Combined DFT and XPS Investigation of Cysteine Adsorption on the Pyrite (1 0 0) Surface
Abstract
:1. Introduction
2. Computational and Experimental Methods
2.1. Computational Details
2.2. Experimental Details
3. Results and Discussion
3.1. Bulk Pyrite Calculation
3.2. Frontier Orbitals Analyses of Pyrite and Cysteine
3.3. Cysteine Adsorption on the Pyrite (1 0 0) Surface
3.4. Adsorption Energies and Mulliken Bond Populations
3.4.1. Adsorption Energies
3.4.2. Mulliken Bond Populations
3.5. Electron Density Difference of the Interaction between Cysteine and Pyrite (1 0 0) Surface
3.6. PDOS of the Interaction between Cysteine and Pyrite (1 0 0) Surface
3.7. X-ray Photoelectron Spectroscopy Analysis of Pyrite (1 0 0) Surface Species
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brierley, C.L. Biohydrometallurgical prospects. Hydrometallurgy 2010, 104, 324–328. [Google Scholar] [CrossRef]
- Schippers, A.; Sand, W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol. 1999, 65, 319–321. [Google Scholar] [PubMed]
- Panda, S.; Akcil, A.; Pradhan, N.; Deveci, H. Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology. Bioresour. Technol. 2015, 196, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Vera, M.; Schippers, A.; Sand, W. Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation—Part A. Appl. Microbiol. Biotechnol. 2013, 97, 7529–7541. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.L. Mineral-microbe interactions: A review. Front. Earth Sci. China 2010, 4, 127–147. [Google Scholar] [CrossRef]
- Nie, Z.Y.; Liu, H.C.; Xia, J.L.; Yang, Y.; Zhen, X.J.; Zhang, L.J.; Qiu, G.Z. Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process. Biometals 2016, 29, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.Y.; Bellenberg, S.; Castro, L.; Neu, T.R.; Sand, W.; Vera, M. Colonization and biofilm formation of the extremely acidophilic archaeon Ferroplasma acidiphilum. Hydrometallurgy 2014, 150, 245–252. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Neu, T.R.; Zhang, Y.; Bellenberg, S.; Kuhlicke, U.; Li, Q.; Sand, W.; Vera, M. Visualization and analysis of EPS glycoconjugates of the thermoacidophilic archaeon Sulfolobus metallicus. Appl. Microbiol. Biotechnol. 2015, 99, 7343–7356. [Google Scholar] [CrossRef] [PubMed]
- Ganbaatar, N.; Matsuzaki, N.; Nakazawa, Y.; Afrin, R.; Aono, M.; Yano, T.; Hayashi, T.; Hara, M. Surface force analysis of pyrite (FeS2): Its reactivity to amino acid adsorption. Adv. Mater. Phys. Chem. 2016, 6, 167–176. [Google Scholar] [CrossRef]
- Nair, N.N.; Schreiner, E.; Marx, D. Glycine at the pyrite−water interface: The role of surface defects. J. Am. Chem. Soc. 2006, 128, 13815–13826. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, E.N. Elucidating sequence codes: Three codes for evolution. Ann. N. Y. Acad. Sci. 1999, 870, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Trifonov, E.N. Glycine clock: Eubacteria first, archaea next, protoctista, fungi, planta and animalia at last. Gene Ther. Mol. Biol. 1999, 4, 313–322. [Google Scholar]
- Chi, Q.J.; Zhang, J.D.; Nielsen, J.U.; Friis, E.P.; Chorkendorff, I.; Canters, G.W.; Andersen, J.E.T.; Ulstrup, J. Molecular monolayers and interfacial electron transfer of Pseudomonas aeruginosa azurin on Au(111). J. Am. Chem. Soc. 2000, 122, 4047–4055. [Google Scholar] [CrossRef]
