Tectonic Control, Reconstruction and Preservation of the Tiegelongnan Porphyry and Epithermal Overprinting Cu (Au) Deposit, Central Tibet, China
Abstract
:1. Introduction
2. The Duolong District
3. Tiegelongnan Alteration and Mineralization
3.1. Alteration
3.2. Mineralization
4. Structures
5. Post-Mineral Weathering and Erosion
6. Discussion
6.1. Magmatism Indication of Tectonic Setting in the Duolong District
6.2. Tectonic Reconstruction of Epithermal Overprinting Porphyry
6.3. Post-Mineral Erosion and Preservation
7. Implications and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Hou, Z.; Xie, Y.; Xu, W.; Li, Y.; Zhu, X.; Khin, Z.; Beaudoin, G.; Rui, Z.; Huang, W.; Luo, C. Yulong deposit, eastern Tibet: A high-sulfidation Cu-Au porphyry copper deposit in the eastern Indo-Asian collision zone. Int. Geol. Rev. 2007, 49, 235–258. [Google Scholar]
- Yang, A.; Hou, Z.; White, C.N.; Chang, Z.; Li, Z.; Song, Y. Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong, Tibet. Ore Geol. Rev. 2009, 36, 133–159. [Google Scholar] [CrossRef]
- Zheng, W.; Tang, J.; Zhong, K.; Ying, L.; Leng, Q.; Ding, S.; Lin, B. Geology of the Jiama porphyry copper–polymetallic system, Lhasa Region, China. Ore Geol. Rev. 2016, 74, 151–169. [Google Scholar] [CrossRef]
- Zhu, X.; Li, G.; Chen, H.; Ma, D.; Zhang, H.; Zhang, H.; Liu, C.; Wei, L. Petrogenesis and metallogenic setting of porphyries of the Duobuza porphyry Cu–Au deposit, central Tibet, China. Ore Geol. Rev. 2017, 89, 858–875. [Google Scholar] [CrossRef]
- Zhu, X.; Li, G.; Chen, H.; Ma, D.; Huang, H. Zircon U–Pb, Molybdenite Re–Os and K-feldspar 40Ar/39Ar Dating of the Bolong Porphyry Cu–Au Deposit, Tibet, China. Resour. Geol. 2015, 65, 122–135. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Arribas, A.; Gonzalez-Urien, E. Exploration for epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 245–277. [Google Scholar]
- Tang, J.; Sun, X.; Ding, S.; Wang, Q.; Wang, Y.; Yang, C.; Chen, H.; Li, Y.; Li, Y.; Wei, L.; et al. Discovery of the epithermal deposit of Cu (Au-Ag) in the Duolong ore concentrating area, Tibet. Acta Geosci. Sin. 2014, 35, 6–10. (In Chinese) [Google Scholar] [CrossRef]
- Lin, B.; Tang, J.-X.; Chen, Y.-C.; Song, Y.; Hall, G.; Wang, Q.; Yang, C.; Fang, X.; Duan, J.-L.; Yang, H.-H. Geochronology and Genesis of the Tiegelongnan Porphyry Cu (Au) Deposit in Tibet: Evidence from U–Pb, Re–Os Dating and Hf, S, and H–O Isotopes. Resour. Geol. 2017, 67, 1–21. [Google Scholar] [CrossRef]
- Wei, S.-G.; Tang, J.-X.; Song, Y.; Liu, Z.-B.; Feng, J.; Li, Y.-B. Early Cretaceous bimodal volcanism in the Duolong Cu mining district, western Tibet: Record of slab breakoff that triggered ca. 108–113 Ma magmatism in the western Qiangtang terrane. J. Asian Earth Sci. 2017, 138, 588–607. [Google Scholar] [CrossRef]
- Geng, Q.; Zhang, Z.; Peng, Z.; Guan, J.; Zhu, X.; Mao, X. Jurassic–Cretaceous granitoids and related tectono-metallogenesis in the Zapug–Duobuza arc, western Tibet. Ore Geol. Rev. 2016, 77, 163–175. [Google Scholar] [CrossRef]
- Li, J.X.; Qin, K.; Li, G.; Xiao, B.; Zhao, J.; Chen, L. Petrogenesis of Cretaceous igneous rocks from the Duolong porphyry Cu–Au deposit, central Tibet: Evidence from zircon U–Pb geochronology, petrochemistry and Sr–Nd–Pb–Hf isotope characteristics. Geol. J. 2016, 51, 285–307. [Google Scholar] [CrossRef]
