. 2009, 47, 321–328. [Google Scholar] [CrossRef]
- Connan, O.; Boust, D.; Billon, G.; Solier, L.; Rozet, M.; Bouderbala, S. Solid partitioning and solid-liquid distribution of 210Po and 210Pb in marine anoxic sediments: Roads of Cherbourg at the northwestern France. J. Environ. Radioact. 2009, 100, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Macmillan, E.; Cook, N.J.; Ehrig, K.; Ciobanu, C.L.; Pring, A. Uraninite from the Olympic Dam IOCG-U-Ag deposit: Linking textural and compositional variation to temporal evolution. Am. Miner. 2016, 101, 1295–1320. [Google Scholar] [CrossRef]
- Macmillan, E.; Ciobanu, C.L.; Ehrig, K.; Cook, N.J.; Pring, A. Chemical zoning and lattice distortion: Uraninite from Olympic Dam, South Australia. Am. Miner. 2016, 101, 2351–2354. [Google Scholar] [CrossRef]
- Macmillan, E.; Ciobanu, C.L.; Ehrig, K.; Cook, N.J.; Pring, A. Replacement of uraninite by bornite via coupled dissolution-reprecipitation: Evidence from texture and microstructure. Can. Miner. 2016, 54, 1369–1383. [Google Scholar] [CrossRef]
- Janeczek, J.; Ewing, R.C. Mechanisms of lead release from uraninite in the natural fission reactors in Gabon. Geochim. Cosmochim. Acta 1995, 59, 1917–1931. [Google Scholar] [CrossRef]
- Macmillan, E.; Cook, N.J.; Ehrig, K.; Pring, A. Chemical and textural interpretation of late-stage coffinite and brannerite from the Olympic Dam IOCG-Ag-U deposit. Miner. Mag. 2017, 81, 1323–1366. [Google Scholar] [CrossRef]
- Utsunomiya, S.; Palenik, C.S.; Valley, J.W.; Cavosie, A.J.; Wilde, S.A.; Ewing, R.C. Nanoscale occurrence of Pb in an Archean zircon. Geochim. Cosmochim. Acta 2004, 68, 4679–4686. [Google Scholar] [CrossRef]
- Kramers, J.; Frei, R.; Newville, M.; Kober, B.; Villa, I. On the valency state of radiogenic lead in zircon and its consequences. Chem. Geol. 2009, 261, 4–11. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Wade, B.P.; Cook, N.J.; Schmidt Mumm, A.; Giles, D. Uranium-bearing hematite from the Olympic Dam Cu–U–Au deposit, South Australia: A geochemical tracer and reconnaissance Pb–Pb geochronometer. Precambrian Res. 2013, 238, 129–147. [Google Scholar] [CrossRef]
- Verdugo-Ihl, M.R.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.; Courtney-Davies, L.; Gilbert, S. Textures and U–W–Sn–Mo signatures in hematite from the Cu–U–Au–Ag orebody at Olympic Dam, South Australia: Defining the archetype for IOCG deposits. Ore Geology Reviews Ore Geol. Rev. 2017, 91, 173–195. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Ehrig, K.; Slattery, A.; Verdugo-Ihl, M.R.; Courtney-Davies, L.; Gao, W. Advances and opportunities in ore mineralogy. Minerals 2017, 7, 233. [Google Scholar] [CrossRef]
- Courtney-Davies, L.; Zhu, Z.Y.; Ciobanu, C.L.; Wade, B.P.; Cook, N.J.; Ehrig, K.; Cabral, A.R.; Kennedy, A. Matrix-matched iron-oxide laser ablation ICP-MS U–Pb geochronology using mixed solution standards. Minerals 2016, 6, 85. [Google Scholar] [CrossRef]