- Zhang, J.D.; Chi, Q.J.; Kuznetsov, A.M.; Hansen, A.G.; Wackerbarth, H.; Christensen, H.E.M.; Andersen, J.E.T.; Ulstrup, J. Electronic properties of functional biomolecules at metal/aqueous solution interfaces. J. Phys. Chem. B 2002, 106, 1131–1152. [Google Scholar] [CrossRef]
- Zheng, H.A.; Zhang, C.; Wu, Y.; Shi, P.H.; Wang, Z.H.; Wang, X.J.; Li, B.Y.; Liu, J.; Xie, X.H. Bioleaching of arsenic-containing gold ore influenced by cysteine. Fresenius Environ. Bull. 2015, 24, 379–385. [Google Scholar]
- Ghosh, B.; Mukhopadhyay, B.P.; Bairagya, H.R. Effect of amino acids on bioleaching of chalcopyrite ore by Thiobacillus ferrooxidans. Afr. J. Biotechnol. 2012, 11, 1991–1996. [Google Scholar] [CrossRef]
- He, Z.G.; Gao, F.L.; Zhong, H.; Hu, Y.H. Effects of L-cysteine on Ni-Cu sulfide and marmatite bioleaching by Acidithiobacillus caldus. Bioresour. Technol. 2009, 100, 1383–1387. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Xie, X.H.; Xiao, S.M.; Liu, J.S. Comparative study of interaction between pyrite and cysteine by thermogravimetric and electrochemical techniques. Hydrometallurgy 2010, 101, 88–92. [Google Scholar] [CrossRef]
- He, Z.G.; Zhao, J.C.; Liang, W.J.; Hu, Y.H.; Qiu, G.Z. Effect of L-cysteine on bioleaching of Ni-Cu sulphide by A. manzaensis. J. Cent. South Univ. 2011, 18, 381–385. [Google Scholar] [CrossRef]
- Yang, Y.J.; Liu, J.; Liu, F.; Wang, Z.; Miao, S. Molecular-level insights into mercury removal mechanism by pyrite. J. Hazard. Mater. 2017, 344, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Li, Y.Q.; Zhao, C.H. First principles study of the occurrence of gold in pyrite. Comp. Mater. Sci. 2014, 88, 1–6. [Google Scholar] [CrossRef]
- Chen, J.H.; Long, X.; Chen, Y. Comparison of multilayer water adsorption on the hydrophobic galena (PbS) and hydrophilic pyrite (FeS2) surfaces: A DFT study. J. Phys. Chem. C 2014, 118, 11657–11665. [Google Scholar] [CrossRef]
- Li, Q.; Qin, W.Q.; Sun, W.; Qiu, G.Z. Calculation of electron structure by density function theory and electrochemical process of surface (100) of FeS2. J. Cent. South Univ. 2007, 14, 618–622. [Google Scholar] [CrossRef]
- Zhao, C.H.; Chen, J.H.; Li, Y.Q.; Chen, Y.; Li, W.Z. First-principle calculations of interaction of O2 with pyrite, marcasite and pyrrhotite surfaces. Trans. Nonferrous Met. Soc. China 2016, 26, 519–526. [Google Scholar] [CrossRef]
- Sanchez-Arenillas, M.; Mateo-Marti, E. Pyrite surface environment drives molecular adsorption: Cystine on pyrite(100) investigated by X-ray photoemission spectroscopy and low energy electron diffraction. Phys. Chem. Chem. Phys. 2016, 18, 27219–27225. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Marti, E.; Sanchez-Arenillas, M. Spectroscopic study of amino acids adsorption on pyrite surface: From vacuum to solution conditions. Eur. Planet. Chem. Phys. 2015, 458, 92–98. [Google Scholar]
- Von Oertzen, G.U.; Harmer, S.L.; Skinner, W.M. XPS and ab initio calculation of surface states of sulfide minerals: Pyrite, chalcopyrite and molybdenite. Mol. Simul. 2006, 32, 1207–1212. [Google Scholar] [CrossRef]
- Von Oertzen, G.U.; Skinner, W.M.; Nesbitt, H.W.; Pratt, A.R.; Buckley, A.N. Cu adsorption on pyrite(100): Ab initio and spectroscopic studies. Surf. Sci. 2007, 601, 5794–5799. [Google Scholar] [CrossRef]