- Pan, G.; Wang, L.; Li, R.; Yuan, S.; Ji, W.; Yin, F.; Zhang, W.; Wang, B. Tectonic evolution of the Qinghai-Tibet plateau. J. Asian Earth Sci. 2012, 53, 3–14. [Google Scholar] [CrossRef]
- Zhu, D.; Zhao, Z.; Niu, Y.; Dilek, Y.; Hou, Z.; Mo, X. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Ding, S.; Chen, Y.; Tang, J.; Zheng, W.; Lin, B.; Yang, C. Petrogenesis and Tectonics of the Naruo Porphyry Cu (Au) Deposit Related Intrusion in the Duolong Area, Central Tibet. Acta Geol. Sin. 2017, 91, 581–601. [Google Scholar] [CrossRef]
- Li, J.; Qin, K.; Li, G.; Noreen, J.; Zhao, J.; Cao, M.; Huang, F. The Nadun Cu–Au mineralization, central Tibet: Root of a high sulfidation epithermal deposit. Ore Geol. Rev. 2016, 78, 371–387. [Google Scholar] [CrossRef]
- Li, G.; Li, J.; Qin, K.; Duo, J.; Zhang, T.; Xiao, B.; Zhao, J. Geology and Hydrothermal Alteration of the Duobuza Gold-Rich Porphyry Copper District in the Bangongco Metallogenetic Belt, Northwestern Tibet. Resour. Geol. 2012, 62, 99–118. [Google Scholar] [CrossRef]
- Lin, B.; Chen, Y.; Tang, J.; Wang, Q.; Song, Y.; Yang, C.; Wang, L.; He, W.; Zhang, L. 40Ar/39Ar and Rb-Sr Ages of the Tiegelongnan Porphyry Cu-(Au) Deposit in the Bangong Co-Nujiang Metallogenic Belt of Tibet, China: Implication for Generation of Super-Large Deposit. Acta Geol. Sin. 2017, 91, 602–616. [Google Scholar] [CrossRef]
- Li, G.; Duan, Z.; Liu, B.; Zhang, H.; Dong, S.; Zhang, L. The discovery of Jurassic accretionary complexes in Duolong area, northern Bangong Co-Nujiang suture zone, Tibet, and its geologic significance. Geol. Bull. China 2011, 30, 1256–1260. (In Chinese) [Google Scholar]
- Liu, Y.; Wang, M.; Li, C.; Xie, C.; Chen, H.; Li, Y.; Fan, J.; Li, X.; Xu, W.; Sun, Z. Cretaceous structures in the Duolong region of central Tibet: Evidence for an accretionary wedge and closure of the Bangong–Nujiang Neo-Tethys Ocean. Gondwana Res. 2017, 48, 110–123. [Google Scholar] [CrossRef]
- Fang, X.; Tang, J.; Song, Y.; Yang, C.; Ding, S.; Wang, Y.; Wang, Q.; Sun, X.; Li, Y.; Wei, L.; et al. Formation epoch of the South Tiegelong superlarge epithermal Cu (Au-Ag) deposit in Tibet and its geological implications. Acta Geosci. Sin. 2015, 36, 168–176. (In Chinese) [Google Scholar]
- Yang, C.; Beaudoin, G.; Tang, J.; Song, Y. An extreme long life span of porphyry and epithermal Cu deposit: The Tiegelongnan deposit, Tibet, China. 2018; in preparation. [Google Scholar]
- Yang, C.; Beaudoin, G.; Tang, J.; Song, Y. Geology and genesis of Tiegelongnan porphyry and epithermal base metal deposit in Duolong district, Tibet, China: From stable isotope and fluid inclusions constrains. 2018; in preparation. [Google Scholar]
- Sillitoe, R.H.; Hedenquist, J.W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Spec. Publ. Soc. Econ. Geol. 2003, 10, 315–343. [Google Scholar]
- Seedorff, E. Porphyry deposits: Characteristics and origin of hypogene features. Econ. Geol. 2005, 29, 251–298. [Google Scholar]
- Stoffregen, R. Genesis of Acid-Sulfate Alteration and Au-Cu-Ag Mineralization at Summitville, Colorado. Econ. Geol. 1987, 82, 1575–1591. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, J. The First Discovery of Colusite in the Tiegelongnan Supper-large Cu (Au, Ag) Deposit and Significance for the Genesis of the Deposit. Acta Geol. Sin. 2018, 92, 400–401. [Google Scholar] [CrossRef]