- Apukhtina, O.B.; Kamenetsky, V.S.; Ehrig, K.; Kamenetsky, M.B.; Maas, R.; Thompson, J.; McPhie, J.; Ciobanu, C.L.; Cook, N.J. Early, deep magnetite-fluorapatite mineralization at the Olympic Dam Cu–U–Au–Ag deposit, South Australia. Econ. Geol. 2017, 112, 1531–1542. [Google Scholar] [CrossRef]
- Ewing, R.C.; Meldrum, A.; Wang, L.M.; Wang, S.X. Radiation-Induced Amorphization. Rev. Miner. Geochem. 2000, 39, 319–361. [Google Scholar] [CrossRef]
- Kerr, P.F. U-galena and uraninite in Bedford, New York cyrtolite. Am. Miner. 1935, 20, 443–450. [Google Scholar]
- Trocki, L.K.; Curtis, D.B.; Gancarz, A.J.; Banar, J.C. Ages of Major Uranium Mineralization and Lead Loss in the Key Lake Uranium Deposit, Northern Saskatchewan, Canada. Econ. Geol. 1984, 79, 1378–1386. [Google Scholar] [CrossRef]
- Finch, R.J.; Murakami, T. Systematics and paragenesis of uranium minerals. Rev. Miner. Geochem. 1999, 38, 91–179. [Google Scholar]
- Čurda, M.; Goliáš, V.; Klementová, M.; Strnad, L.; Matěj, Z.; Škoda, R. Radiation damage in sulfides: Radioactive galena from burning heaps, after coal mining in the Lower Silesian basin (Czech Republic). Am. Miner. 2017, 102, 1788–1795. [Google Scholar] [CrossRef]
- Owen, N.D.; Ciobanu, C.L.; Cook, N.J.; Slattery, A.; Basak, A. Nanoscale study of clausthalite-bearing symplectites in Cu-Au-(U) ores: Implications for ore genesis. Minerals 2018, 8, 67. [Google Scholar] [CrossRef]
- Rollog, M.; Cook, N.J.; Guagliardo, P.; Kilburn, M.; Ehrig, K.; Ciobanu, C.L. NanoSIMS Mapping of 210RN and 226Ra in South Australian Copper Concentrates. Abstract, Goldschmidt Conference, Paris. 2017. Available online: https://goldschmidtabstracts.info/2017/3392.pdf (accessed on 9 May 2018).
- Prieto, M.; Heberling, F.; Rodríguez-Galán, R.M.; Brandt, F. Crystallization behavior of solid solutions from aqueous solutions: An environmental perspective. Progress Cryst. Growth Charact. Mater. 2016, 62, 29–68. [Google Scholar] [CrossRef]
- Takano, B.; Watanuki, K. Geochemical implications of the lead content of barite from various origins. Geochem. J. 1974, 8, 87–95. [Google Scholar] [CrossRef]
- Rosenberg, Y.O.; Metz, V.; Ganor, J. Radium removal in a large scale evaporitic system. Geochim. Cosmochim. Acta 2013, 103, 121–137. [Google Scholar] [CrossRef]
- Vinograd, V.L.; Brandt, F.; Rozov, K.; Klinkenberg, M.; Refson, K.; Winkler, B.; Bosbach, D. Solid-aqueous equilibrium in the BaSO4-RaSO4-H2O system: First-principles calculations and a thermodynamic assessment. Geochim. Cosmochim. Acta 2013, 122, 398–417. [Google Scholar] [CrossRef]
- Klinkenberg, M.; Brandt, F.; Breuer, U.; Bosbach, D. Uptake of Ra during the recrystallization of barite: A microscopic and time of flight-secondary ion mass spectrometry study. Environ. Sci. Tech. 2014, 48, 6620–6627. [Google Scholar] [CrossRef] [PubMed]
- Brandt, F.; Curti, E.; Klinkenberg, M.; Rozov, K.; Bosbach, D. Replacement of barite by a (Ba,Ra)SO4 solid solution at close-to-equilibrium conditions: A combined experimental and theoretical study. Geochim. Cosmochim. Acta 2015, 155, 1–15. [Google Scholar] [CrossRef]
- Weber, J.; Barthel, J.; Klinkenberg, M.; Bosbach, D.; Kruth, M.; Brandt, F. Retention of 226Ra by barite: The role of internal porosity. Chem. Geol. 2017, 466, 722–732. [Google Scholar] [CrossRef]
