Raman Spectroscopy Study of Phosphorites Combined with PCA-HCA and OPLS-DA Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Raman Scattering
2.3. PCA-HCA and OPLS-DA
3. Results and Discussion
3.1. Raman Spectra
3.2. PCA-HCA Study
3.3. OPLS-DA Study
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, P. Comprehensive Recovery and Sustainable Development of Phosphate Resources. Procedia Eng. 2014, 83, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, J.; Wang, H.; Wang, C. Geochemical Characteristics of Dolomitic Phosphorite Containing Rare Earth Elements and Its Weathered Ore. Minerals 2019, 9, 416. [Google Scholar] [CrossRef]
- Geissler, B.; Mew, M.C.; Weber, O.; Steiner, G. Efficiency performance of the world’s leading corporations in phosphate rock mining. Resour. Conserv. Recycl. 2015, 105, 246–258. [Google Scholar] [CrossRef]
- Ruan, Y.; He, D.; Chi, R. Review on Beneficiation Techniques and Reagents Used for Phosphate Ores. Minerals 2019, 9, 253. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, S.; Wang, Y.; Xu, J.; Qu, W. Review on analytical methods of phosphate ores. Metall. Anal. 2013, 33, 26–34. (In Chinese) [Google Scholar]
- Fajber, R.; Simandl, G.J. Evaluation of rare Earth Element-Enriched Sedimentary Phosphate Deposits Using Portable X-ray Fluorescence (XRF) Instruments; British Columbia Geological Survey: Victoria, BC, Canada, 2011. [Google Scholar]
- Koleva, V.; Petkova, V. IR spectroscopic study of high energy activated Tunisian phosphorite. Vib. Spectrosc. 2012, 58, 125–132. [Google Scholar] [CrossRef]
- Al-Eshaikh, M.A.; Kadachi, A.N.; Sarfraz, M.M. Determination of uranium content in phosphate ores using different measurement techniques. J. King Saud Univ. Eng. Sci. 2016, 28, 41–46. [Google Scholar] [CrossRef] [Green Version]
- She, Z.; Strother, P.; McMahon, G.; Nittler, L.; Wang, J.; Zhang, J.; Sang, L.; Ma, C.; Papineau, D. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites I: In situ micro-analysis of textures and composition. Precambrian Res. 2013, 235, 20–35. [Google Scholar] [CrossRef]
- Curtis, N.J.; Gascooke, J.R.; Johnston, M.R.; Pring, A. A Review of the Classification of Opal with Reference to Recent New Localities. Minerals 2019, 9, 299. [Google Scholar] [CrossRef]
- Redhammer, G.J.; Weber, J.; Tippelt, G.; Zickler, G.A.; Reyer, A. Low Temperature Synthesis of Aegirine NaFeSi2O6: Spectroscopy (57Fe Mössbauer, Raman) and Size/Strain Analysis from X-ray Powder Diffraction. Minerals 2019, 9, 444. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, L.; Zhao, L.; Algeo, T.; Chen, Z.; Li, Z.; Lv, Z.; Wang, X. Raman spectral, elemental, crystallinity, and oxygen-isotope variations in conodont apatite during diagenesis. Geochim. Cosmochim. Acta 2017, 210, 184–207. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Moens, L.; Edwards, H.G.M.; Dams, R. Raman spectroscopic database of azo pigments and application to modern art studies. J. Raman Spectrosc. 2000, 31, 509–517. [Google Scholar] [CrossRef]
- Nemtsov, I.; Aviv, H.; Mastai, Y.; Tischler, Y.R. Polarization Dependence of Low-Frequency Vibrations from Multiple Faces in an Organic Single Crystal. Crystals 2019, 9, 425. [Google Scholar] [CrossRef]
- Frost, R.L. Raman microscopy of selected chromate minerals. J. Raman Spectrosc. 2004, 35, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Dörfer, T.; Schumacher, W.; Tarcea, N.; Schmitt, M.; Popp, J. Quantitative mineral analysis using Raman spectroscopy and chemometric techniques. J. Raman Spectrosc. 2010, 41, 684–689. [Google Scholar] [CrossRef]
- Bartholomew, P.R.; Dyar, M.D.; Brady, J.B. The role of intensity and instrument sensitivity in Raman mineral identification. J. Raman Spectrosc. 2015, 46, 889–893. [Google Scholar] [CrossRef]
- Lopez-Reyes, G.; Rull, F.; Venegas, G.; Westall, F.; Foucher, F.; Bost, N.; Sanz, A.; Catalá-Espí, A.; Vegas, A.; Hermosilla, I.; et al. Analysis of the scientific capabilities of the ExoMars Raman Laser Spectrometer instrument. Eur. J. Mineral. 2013, 25, 721–733. [Google Scholar] [CrossRef]
- Sharma, S.K.; Porter, J.N.; Misra, A.K.; Helsley, C.E.; Bates, D.E. Scanning time-resolved standoff Raman instrument for large-area mineral detection on planetary surfaces. Eur. J. Mineral. 2013, 25, 715–720. [Google Scholar] [CrossRef]
- Antonakos, A.; Liarokapis, E.; Leventouri, T. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 2007, 28, 3043–3054. [Google Scholar] [CrossRef]
