Cr Release from Cr-Substituted Goethite during Aqueous Fe(II)-Induced Recrystallization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pure Goethite and Cr-Goethite Preparation
2.2. Experiments on Fe(II)aq-Induced Recrystallization of Cr-Goethite
2.3. Analyses of Fe(II), Fe(III), and Cr(III) Concentrations, and Fe Isotope Composition
2.4. Mineral Characterization
3. Results and Discussion
3.1. Properties of Cr-Goethite
3.2. Influence of Cr-Substitution on Fe Atom Exchange and Electron Transfer between Fe(II)aq and Goethites
3.3. Cr(III) Release during the Fe(II)aq-Induced Recrystallization of Cr-Goethites
3.4. Effects of pH and Initial Fe(II)aq Concentration on Cr(III) Release during the Fe(II)aq-Induced Recrystallization of Cr-Goethites
3.5. Cr Release Mechanisms during Fe(II)aq-Induced Recrystallization of Cr-Goethite
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Quantin, C.; Becquer, T.; Rouiller, J.H.; Berthelin, J. Oxide weathering and trace metal release by bacterial reduction in a New Caledonia Ferralsol. Biogeochemistry 2001, 53, 323–340. [Google Scholar] [CrossRef]
- Lu, L.; Wang, R.; Chen, F.; Xue, J.; Zhang, P.; Lu, J. Element mobility during pyrite weathering: implications for acid and heavy metal pollution at mining-impacted sites. Environ. Geol. 2005, 49, 82–89. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed.; Wiley-VCH: Weinhein, Germany, 2003. [Google Scholar]
- Trolard, F.; Bourrie, G.; Jeanroy, E.; Herbillon, A.J.; Martin, H. Trace metals in natural iron oxides from laterites: A study using selective kinetic extraction. Geochim. Cosmochim. Acta 1995, 59, 1285–1297. [Google Scholar] [CrossRef]
- Amstaetter, K.; Borch, T.; Larese-Casanova, P.; Kappler, A. Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 2009, 44, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Hansel, C.M.; Learman, D.R.; Lentini, C.J.; Ekstrom, E.B. Effect of adsorbed and substituted Al on Fe(II)-induced mineralization pathways of ferrihydrite. Geochim. Cosmochim. Acta 2011, 75, 4653–4666. [Google Scholar] [CrossRef]
- Wells, M.A.; Fitzpatrick, R.W.; Gilkes, R.J. Thermal and mineral properties of Al-, Cr-, Mn-, Ni- and Ti-substituted goethite. Clay Clay Min. 2006, 54, 176–194. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Frierdich, A.J.; Hasenmueller, E.A.; Catalano, J.G. Composition and structure of nanocrystalline Fe and Mn oxide cave deposits: Implications for trace element mobility in karst systems. Chem. Geol. 2011, 284, 82–96. [Google Scholar] [CrossRef]
- Frierdich, A.J.; Luo, Y.; Catalano, J.G. Trace element cycling through iron oxide minerals during redox-driven dynamic recrystallization. Geology 2011, 39, 1083–1086. [Google Scholar] [CrossRef]
- Bousserrhine, N.; Gasser, U.G.; Jeanroy, E.; Berthelin, J. Bacterial and chemical reductive dissolution of Mn-, Co-, Cr-, and Al-substituted goethites. Geomicrobiol. J. 1999, 16, 245–258. [Google Scholar] [CrossRef]
- Dominik, P.; Pohl, H.N.; Bousserrhine, N.; Berthelin, J.; Kaupenjohann, M. Limitations to the reductive dissolution of Al-substituted goethites by Clostridium butyricum. Soil Biol. Biochem. 2002, 34, 1147–1155. [Google Scholar] [CrossRef]
- Grybos, M.; Davranche, M.; Gruau, G.; Petitjean, P. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J. Colloid Interface Sci. 2007, 314, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Borch, T.; Kretzschmar, R.; Kappler, A.; Cappellen, P.V.; Ginder-Vogel, M.; Voegelin, A.; Campbell, K. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 2009, 44, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Kappler, A.; Straub, K.L. Geomicrobiological cycling of iron. Rev. Mineral. Geochem. 2005, 59, 85–108. [Google Scholar] [CrossRef]
- Williams, A.G.; Scherer, M.M. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. Environ. Sci. Technol. 2004, 38, 4782–4790. [Google Scholar] [CrossRef] [PubMed]
- Latta, D.E.; Gorski, C.A.; Scherer, M.M. Influence of Fe2+-catalysed iron oxide recrystallization on metal cycling. Biochem. Soc. Trans. 2012, 40, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Frierdich, A.J.; Catalano, J.G. Controls on Fe(II)-activated trace element release from goethite and hematite. Environ. Sci. Technol. 2012, 46, 1519–1526. [Google Scholar] [CrossRef] [PubMed]