- Heberling, F.; Metz, V.; Böttle, M.; Curti, E.; Geckeis, H. Barite recrystallization in the presence of 226 Ra and 133 Ba. Geochim. Cosmochim. Acta 2018. [Google Scholar] [CrossRef]
- Rosenberg, Y.O.; Sade, Z.; Ganor, J. The precipitation of gypsum, celestine, and barite and coprecipitation of radium during seawater evaporation. Geochim. Cosmochim. Acta 2018, in press. [Google Scholar] [CrossRef]
- Vinograd, V.L.; Kulik, D.A.; Brandt, F.; Klinkenberg, M.; Weber, J.; Winkler, B.; Bosbach, D. Thermodynamics of the solid solution-Aqueous solution system (Ba,Sr,Ra)SO4 + H2O: I. The effect of strontium content on radium uptake by barite. Appl. Geochem. 2018, 89, 59–74. [Google Scholar] [CrossRef]
- Vinograd, V.L.; Kulik, D.A.; Brandt, F.; Klinkenberg, M.; Weber, J.; Winkler, B.; Bosbach, D. Thermodynamics of the solid solution-Aqueous solution system (Ba,Sr,Ra)SO4 + H2O: II. Radium retention in barite-type minerals at elevated temperatures. Appl. Geochem. 2017. [Google Scholar] [CrossRef]
- Ulrych, J.; Adamovič, J.; Žák, K.; Frána, J.; Řanda, Z.; Langrová, A.; Chvátal, M. Cenozoic “radiobarite” occurrences in the Ohře (Eger) Rift, Bohemian Massif: Mineralogical and geochemical revision. Chemie der Erde–Geochem. 2007, 67, 301–312. [Google Scholar] [CrossRef]
- Zielinski, R.; Al-Hwaiti, M.; Budahn, J.; Ranville, J. Radionuclides, trace elements, and radium residence in phosphogypsum of Jordan. Environ. Geochem. Health 2011, 33, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.J.; Butchins, L.J.; Charnock, J.M.; Pattrick, R.A.D.; Small, J.S.; Vaughan, D.J.; Wincott, P.L; Livens, F.R. Reactions of radium and barium with the surfaces of carbonate minerals. Appl. Geochem. 2011, 26, 1231–1238. [Google Scholar] [CrossRef]
- Curti, E. Coprecipitation of Radionuclides: Basic Concepts, Literature Review and First Applications; Report 97-10; Paul Scherrer Institut: Villigen, Switzerland, 1997; 116p. [Google Scholar]
- Belzile, N.; Chen, Y.W. Tellurium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Appl. Geochem. 2015, 63, 83–92. [Google Scholar] [CrossRef]
- Mihai, S.A.; Mather, J.D. Role of mineralogical structure of sediments in accumulation of radionuclides and trace elements. J. Radioanal. Nucl. Chem. 2003, 256, 425–430. [Google Scholar] [CrossRef]
- McCubbin, D.; Leonard, K.S.; Maher, B.A.; Hamilton, E.I. Association of 210Po(210Pb), 239+240Pu and 241Am with different mineral fractions of a beach sand at Seascale, Cumbria, UK. Sci. Total Environ. 2000, 254, 1–15. [Google Scholar] [CrossRef]
- Yang, W.F.; Guo, L.D.; Chuang, C.Y.; Schumann, D.; Ayranov, M.; Santschi, P.H. Adsorption characteristics of 210Pb, 210Po and 7Be onto micro-particle surfaces and the effects of macromolecular organic compounds. Geochim. Cosmochim. Acta 2013, 107, 47–64. [Google Scholar] [CrossRef]
- Vu, H.P.; Shaw, S.; Brinza, L.; Benning, L.G. Partitioning of Pb(II) during goethite and hematite crystallization: Implications for Pb transport in natural systems. Appl. Geochem. 2013, 39, 119–128. [Google Scholar] [CrossRef]