- Elgharbi, S.; Horchani-Naifer, K.; Férid, M. Investigation of the structural and mineralogical changes of Tunisian phosphorite during calcinations. J. Therm. Anal. Calorim. 2015, 119, 265–271. [Google Scholar] [CrossRef]
- Wang, M.; Qian, R.; Bao, M.; Gu, C.; Zhu, P. Raman, FT-IR and XRD study of bovine bone mineral and carbonated apatites with different carbonate levels. Mater. Lett. 2018, 210, 203–206. [Google Scholar] [CrossRef]
- Ciobotă, V.; Salama, W.; Jentzsch, P.V.; Tarcea, N.; Rösch, P.; El Kammar, A.; Morsy, R.S.; Popp, J. Raman investigations of Upper Cretaceous phosphorite and black shale from Safaga District, Red Sea, Egypt. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Ordóñez, A.; García-Moreno, O.; Rodríguez Terente, L.M.; García-Guinea, J.; Tormo, L. Chondrite Shock Metamorphism History Assessed by Non-Destructive Analyses on Ca-Phosphates and Feldspars in the Cangas de Onís Regolith Breccia. Minerals 2019, 9, 417. [Google Scholar] [CrossRef]
- Cebi, N.; Dogan, C.E.; Develioglu, A.; Yayla, M.E.A.; Sagdic, O. Detection of L-Cysteine in wheat flour by Raman microspectroscopy combined chemometrics of HCA and PCA. Food Chem. 2017, 228, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Borba, F.S.L.; Honorato, R.S.; de Juan, A. Use of Raman spectroscopy and chemometrics to distinguish blue ballpoint pen inks. Forensic Sci. Int. 2015, 249, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; You, G.; Li, H.; Li, D.; Wang, M.; Ren, X. Comparative Investigation for Rotten Xylem (kuqin) and Strip Types (tiaoqin) of Scutellaria baicalensis Georgi Based on Fingerprinting and Chemical Pattern Recognition. Molecules 2019, 24, 2431. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Zhang, P.; Zheng, D.; Zhong, R. Rapid detection of Escherichia coli and Salmonella typhimurium by surface-enhanced Raman scattering. Optoelectron. Lett. 2015, 11, 157–160. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Zheng, X.; Liao, X.; Xu, Y.; Hong, M. PCA-LDA Analysis of Human and Canine Blood Based on Non-contact Raman Spectroscopy. Chem. J. Chin. Univ. 2017, 38, 575–582. (In Chinese) [Google Scholar]
- Zhang, J.; Yang, R.; Chen, R.; Li, Y.C.; Peng, Y.; Liu, C. Multielemental analysis associated with chemometric techniques for geographical origin discrimination of tea leaves (Camelia sinensis) in Guizhou province, SW China. Molecules 2018, 23, 3013. [Google Scholar] [CrossRef]
- Silva, A.F.T.; Sarraguça, M.C.; Ribeiro, P.R.; Santos, A.O.; De Beer, T.; Lopes, J.A. Statistical process control of cocrystallization processes: A comparison between OPLS and PLS. Int. J. Pharm. 2017, 520, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Bylesjö, M.; Rantalainen, M.; Cloarec, O.; Nicholson, J.; Holmes, E.; Trygg, J. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. J. Chemom. 2006, 20, 341–351. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Qiu, J.-F.; Guo, L.-P.; Wang, Y.; Li, P.; Yang, F.-Q.; Su, H.; Wan, J.-B. Discrimination of Multi-Origin Chinese Herbal Medicines Using Gas Chromatography-Mass Spectrometry-Based Fatty Acid Profiling. Molecules 2013, 18, 15329–15343. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Yu, H.; Wang, Y.Z. Assessing Geographical Origin of Gentiana Rigescens Using Untargeted Chromatographic Fingerprint, Data Fusion and Chemometrics. Molecules 2019, 24, 2562. [Google Scholar] [CrossRef] [PubMed]
Group | Details of Group | Category |
---|---|---|
Group1 | (8) | F(3.29%) |
Group2 | (9,7,3,10,4,6,5,1,2) | F(3.29%) |
Group3 | (53,54,55,52,58,57,56,51,60) | A(31.25%) |
Group4 | (15,59,18,39,11,17,16,19,12,14,13,20) | E(12.12%) |
Group5 | (31,32,33,35,40,38,37,34,36) | C(25.26%) |
Group6 | (28,21,25,24,22,23,27,26,29,30) | D(22.08%) |
Group7 | (46,42,47,48,41,43,45,44,49,50) | B(29.06%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, X.; Hou, H.; Liang, H.; Chen, K.; Chen, X. Raman Spectroscopy Study of Phosphorites Combined with PCA-HCA and OPLS-DA Models. Minerals 2019, 9, 578. https://doi.org/10.3390/min9100578
Yao X, Hou H, Liang H, Chen K, Chen X. Raman Spectroscopy Study of Phosphorites Combined with PCA-HCA and OPLS-DA Models. Minerals. 2019; 9(10):578. https://doi.org/10.3390/min9100578
Chicago/Turabian StyleYao, Xiyu, Huayi Hou, Huan Liang, Kai Chen, and Xiangbai Chen. 2019. "Raman Spectroscopy Study of Phosphorites Combined with PCA-HCA and OPLS-DA Models" Minerals 9, no. 10: 578. https://doi.org/10.3390/min9100578
APA StyleYao, X., Hou, H., Liang, H., Chen, K., & Chen, X. (2019). Raman Spectroscopy Study of Phosphorites Combined with PCA-HCA and OPLS-DA Models. Minerals, 9(10), 578. https://doi.org/10.3390/min9100578