- Frierdich, A.J.; Catalano, J.G. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides. Environ. Sci. Technol. 2012, 46, 11070–11077. [Google Scholar] [CrossRef] [PubMed]
- Karimian, N.; Johnston, S.G.; Burton, E.D. Antimony and arsenic behavior during Fe(II)-induced transformation of jarosite. Environ. Sci. Technol. 2017, 51, 4259–4268. [Google Scholar] [CrossRef] [PubMed]
- Nico, P.S.; Stewart, B.D.; Fendorf, S. Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization. Environ. Sci. Technol. 2009, 43, 7391–7396. [Google Scholar] [CrossRef] [PubMed]
- Massey, M.S.; Lezama-Pacheco, J.S.; Michel, F.M.; Fendorf, S. Uranium incorporation into aluminum-substituted ferrihydrite during iron(II)-induced transformation. Environ. Sci.-Process Impacts 2014, 16, 2137–2144. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhu, Z.; Li, F.; Liu, T.; Liao, C.; Lee, J.J.; Shih, K.; Tao, L.; Wu, Y. Fe(II)-induced phase transformation of ferrihydrite: The inhibition effects and stabilization of divalent metal cations. Chem. Geol. 2016, 444, 110–119. [Google Scholar] [CrossRef]
- Jang, J.H.; Dempsey, B.A.; Catchen, G.L.; Burgos, W.D. Effects of Zn(II), Cu(II), Mn(II), Fe(II), NO3−, or SO42− at pH 6.5 and 8.5 on transformations of hydrous ferric oxide (HFO) as evidenced by Mössbauer spectroscopy. Colloid Surf. A 2003, 221, 55–68. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer: Basel, Switzerland, 2012; Volume 101, pp. 133–164. [Google Scholar]
- Zhou, G.; Yin, X.; Zhou, J.; Cheng, W. Speciation and spatial distribution of Cr in chromite ore processing residue site, Yunnan, China. Acta Geochim. 2017, 36, 291–297. [Google Scholar] [CrossRef]
- Pantsar-Kallio, M.; Reinikainen, S.P.; Oksanen, M. Interactions of soil components and their effects on speciation of chromium in soils. Anal. Chim. Acta 2001, 439, 9–17. [Google Scholar] [CrossRef]
- Singh, B.; Sherman, D.; Mosselmans, J.; Gilkes, R.; Wells, M. Incorporation of Cr, Mn and Ni into goethite (α-FeOOH): Mechanism from extended X-ray absorption fine structure spectroscopy. Clay Min. 2002, 37, 639–649. [Google Scholar] [CrossRef]
- Shwertmann, U.; Cornel, R. Iron Oxides in the Laboratory: Preparation and Characterization, 3rd ed.; Wiley-VCH: Weinhein, Germany, 2000; pp. 67–92. [Google Scholar]
- Notini, L.; Latta, D.E.; Neumann, A.; Pearce, C.I.; Sassi, M.; N’Diaye, A.T.; Rosso, K.M.; Scherer, M.M. The Role of Defects in Fe (II)–Goethite Electron Transfer. Environ. Sci. Technol. 2018, 52, 2751–2759. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Goto, K.; Yotsuyanagi, T.; Nagayama, M. Spectrophotometric determination of iron(II) with 1, 10-phenanthroline in the presence of large amounts of iron(III). Talanta 1974, 21, 314–318. [Google Scholar] [CrossRef]
- Frierdich, A.J.; Helgeson, M.; Liu, C.; Wang, C.; Rosso, K.M.; Scherer, M.M. Iron atom exchange between hematite and aqueous Fe(II). Environ. Sci. Technol. 2015, 49, 8479–8486. [Google Scholar] [CrossRef] [PubMed]
- Handler, R.M.; Frierdich, A.J.; Johnson, C.M.; Rosso, K.M.; Beard, B.L.; Wang, C.; Latta, D.E.; Neumann, A.; Pasakarnis, T.; Premaratne, W.A. Fe(II)-catalyzed recrystallization of goethite revisited. Environ. Sci. Technol. 2014, 48, 11302–11311. [Google Scholar] [CrossRef] [PubMed]
- Handler, R.M.; Beard, B.L.; Johnson, C.M.; Scherer, M.M. Atom exchange between aqueous Fe(II) and goethite: An Fe Isotope Tracer Study. Environ. Sci. Technol. 2009, 43, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Sileo, E.; Ramos, A.Y.; Magaz, M.A.; Blesa, M.A. Long-range vs. short-range ordering in synthetic Cr-substituted goethites. Geochim. Cosmochim. Acta 2004, 68, 3053–3063. [Google Scholar] [CrossRef]
- Tang, Y.Z.; Michel, A.M.; Zhang, L.H.; Harrington, R.; Parise, J.B.; Reeder, R.J. Structural properties of the Cr(III)-Fe(III) (oxy)hydroxide compositional series: Insights for a nanomaterial “solid solution”. Chem. Mater. 2012, 22, 3589–3598. [Google Scholar] [CrossRef]