- Yang, B.; Tong, X.; Deng, Z.B.; Lv, X.W. The adsorption of Cu species onto pyrite surface and its effect on pyrite flotation. J. Chem. 2016, 2016, 4627929. [Google Scholar] [CrossRef]
- Murphy, R.; Strongin, D.R. Surface reactivity of pyrite and related sulfides. Surf. Sci. Rep. 2009, 64, 1–45. [Google Scholar] [CrossRef]
- Qiu, G.Z.; Xiao, Q.; Hu, Y.H.; Qin, W.Q.; Wang, D.Z. Theoretical study of the surface energy and electronic structure of pyrite FeS2 using a total-energy pseudopotential method, CASTEP. J. Colloid Interf. Sci. 2004, 270, 127–132. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Haanip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.-Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys.Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Blanchard, M.; Wright, K.; Gale, J.D.; Catlow, C.R.A. Adsorption of As(OH)3 on the (001) surface of FeS2 pyrite: A quantum-mechanical DFT study. J. Phys. Chem. C 2007, 111, 11390–11396. [Google Scholar] [CrossRef]
- Li, Y.Q.; Chen, J.H.; Guo, J. DFT study of influences of As, Co and Ni impurities on pyrite (100) surface oxidation by O2 molecule. Chem. Phys. Lett. 2011, 511, 389–392. [Google Scholar] [CrossRef]
- Herbert, F.W.; Krishnamoorthy, A.; Ma, W.; Van Vliet, K.J.; Yildiz, B. Dynamics of point defect formation, clustering and pit initiation on the pyrite surface. Electrochimica Acta 2014, 127, 416–426. [Google Scholar] [CrossRef]
- Zhang, X.R.; Qian, Z.B.; Zheng, G.B.; Zhu, Y.G.; Wu, W.G. The design of a macromolecular depressant for galena based on DFT studies and its application. Miner. Eng. 2017, 112, 50–56. [Google Scholar] [CrossRef]
- Xian, Y.J.; Nie, Q.; Wen, S.M.; Liu, J.; Deng, J.S. Investigation of pyrite surface state by DFT and AFM. J. Cent. South Univ. 2015, 22, 2508–2514. [Google Scholar] [CrossRef]
- Hung, A.; Yarovsky, I.; Russo, S.P. Density-functional theory studies of xanthate adsorption on the pyrite FeS2 and (111) surfaces. J. Chem. Phys. 2003, 118, 6022–6029. [Google Scholar] [CrossRef]
- Sauer, J.; Sustmann, R. Mechanistic aspects of Diels-Alder reactions: A critical survey. Angew. Chem. Int. Ed. 1980, 19, 779–807. [Google Scholar] [CrossRef]
- Rajaraman, G.; Caneschi, A.; Gatteschi, D.; Totti, F. A periodic mixed gaussians-plane waves DFT study on simple thiols on Au(111): Adsorbate species, surface reconstruction, and thiols functionalization. Phys. Chem. Chem. Phys. 2011, 13, 3886–3895. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhao, Y.L.; Zhang, P.; He, C.H.; Deng, J.; Ding, S.J.; Shi, W.Q. Combined DFT and XPS investigation of iodine anions adsorption on the sulfur terminated (001) chalcopyrite surface. Appl. Surf. Sci. 2016, 390, 412–421. [Google Scholar] [CrossRef]
- Zhao, C.H.; Chen, J.H.; Li, Y.Q.; Huang, D.W.; Li, W.Z. DFT study of interactions between calcium hydroxyl ions and pyrite, marcasite, pyrrhotite surfaces. Appl. Surf. Sci. 2015, 355, 577–581. [Google Scholar] [CrossRef]
- Ling, W.B.; Wang, L.; Liu, H.C.; Nie, Z.Y.; Yang, Y.; Yang, H.Y.; Ma, C.Y.; Zheng, L.; Zhao, Y.D.; Xia, J.L. The evidence of decisive effect of both surface microstructure and speciation of chalcopyrite on attachment behaviors of extreme thermoacidophile Sulfolobus metallicus. Minerals 2018, 8, 159. [Google Scholar] [CrossRef]
- Harmer, S.L.; Pratt, A.R.; Nesbitt, W.H.; Fleet, M.E. Sulfur species at chalcopyrite (CuFeS2) fracture surfaces. Am. Mineral. 2004, 89, 1026–1032. [Google Scholar] [CrossRef]