- Yang, C.; Tang, J.; Wang, Y.; Yang, H.; Wang, Q.; Sun, X.; Feng, J.; Yin, X.; Ding, S.; Fang, X.; et al. Fluid and geological characteristics researches of Southern Tiegelong epithermal porphyry Cu-Au deposit in Tibet. Miner. Depos. 2014, 33, 1287–1305. (In Chinese) [Google Scholar]
- Duan, J.; Tang, J.; Li, Y.; Liu, S.; Wang, Q.; Yang, C.; Wang, Y. Copper isotopic signature of the Tiegelongnan high-sulfidation copper deposit, Tibet: Implications for its origin and mineral exploration. Miner. Depos. 2016, 51, 591–602. [Google Scholar] [CrossRef]
- Mathur, R.; Munk, L.; Nguyen, M.; Gregory, M.; Annell, H.; Lang, J. Modern and paleofluid pathways revealed by Cu isotope compositions in surface waters and ores of the Pebble porphyry Cu-Au-Mo deposit, Alaska. Econ. Geol. 2013, 108, 529–541. [Google Scholar] [CrossRef]
- Chen, H.Q.; Qu, X.M.; Fan, S.F. Geological characteristics and metallogenic prospecting model of Duolong porphyry copper gold ore concentration area in Gerze County, Tibet. Miner. Depos. 2015, 34, 321–332. [Google Scholar]
- Song, Y.; Yang, H.H.; Lin, B.; Liu, Z.B.; Qin, W.; Ke, G.; Chao, Y.; Xiang, F. The Preservation System of Epithermal Deposits in South Qiangtang Terrane of Central Tibetan Plateau and Its Significance: A Case Study of the Tiegelongnan Superlarge Deposit. Acta Geosci. Sin. 2017, 38, 659–669. (In Chinese) [Google Scholar]
- Kapp, P.; Yin, A.; Manning, C.; Harrison, T.; Taylor, M.; Ding, L. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics 2003, 22. [Google Scholar] [CrossRef] [Green Version]
- Kapp, P.; Yin, A.; Harrison, T.; Ding, L. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geol. Soc. Am. Bull. 2005, 117, 865–878. [Google Scholar] [CrossRef]
- Pullen, A.; Kapp, P.; Gehrels, G.; Ding, L.; Zhang, Q. Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure. Geol. Soc. Am. Bull. 2011, 123, 585–600. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Q.; Fan, S.; Zhang, L.; Shi, R.; Ding, L. Subduction of the Bangong–Nujiang Ocean: Constraints from granites in the Bangong Co area, Tibet. Geol. J. 2014, 49, 188–206. [Google Scholar] [CrossRef]
- Hao, L.; Wang, Q.; Wyman, D.A.; Ou, Q.; Dan, W.; Jiang, Z.; Wu, F.; Yang, J.; Long, X.; Li, J. Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate–felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos 2016, 245, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Li, S.; Cawood, P.; Wang, Q.; Zhao, Z.; Liu, S.; Wang, L. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos 2016, 245, 7–17. [Google Scholar] [CrossRef]
- Allmendinger, R.; Jordan, T.; And, S.; Isacks, B. The evolution of the Altiplano-Puna plateau of the Central Andes. Annu. Rev. Earth Planet. Sci. 1997, 25, 139–174. [Google Scholar] [CrossRef]
- Zhu, D.; Pan, G.; Wang, L.; Mo, X.; Zhao, Z.; Zhou, C.; Liao, Z.; Dong, G.; Yuan, S. Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdese belt, Tibet, China, with a discussion of geodynamic setting-related issues. Geol. Bull. China 2008, 27, 1535–1550. (In Chinese) [Google Scholar]
- Kapp, P.; Decelles, P.; Gehrels, G.; Heizler, M.; Lin, D. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol. Soc. Am. Bull. 2007, 119, 917–933. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef]