- Latta, D.E.; Bachman, J.E.; Scherer, M.M. Fe electron transfer and atom exchange in goethite: Influence of Al-substitution and anion sorption. Environ. Sci. Technol. 2012, 46, 10614–10623. [Google Scholar] [CrossRef] [PubMed]
- Cwiertny, D.M.; Handler, R.M.; Schaefer, M.V.; Grassian, V.H.; Scherer, M.M. Interpreting nanoscale size-effects in aggregated Fe-oxide suspensions: Reaction of Fe(II) with goethite. Geochim. Cosmochim. Acta 2008, 72, 1365–1380. [Google Scholar] [CrossRef]
- Kaneko, K.; Inoue, N.; Ishikawa, T. Electrical and photoadsorptive properties of valence-controlled α-FeOOH. J. Phys. Chem. 1989, 93, 1988–1992. [Google Scholar] [CrossRef]
- Rai, D.; Sass, B.M.; Moore, D.A. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem. 1987, 26, 345–349. [Google Scholar] [CrossRef]
- Klyukin, K.; Rosso, K.M.; Alexandrov, V. Iron dissolution from goethite (α-FeOOH) surfaces in water by ab initio enhanced free-energy simulations. J. Phys. Chem. C 2018, 122, 16086–16091. [Google Scholar] [CrossRef]
- Kosmulski, M. Chemical Properties of Material Surfacea; CRC Press: New York, NY, USA, 2001. [Google Scholar]
- Pedersen, H.D.; Postma, D.; Jakobsen, R.; Larsen, O. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochim. Cosmochim. Acta 2005, 69, 3967–3977. [Google Scholar] [CrossRef]
- Reddy, T.R.; Frierdich, A.J.; Beard, B.L.; Johnson, C.M. The effect of pH on stable iron isotope exchange and fractionation between aqueous Fe(II) and goethite. Chem. Geol. 2015, 397, 118–127. [Google Scholar] [CrossRef]
- Joshi, P.; Gorski, C.A. Anisotropic morphological changes in goethite during Fe2+-catalyzed recrystallization. Environ. Sci. Technol. 2016, 50, 7315–7324. [Google Scholar] [CrossRef] [PubMed]
- Rosso, K.M.; Yanina, S.V.; Gorski, C.A.; Laresecasanova, P.; Scherer, M.M. Connecting observations of hematite (α-Fe2O3) growth catalyzed by Fe(II). Environ. Sci. Technol. 2010, 44, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Yanina, S.V.; Rosso, K.M. Linked reactivity atmineral-water interfaces through bulk crystal conduction. Science 2008, 320, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Larese-Casanova, P.; Scherer, M.M. Fe(II) sorption on hematite: New insights based on spectroscopic measurements. Environ. Sci. Technol. 2007, 41, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Frierdich, A.J.; Scherer, M.M.; Bachman, J.E.; Engelhard, M.H.; Rapponotti, B.W.; Catalano, J.G. Inhibition of trace element release during Fe(II)-activated recrystallization of Al-, Cr-, and Sn-substituted goethite and hematite. Environ. Sci. Technol. 2012, 46, 10031–10039. [Google Scholar] [CrossRef] [PubMed]
- Zarzycki, P.; Kerisit, S.; Rosso, K.M. Molecular dynamics study of Fe(II) adsorption, electron exchange and mobility at goethite (α-FeOOH) surfaces. J. Phys. Chem. C 2015, 119, 3111–3123. [Google Scholar] [CrossRef]
Lattice Parameters | Pure Goethite | 1.4% Cr-Goethite | 3.5% Cr-Goethite | 9.03% Cr-Goethite | 10.3% Cr-Goethite |
---|---|---|---|---|---|
a | 4.614 | 4.613 | 4.612 | 4.609 | 4.608 |
b | 9.965 | 9.958 | 9.957 | 9.948 | 9.942 |
c | 3.024 | 3.021 | 3.023 | 3.020 | 3.019 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, J.; Chen, M.; Liu, C.; Li, F.; Long, J.; Gao, T.; Wu, F.; Lei, J.; Gu, M. Cr Release from Cr-Substituted Goethite during Aqueous Fe(II)-Induced Recrystallization. Minerals 2018, 8, 367. https://doi.org/10.3390/min8090367
Hua J, Chen M, Liu C, Li F, Long J, Gao T, Wu F, Lei J, Gu M. Cr Release from Cr-Substituted Goethite during Aqueous Fe(II)-Induced Recrystallization. Minerals. 2018; 8(9):367. https://doi.org/10.3390/min8090367
Chicago/Turabian StyleHua, Jian, Manjia Chen, Chengshuai Liu, Fangbai Li, Jian Long, Ting Gao, Fei Wu, Jing Lei, and Minghua Gu. 2018. "Cr Release from Cr-Substituted Goethite during Aqueous Fe(II)-Induced Recrystallization" Minerals 8, no. 9: 367. https://doi.org/10.3390/min8090367
APA StyleHua, J., Chen, M., Liu, C., Li, F., Long, J., Gao, T., Wu, F., Lei, J., & Gu, M. (2018). Cr Release from Cr-Substituted Goethite during Aqueous Fe(II)-Induced Recrystallization. Minerals, 8(9), 367. https://doi.org/10.3390/min8090367