- Yang, W.F.; Guo, L.D.; Chuang, C.Y.; Santschi, P.H.; Schumann, D.; Ayranov, M. Influence of organic matter on the adsorption of 210Pb, 210Po and 7Be and their fractionation on nanoparticles in seawater. Earth Plan. Sci. Lett. 2015, 423, 193–201. [Google Scholar] [CrossRef]
- Häsänen, E. Dating of sediments based on 210 Po measurements. Radiochem. Radioanal. Lett. 1977, 31, 207–214. [Google Scholar]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, G. Important role of colloids in the cycling of 210Po and 210Pb in the ocean: Results from the East/Japan Sea. Geochim. Cosmochim. Acta 2012, 95, 134–142. [Google Scholar] [CrossRef]
- Tuovinen, H. Mobilization of Natural Uranium Series Radionuclides at Three Mining Sites in Finland. Doctoral Dissertation, University of Helsinki, Helsinki, Finland, 2015. [Google Scholar]
- Tuovinen, H.; Pohjolainen, E.; Lempinen, J.; Vesterbacka, D.; Read, D.; Solatie, D.; Lehto, J. Behaviour of radionuclides during microbially-induced mining of nickel at Talvivaara, Eastern Finland. J. Environ. Radioact. 2016, 151, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Christy, A.G. Causes of anomalous mineralogical diversity in the Periodic Table. Miner. Mag. 2015, 79, 33–49. [Google Scholar] [CrossRef]
- Burns, P.C. The crystal chemistry of uranium. In: Burns, P.C.; Finch, R., eds., Uranium: Mineralogy, Geochemistry and the Environment. Rev. Miner. 1999, 38, 23–90. [Google Scholar]
- Hazen, R.M.; Ewing, R.C.; Sverjensky, D.A. Evolution of uranium and thorium minerals. Am. Miner. 2009, 94, 1293–1311. [Google Scholar] [CrossRef]
- Janeczek, J.; Ewing, R.C. X-ray powder diffraction study of annealed uraninite. J. Nucl. Mater. 1991, 185, 66–77. [Google Scholar] [CrossRef]
- Malczewski, D.; Malczewski, M. 222Rn and 220Rn emanations as a function of the absorbed α-doses from select metamict minerals. Am. Miner. 2015, 100, 1378–1385. [Google Scholar] [CrossRef]
- Krupp, K.; Baskaran, M.; Brownlee, S.J. Radon emanation coefficients of several minerals: How they vary with physical and mineralogical properties. Am. Miner. 2017, 102, 1375–1383. [Google Scholar] [CrossRef]
- Trindade, M.J.; Prudêncio, M.I.; Burbidge, C.I.; Dias, M.I.; Cardoso, G.; Marques, R.; Rocha, F. Study of an aplite dyke from the Beira uraniferous province in Fornos de Algodres area (Central Portugal): Trace elements distribution and evaluation of natural radionuclides. Appl. Geochem. 2014, 44, 111–120. [Google Scholar] [CrossRef]
- Chuang, C.Y.; Santschi, P.H.; Ho, Y.F.; Conte, M.H.; Guo, L.D.; Schumann, D.; Ayranov, M.; Li, Y.H. Role of biopolymers as major carrier phases of Th, Pa, Pb, Po, and Be radionuclides in settling particles from the Atlantic Ocean. Mar. Chem. 2013, 157, 131–143. [Google Scholar] [CrossRef]
- Osmond, J.K.; Cowart, J.B. The theory and uses of natural uranium isotopic variations in hydrology. At. Energy Rev. 1976, 14, 621–679. [Google Scholar]
- Kigoshi, K. Alpha recoil thorium-234: Dissolution into water and the uranium-234/uranium-238 disequilibrium in nature. Science 1971, 173, 47–48. [Google Scholar] [CrossRef] [PubMed]