- Qu, X.-M.; Wang, R.; Xin, H.; Jiang, J.; Chen, H. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu–Nujiang suture, Tibetan plateau. Lithos 2012, 146, 264–275. [Google Scholar] [CrossRef]
- Li, J.-X.; Qin, K.; Li, G.; Xiao, B.; Zhao, J.; Cao, M.; Chen, L. Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu–Au deposit, central Tibet: Evidence from U–Pb geochronology, petrochemistry and Sr–Nd–Hf–O isotope characteristics. Lithos 2013, 160, 216–227. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Sun, Z.; Wang, M. Origin and tectonic setting of the giant Duolong Cu–Au deposit, South Qiangtang Terrane, Tibet: Evidence from geochronology and geochemistry of Early Cretaceous intrusive rocks. Ore Geol. Rev. 2017, 80, 61–78. [Google Scholar] [CrossRef]
- Li, G.; Qin, K.; Li, J.; Evans, N.; Zhao, J.; Cao, M.; Zhang, X. Cretaceous magmatism and metallogeny in the Bangong–Nujiang metallogenic belt, central Tibet: Evidence from petrogeochemistry, zircon U–Pb ages, and Hf–O isotopic compositions. Gondwana Res. 2017, 41, 110–127. [Google Scholar] [CrossRef]
- Hou, Z.; Mo, X.; Gao, Y.; Qu, X.; Meng, X. Adakite, a possible host rock for porphyry copper deposits: Case studies of porphyry copper belts in Tibetan Plateau and in Northern Chile. Miner. Depos. 2003, 22, 1–12. (In Chinese) [Google Scholar]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662. [Google Scholar] [CrossRef]
- Sillitoe, R. Epochs of intrusion-related copper mineralization in the Andes. J. S. Am. Earth Sci. 1988, 1, 89–108. [Google Scholar] [CrossRef]
- Sillitoe, R.H. A plate tectonic model for the origin of porphyry copper deposits. Econ. Geol. 1972, 67, 184–197. [Google Scholar] [CrossRef]
- Hou, Z.; Gao, Y.; Qu, X.; Rui, Z.; Mo, X. Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet. Sci. Lett. 2004, 220, 139–155. [Google Scholar] [CrossRef]
- Hou, Z.; Yang, Z.; Lu, Y.; Kemp, A.; Zheng, Y.; Li, Q.; Tang, J.; Yang, Z.; Duan, L. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology 2015, 43, 247–250. [Google Scholar] [CrossRef]
- Oyarzun, R.; Márquez, A.; Lillo, J.; López, I.; Rivera, S. Reply to Discussion on “Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: Adakitic versus normal calc-alkaline magmatism” by Oyarzun R, Márquez A, Lillo J, López I, Rivera S (Mineralium Deposita 36: 794–798, 2001). Miner. Depos. 2002, 37, 795–799. [Google Scholar] [CrossRef]
- Li, J.; Qin, K.; Li, G.; Richards, J.; Zhao, J.; Cao, M. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate–felsic intrusions in central Tibet: Petrogenetic and tectonic implications. Lithos 2014, 198–199, 77–91. [Google Scholar] [CrossRef]
- Lv, L.; Zhao, Y.; Song, L.; Tian, Y.; Xin, H. Characteristics of C, Si, O, S and Pb isotopes of the Fe-rich and Cu (Au) deposits in the western Bangong–Nujiang metallogenic belt, Tibet, and their geological significance. Acta Geol. Sin. 2011, 85, 1291–1304. (In Chinese) [Google Scholar]
- Xin, H.; Qu, X.; Wang, R.; Liu, H.; Zhao, Y.; Wei, H. Geochemistry and Pb, Sr, Nd isotopic features of ore-bearing porphyries in Bangong Lake porphyry copper belt, western Tibet. Miner. Depos. 2009, 28, 785–792. (In Chinese) [Google Scholar]
- Hawkesworth, C. The generation and evolution of the continental crust. J. Geol. Soc. 2010, 167, 229–248. [Google Scholar] [CrossRef]
- Richards, J.P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 2009, 37, 247–250. [Google Scholar] [CrossRef]
