On the Chemical Identification and Classification of Minerals
Abstract
:1. Introduction: Systematic Mineralogy
2. Mineral Formulae
2.1. Structural Formula
2.2. Chemical Formula
2.3. End-Member Formula
2.4. Simplified Formula
3. Identification of Mineral Species by the Mineral Formula
3.1. Historical Roots of the Dominant-Valency Rule
3.2. The Site-Total-Charge Approach and the Dominant-Valency Rule
3.2.1. Mica
3.2.2. Tourmaline
[T(Si5.85Al0.15)Σ6.00O18](BO3)3V(OH)3W[O0.69F0.24(OH)0.07]Σ1.00.
3.3. Site-Total-Charge Approach Versus Charge-Constraint
3.3.1. Understanding the End-Members Involved in the Substitution
- -
- 0.23[(XNa + YAl + WO) → (XCa + YLi + WF)], related to darrellhenryite, leads toX(Ca0.77Na0.23)Y(Li1.77Al1.23)Z(Al6)(Si6O18)(BO3)3(OH)3W(F0.77O0.23);
- -
- 0.11[(XNa + 3YMn) → (XCa + 2YLi + YAl)], related to fluor-tsilaisite, leads toX(Ca0.66Na0.34)Y(Li1.55Al1.12Mn0.33)Z(Al6)(Si6O18)(BO3)3(OH)3W(F0.77O0.23);
- -
- 0.05[(X▯ + YAl + WOH) → (XCa + YLi + WF)], related to rossmanite, leads toX(Ca0.61Na0.34▯0.05)Y(Li1.50Al1.17Mn0.33)Z(Al6)(Si6O18)(BO3)3(OH)3W(F0.72O0.23OH0.05);
- -
- 0.02[(XNa + 0.5 YAl + WOH) → (XCa + 0.5YLi + WF)], related to elbaite, leads toX(Ca0.59Na0.36▯0.05)Y(Li1.49Al1.18Mn0.33)Z(Al6)(Si6O18)(BO3)3(OH)3W(F0.70O0.23OH0.07).
3.3.2. Atom Disorder
3.4. Site-Total-Charge Approach and Valency-Imposed Double Site Occupancy
3.4.1. Tourmaline: Schorl or Elbaite?
- -
- (R3+1.5R+1.5)Σ6+, corresponding to (Al3+1.5Li+1.5)0.533 = 1.6 apfu
- -
- (R2+3)Σ6+, corresponding to (Fe2+3)0.467 = 1.4 apfu.
3.4.2. Scorticoite (IMA 2018-159)
- -
- M(1)(R5+▯)Σ5+ → (Sb5+▯)0.46 = 0.92 apfu (limited by Sb contents)
- -
- M(1)(R6+5/6▯7/6)Σ5+ → (W6+5/6▯7/6)0.35 = 0.70 apfu (limited by W contents)
- -
- M(1)(R6+4/3R3+2/3)Σ5+ → (W6+4/3Fe3+2/3)0.22 = 0.44 apfu (limited by W contents)
- -
- M(1)(R3+R2+)Σ5+ → (Fe3+Mg2+)0.11 = 0.22 apfu (limited by Mg contents).
3.4.3. Pyrochlore
- -
- A(R+5/3R4+1/3)Σ3+ → (Na+5/3U4+1/3)0.6 = 1.2 apfu (limited by U contents)
- -
- A(R+R2+)Σ3+ → (Na+Ca2+)0.4 = 0.8 apfu (limited by Ca contents)
- -
- A(R+1.5R3+0.5)Σ3+ → (Na+1.5Y3+0.5)0.4 = 0.8 apfu (limited by Y contents)
- -
- A(▯R3+)Σ3+ → (▯Y3+)0.1 = 0.2 apfu (limited by ▯ contents)
- -
- A(▯1.25R4+0.75)Σ3+ → (▯1.25U0.75)0.08 = 0.16 apfu (limited by ▯ contents),
3.4.4. Garnet: Hutcheonite
- -
- Y(Ti4+R2+)Σ6+ Z(Si4+3)Σ12+
- -
- Y(Ti4+2)Σ8+ Z(Si4+Al2)Σ10+
- for YΣ6+ and ZΣ12+
- -
- Y(R4+R2+)Σ6+ + Z(R4+3)Σ12+ → Y(Ti4+R2+)0.30 + Z(Si4+3)0.30 = 1.5 apfu (limited by Mg plus Fe contents)
- -
- Y(R3+2)Σ6+ + Z(R4+3)Σ12+ → Y(R3+2)0.10 + Z(Si4+3)0.10 = 0.5 apfu (limited by YAl plus V contents)
- for YΣ8+ and ZΣ10+:
- -
- Y(R4+2)Σ8+ + Z(R4+R3+2)Σ10+ → Y(Ti4+2)0.66 + Z(Si4+Al3+2)0.66 = 3.3 apfu (limited by ZAl contents).