- Harmer, S.L.; Thomas, J.E.; Fornasiero, D.; Gerson, A.R. The evolution of surface layers formed during chalcopyrite leaching. Geochim. Cosmochim. Acta 2006, 70, 4392–4402. [Google Scholar] [CrossRef]
- Zhu, J.X.; Xian, H.Y.; Lin, X.J.; Tang, H.M.; Du, R.X.; Yang, Y.P.; Zhu, R.L.; Liang, X.L.; Wei, J.M.; Teng, H.H. Surface structure-dependent pyrite oxidation in relatively dry and moist air: Implications for the reaction mechanism and sulfur evolution. Geochim. Cosmochim. Acta 2018, 228, 259–274. [Google Scholar] [CrossRef]
- Yoshinari, M.; Oda, Y.; Ueki, H.; Yokose, S. Immobilization of bisphosphonates on surface modified titanium. Biomaterials 2001, 22, 709–715. [Google Scholar] [CrossRef]
A = B = C | Percent Error | |
---|---|---|
5.416 | Experimental [20] | -- |
5.428 | Present work | 0.22% |
5.449 | Previous work [35] | 0.61% |
5.431 | Previous work [40] | 0.28% |
HOMO | LUMO | ΔE1 | ΔE2 | |
---|---|---|---|---|
Pyrite | −5.829 | −4.672 | 4.062 | 0.158 |
Cysteine | −4.83 | −1.767 |
Optimized Configuration | Bond | Lengths (Å) |
---|---|---|
1A | -S-S | 3.027 |
1B | -S-Fe | 2.330 |
2A | -N-S | 3.009 |
2B | -N-Fe | 2.176 |
3A | =O-S | 3.280 |
3B | =O-Fe | 2.171 |
3B | -*N-S | 3.237 |
4A | -O-S | 3.018 |
4A | -*N-Fe | 2.144 |
4B | -O-Fe | 2.155 |
4B | =*O-Fe | 1.973 |
4B | -*N-Fe | 2.090 |
Bond | Lengths (Å) | Δd (Å) | |
---|---|---|---|
Before Adsorption | After Adsorption | ||
-C-S | 1.818 | 1.805 (1A) | −0.013 |
1.828 (1B) | 0.01 | ||
-C-N | 1.460 | 1.456 (2A) | −0.004 |
1.522 (2B) | 0.062 | ||
-C=O | 1.224 | 1.223 (3A) | −0.001 |
1.234 (3B) | 0.01 | ||
-C-O | 1.359 | 1.357 (4A) | −0.002 |
1.493 (4B) | 0.134 |
Optimized Configurations | Bonds | Populations | Ead (eV) |
---|---|---|---|
1A | -S-S | -- | −0.35 |
1B | -S-Fe | 0.3 | −2.18 |
2A | -N-S | -- | −0.62 |
2B | -N-Fe | 0.16 | −2.67 |
3A | =O-S | -- | −0.25 |
3B | =O-Fe | 0.27 | −2.16 |
4A | -O-S | -- | −1.33 |
4A | -*N-Fe | 0.16 | −1.33 |
4B | -O-Fe | 0.1 | −2.81 |
4B | =*O-Fe | 0.22 | −2.81 |
4B | -*N-Fe | 0.14 | −2.81 |
C | N | O | S | Fe | |
---|---|---|---|---|---|
Before Adsorption | 30.7 | -- | 30.9 | 26.6 | 11.8 |
After Adsorption | 35.1 | 3.6 | 20.4 | 30.5 | 10.4 |
S22− | S2− | Sn2− | |
---|---|---|---|
Before Adsorption | 89.1 | 10.9 | -- |
After Adsorption | 67.1 | 18.5 | 14.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Pan, X.; Nie, Z.; Yang, Y.; Liu, L.; Yang, H.; Xia, J. Combined DFT and XPS Investigation of Cysteine Adsorption on the Pyrite (1 0 0) Surface. Minerals 2018, 8, 366. https://doi.org/10.3390/min8090366
Zheng X, Pan X, Nie Z, Yang Y, Liu L, Yang H, Xia J. Combined DFT and XPS Investigation of Cysteine Adsorption on the Pyrite (1 0 0) Surface. Minerals. 2018; 8(9):366. https://doi.org/10.3390/min8090366
Chicago/Turabian StyleZheng, Xingfu, Xuan Pan, Zhenyuan Nie, Yi Yang, Lizhu Liu, Hongying Yang, and Jinlan Xia. 2018. "Combined DFT and XPS Investigation of Cysteine Adsorption on the Pyrite (1 0 0) Surface" Minerals 8, no. 9: 366. https://doi.org/10.3390/min8090366
APA StyleZheng, X., Pan, X., Nie, Z., Yang, Y., Liu, L., Yang, H., & Xia, J. (2018). Combined DFT and XPS Investigation of Cysteine Adsorption on the Pyrite (1 0 0) Surface. Minerals, 8(9), 366. https://doi.org/10.3390/min8090366