- Sillitoe, R. Styles of high-sulphidation gold, silver and copper mineralisation in porphyry and epithermal environments. In Proceedings of the Australasian Institute of Mining and Metallurgy, Melbourne, Australia, 11–13 September 2000; Volume 305, pp. 19–34. [Google Scholar]
- Fournier, R.O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 1999, 94, 1193–1211. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Tang, X.; Xia, B. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth Sci. Rev. 2012, 114, 236–249. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Li, Y.; Ma, C.; Wang, L.; Peng, S. The Cretaceous tectonic event in the Qiangtang Basin and its implications for hydrocarbon accumulation. Pet. Sci. 2010, 7, 466–471. [Google Scholar] [CrossRef]
- Yang, K.; Ma, C. Some advances in the rates of continental erosion and mountain uplift. Geol. Sci. Technol. Inf. 1996, 15, 89–96. [Google Scholar]
- Kesler, S.E.; Wilkinson, B.H. The role of exhumation in the temporal distribution of ore deposits. Econ. Geol. 2006, 101, 919–922. [Google Scholar] [CrossRef]
- Murphy, M.; Yin, A.; Harrison, T.; Dürr, S.; Chen, Z.; Ryerson, J.; Kidd, F.; Wang, X.; Zhou, X. Did the Indo-Asian collision alone create the Tibetan plateau? Geology 1997, 25, 719–722. [Google Scholar] [CrossRef]
- Ketcham, R.A. Forward and inverse modeling of low-temperature thermochronometry data. Rev. Mineral. Geochem. 2005, 58, 275–314. [Google Scholar] [CrossRef]
- Yang, H.H.; Tang, J.; Dilles, J.; Song, Y. Temperature Study of the Duolong Porphyry Cu-Au District and its implications for the Evolution of the Qiangtang Terrane in Tibet, China. Int. Geol. Rev. 2018. submitted. [Google Scholar]
- Li, G. High temperature, salinity and strong oxidation ore-forming fluid at Duobuza gold-rich porphyry copper in the Bangonghu tectonic belt, Tibet: Evidence from fluid inclusions study. Acta Petrol. Sin. 2007, 23, 935–952. [Google Scholar]
- Sillitoe, R.H. Porphyry Copper Systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Lowell, J.D.; Guilbert, J.M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ. Geol. 1970, 65, 373–408. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Yang, C.; Wei, S.; Yang, H.; Fang, X.; Lu, H. Tectonic Control, Reconstruction and Preservation of the Tiegelongnan Porphyry and Epithermal Overprinting Cu (Au) Deposit, Central Tibet, China. Minerals 2018, 8, 398. https://doi.org/10.3390/min8090398
Song Y, Yang C, Wei S, Yang H, Fang X, Lu H. Tectonic Control, Reconstruction and Preservation of the Tiegelongnan Porphyry and Epithermal Overprinting Cu (Au) Deposit, Central Tibet, China. Minerals. 2018; 8(9):398. https://doi.org/10.3390/min8090398
Chicago/Turabian StyleSong, Yang, Chao Yang, Shaogang Wei, Huanhuan Yang, Xiang Fang, and Hongtao Lu. 2018. "Tectonic Control, Reconstruction and Preservation of the Tiegelongnan Porphyry and Epithermal Overprinting Cu (Au) Deposit, Central Tibet, China" Minerals 8, no. 9: 398. https://doi.org/10.3390/min8090398
APA StyleSong, Y., Yang, C., Wei, S., Yang, H., Fang, X., & Lu, H. (2018). Tectonic Control, Reconstruction and Preservation of the Tiegelongnan Porphyry and Epithermal Overprinting Cu (Au) Deposit, Central Tibet, China. Minerals, 8(9), 398. https://doi.org/10.3390/min8090398