4. One Note on the Mineral Classification Scheme
- -
- tourmalines, such as NaMg3Al6(Si6O18)(BO3)3(OH)3(OH), and axinites, such as Ca6Al4[B2Si8O30](OH)2, are to be considered as silicates or borates; or
- -
- minerals such as hanksite, KN2Cl(CO3)2(SO4)9, thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O, and jouravskite, Ca3Mn4+(OH)6(CO3)(SO4)·12H2O are to be considered as carbonates or sulfates.
Author Contributions
Funding
Conflicts of Interest
References
- Nickel, E.H. The definition of a mineral. Can. Mineral. 1995, 33, 689–690. [Google Scholar]
- Nickel, E.H.; Grice, J.D. The IMA Commission on New Minerals and Mineral Names: Procedures and guidelines on mineral nomenclature. Can. Mineral. 1998, 36, 913–926. [Google Scholar]
- Bosi, F.; Hatert, F.; Hålenius, U.; Pasero, M.; Miyawaki, R.; Mills, S.J. On the application of the IMA-CNMNC dominant-valency rule to complex mineral compositions. Mineral. Mag. 2019, 83. [Google Scholar] [CrossRef]
- Bosi, F.; Biagioni, C.; Pasero, M. Nomenclature and classification of the spinel supergroup. Eur. J. Mineral. 2019, 31, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Mills, S.J.; Hatert, F.; Nickel, E.H.; Ferraris, G. The standardisation of mineral group hierarchies: Application to recent nomenclature proposals. Eur. J. Mineral. 2009, 21, 1073–1080. [Google Scholar] [CrossRef]
- Strunz, H.; Nickel, E.H. Strunz Mineralogical Tables; Schweizerbart: Stuttgart, Germany, 2001; p. 869. [Google Scholar]
- Hawthorne, F.C.; Ungaretti, L.; Oberti, R. Site populations in minerals: Terminology and presentation of results of crystal-structure refinement. Can. Mineral. 1995, 33, 907–911. [Google Scholar]
- Grew, E.S.; Locock, A.J.; Mills, S.J.; Galuskina, I.O.; Galuskin, E.V.; Hålenius, U. Nomenclature of the garnet supergroup. Am. Mineral. 2013, 98, 785–811. [Google Scholar] [CrossRef]
- Hawthorne, F.C. The use of end-member charge-arrangements in defining new mineral species and heterovalent substitutions in complex minerals. Can. Mineral. 2002, 40, 699–710. [Google Scholar] [CrossRef]
- Hatert, F.; Burke, E.A.J. The IMA–CNMNC dominant-constituent rule revisited and extended. Can. Mineral. 2008, 46, 717–728. [Google Scholar] [CrossRef]
- Smith, D.C. “The Clinoamphibole Half-Cube” and the “ABCD System of Amphibole Characterization”. Appendix 1.1 in Eclogites and Eclogite-Facies Rocks; Smith, D.C., Ed.; Elsevier: Amsterdam, The Netherlands; p. 524.