- Roudil, D.; Bonhoure, J.; Pik, R.; Cuney, M.; Jégou, C.; Gauthier-Lafaye, F. Diffusion of radiogenic helium in natural uranium oxides. J. Nucl. Mater. 2008, 378, 70–78. [Google Scholar] [CrossRef]
- Ewing, R.C.; Whittleston, R.A.; Yardley, B.W.D. Geological Disposal of Nuclear Waste: A Primer. Elements 2016, 12, 233–237. [Google Scholar] [CrossRef]
- Carvalho, F.P.; Oliveira, J.M.; Malta, M. Exposure to radionuclides in smoke from vegetation fires. Sci. Total Environ. 2014, 472, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Strumińska-Parulska, D. Radiolead 210Pb and 210Po/210Pb activity ratios in calcium supplements and the assessment of their possible dose to consumers. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2016, 51, 851–854. [Google Scholar]
- Povinec, P.P.; Hirose, K. Fukushima radionuclides in the NW Pacific, and assessment of doses for Japanese and world population from ingestion of seafood. Sci. Rep. 2015, 5, 9016. [Google Scholar] [CrossRef] [PubMed]
- Brook, B.W.; Bradshaw, C.J.A. Key role for nuclear energy in global biodiversity conservation. Conserv. Biol. 2014, 29, 702–712. [Google Scholar] [CrossRef] [PubMed]
- World Nuclear Association. Thorium. 2015. Available online: http://www.world-nuclear.org/information-library/current-and-future-generation/thorium.aspx (accessed on 24 July 2016).
- Utsunomiya, S.; Kogawa, M.; Kamiishi, E.; Ewing, R.C. Scanning Transmission Electron Microscopy and Related Techniques for Research on Actinide and Radionuclide Nanomaterials. In Actinide Nanoparticle Research; Kalmykov, S.N., Denecke, M.A., Eds.; Springer: Berlin/Heidenberg, Germany, 2011; pp. 33–62. [Google Scholar]
- Ciobanu, C.L.; Cook, N.J.; Maunders, C.; Wade, B.P.; Ehrig, K. Focused Ion Beam and Advanced Electron Microscopy for Minerals: Insights and Outlook from Bismuth Sulphosalts. Minerals 2016, 6, 112. [Google Scholar] [CrossRef]
- Ciobanu, C.L.; Kontonikas-Charos, A.; Slattery, A.; Cook, N.J.; Ehrig, K.; Wade, B.P. Short-Range Stacking Disorder in Mixed-Layer Compounds: A HAADF STEM Study of Bastnäsite-Parisite Intergrowths. Minerals 2017, 7, 227. [Google Scholar] [CrossRef]
- Uchida, A.; Toyoda, S.; Ishibashi, J.; Nakai, S. 226Ra-210Pb and 228Ra-228Th Dating of Barite in Submarine Hydrothermal Sulfide Deposits Collected at the Okinawa Trough and the Southern Mariana Trough. In Subseafloor Biosphere Linked to Hydrothermal Systems; Ishibashi, J., Okino, K., Sunamura, M., Eds.; Springer: Tokyo, Japan, 2015; pp. 607–615. [Google Scholar]
- Ditchburn, R.G.; de Ronde, C.E.J. Evidence for Remobilization of Barite Affecting Radiometric Dating Using 228Ra, 228Th, and 226Ra/Ba Values: Implications for the Evolution of Sea-Floor Volcanogenic Massive Sulfides. Econ. Geol. 2017, 112, 1231–1245. [Google Scholar] [CrossRef]
Mineral Group | Mineral | Formula (e) | Host for |
---|---|---|---|
Uranium minerals | Uraninite | UO2 (ideally) | U, radiogenic Pb, minor Th |
Coffinite | U(SiO4)1−x(OH)4x | ditto - | |
Brannerite | (U,Ca,REE)(Ti,Fe)2O6 | ditto - | |
Uranothorite | (Th,U)SiO4 | Th, U, radiogenic Pb | |
Carnotite | K2(UO2)2(VO4)2·3H2O | U, (Th and Pb?) | |
REE-, Zr- and Nb–Ta-minerals | Monazite | (REE)PO4 | Minor U, Th radiogenic Pb?) |
Bastnäsite | REE(CO3)F | ditto - | |
Synchysite | Ca(REE)(CO3)2F | ditto - | |
Xenotime | (Y,REE)PO4 | ditto - | |
Alunite Supergroup Minerals (especially crandallite and beudantite groups) | (Various minerals) | ditto - | |
Baddeleyite | ZrO2 | ditto - | |
Zircon | ZrSiO4 | ditto - | |
Tantalite-(Fe)–tantalite-(Mn) series | (Fe,Mn,Mg)(Nb,Ta)2O6 | Trace U,Th,Pb (?) | |
Euxinite | (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)2O6 | ditto - | |
Sulphides/selenides/tellurides | Galena | PbS | Radiogenic Pb |
Clausthalite | PbSe | ditto - | |
Altaite | PbTe | ditto - | |
Bi-chalcogenides | Bix(Te,Se,S)y | ? | |
Pb-Bi-sulphosalts | (various) | ? | |
Pyrite | FeS2 | as a sorbent (?) | |
Carbonates | Calcite, dolomite, ankerite | CaCO3, CaMg(CO3)2, Ca(Fe,Mg)(CO3)2 | Ra, minor Pb |
Strontianite | SrCO3 | ditto - | |
Rhodocrosite | MnCO3 | ditto - | |
Magnesite | MgCO3 | ditto - | |
Witherite | PbCO3 | Pb | |
Sulphates | Barite | BaSO4 | Ra, Pb |
Celestite | SrSO4 | ditto - | |
Anglesite | PbSO4 | Pb | |
Gypsum | CaSO4·2H2O | Pb (?) | |
Fe-oxides, hydroxides | Hematite | α-Fe2O3 | Minor/trace U, Pb, and as sorbent |
Goethite | FeO(OH) | As sorbent | |
Fe–Ti-oxides, Ti-oxides | Ilmenite | FeTiO3 | Minor U and Th |
Rutile | TiO2 | ditto - | |
Jarosite sub-group | Jarosite | KFe(SO4)2(OH)6 | Pb? |
Other potential hosts | Apatite group | Ca5(PO4)3(F,Cl,OH) | Minor U and Th |
Fluorite | CaF2 | ? | |
Feldspar group | - | Pb (replacing Ca?) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cook, N.J.; Ehrig, K.J.; Rollog, M.; Ciobanu, C.L.; Lane, D.J.; Schmandt, D.S.; Owen, N.D.; Hamilton, T.; Grano, S.R. 210Pb and 210Po in Geological and Related Anthropogenic Materials: Implications for Their Mineralogical Distribution in Base Metal Ores. Minerals 2018, 8, 211. https://doi.org/10.3390/min8050211
Cook NJ, Ehrig KJ, Rollog M, Ciobanu CL, Lane DJ, Schmandt DS, Owen ND, Hamilton T, Grano SR. 210Pb and 210Po in Geological and Related Anthropogenic Materials: Implications for Their Mineralogical Distribution in Base Metal Ores. Minerals. 2018; 8(5):211. https://doi.org/10.3390/min8050211
Chicago/Turabian StyleCook, Nigel J., Kathy J. Ehrig, Mark Rollog, Cristiana L. Ciobanu, Daniel J. Lane, Danielle S. Schmandt, Nicholas D. Owen, Toby Hamilton, and Stephen R. Grano. 2018. "210Pb and 210Po in Geological and Related Anthropogenic Materials: Implications for Their Mineralogical Distribution in Base Metal Ores" Minerals 8, no. 5: 211. https://doi.org/10.3390/min8050211
APA StyleCook, N. J., Ehrig, K. J., Rollog, M., Ciobanu, C. L., Lane, D. J., Schmandt, D. S., Owen, N. D., Hamilton, T., & Grano, S. R. (2018). 210Pb and 210Po in Geological and Related Anthropogenic Materials: Implications for Their Mineralogical Distribution in Base Metal Ores. Minerals, 8(5), 211. https://doi.org/10.3390/min8050211