- Leake, B.E.; Woolley, A.R.; Arps, C.E.S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can. Mineral. 1997, 35, 219–246. [Google Scholar]
- Leake, B.E. Nomenclature of amphiboles. Can. Mineral. 1978, 16, 501–520. [Google Scholar]
- Oberti, R.; Cámara, F.; Ottolini, L.; Caballero, J.M. Lithium in amphiboles: Detection, quantification, and incorporation mechanisms in the compositional space bridging sodic and BLi-amphiboles. Eur. J. Mineral. 2003, 15, 309–319. [Google Scholar] [CrossRef]
- Leake, B.E.; Woolley, A.R.; Birch, W.D.; Burke, E.A.J.; Ferraris, G.; Grice, J.D.; Hawthorne, F.C.; Kisch, H.J.; Krivovichev, V.G.; Schumacher, J.C.; et al. Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s amphibole nomenclature. Can. Mineral. 2003, 41, 1355–1370. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R. On the classification of amphiboles. Can. Mineral. 2006, 44, 1–21. [Google Scholar] [CrossRef]
- Bosi, F.; Skogby, H.; Ciriotti, M.E.; Gadas, P.; Novák, M.; Cempírek, J.; Všianský, D.; Filip, J. Lucchesiite, CaFe2+3Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. Mineral. Mag. 2017, 81, 1–14. [Google Scholar] [CrossRef]
- Lussier, A.J.; Abdu, Y.; Hawthorne, F.C.; Michaelis, V.K.; Aguiar, P.M.; Kroeker, S. Oscillatory zoned liddicoatite from Anjanabonoina, central Madagascar. I. Crystal chemistry and structure by SREF and 11B and 27Al MAS NMR spectroscopy. Can. Mineral. 2011, 49, 63–88. [Google Scholar] [CrossRef]
- Bačík, P.; Cempírek, J.; Uher, P.; Novák, M.; Ozdín, D.; Filip, J.; Škoda, R.; Breiter, K.; Klementová, M.; Ďuďa, R. Oxy-schorl, Na(Fe2+2Al)Al6Si6O18(BO3)3(OH)3O, a new mineral from Zlatá Idka, Slovak Republic and Přibyslavice, Czech Republic. Am. Mineral. 2013, 98, 485–492. [Google Scholar] [CrossRef]
- Henry, D.J.; Novák, M.; Hawthorne, F.C.; Ertl, A.; Dutrow, B.; Uher, P.; Pezzotta, F. Nomenclature of the tourmaline supergroup minerals. Am. Mineral. 2011, 96, 895–913. [Google Scholar] [CrossRef]
- Biagioni, C.; Bonaccorsi, E.; Kampf, A.R.; Zaccarini, F.; Hålenius, U.; Bosi, F. Scorticoite, IMA 2018-159. CNMNC Newsletter No. 49. Mineral. Mag. 2019, 83. [Google Scholar] [CrossRef]
- Atencio, D.; Andrade, M.B.; Christy, A.G.; Giére, R.; Kartashov, P.M. The pyrochlore supergroup of minerals: Nomenclature. Can. Mineral. 2010, 48, 673–698. [Google Scholar] [CrossRef]
- Ma, C.; Krot, A.N. Hutcheonite, Ca3Ti2(SiAl2)O12, a new garnet mineral from the Allende meteorite: An alteration phase in a Ca-Al-rich inclusion. Am. Mineral. 2014, 99, 667–670. [Google Scholar] [CrossRef]
- Hatert, F. A new nomenclature scheme for the alluaudite supergroup. Eur. J. Mineral. 2019, 31. [Google Scholar] [CrossRef]
- Bayliss, P.; Kolitsch, U.; Nickel, E.H.; Pring, A. Alunite supergroup: Recommended nomenclature. Mineral. Mag. 2010, 74, 919–927. [Google Scholar] [CrossRef]
- Pasero, M.; Kampf, A.R.; Ferraris, C.; Pekov, I.V.; Rakovan, J.; White, T.J. Nomenclature of the apatite supergroup minerals. Eur. J. Mineral. 2010, 22, 163–179. [Google Scholar] [CrossRef]
- Galuskin, E.V.; Gfeller, F.; Galuskina, I.O.; Armbruster, T.; Bailau, R.; Sharygin, V.V. Mayenite supergroup, part I: Recommended nomenclature. Eur. J. Mineral. 2015, 27, 99–111. [Google Scholar] [CrossRef]
- Sokolova, E.; Cámara, F.; Hawthorne, F.C.; Ciriotti, M.E. The astrophyllite supergroup: Nomenclature and classification. Mineral. Mag. 2017, 81, 143–153. [Google Scholar] [CrossRef]
- Kampf, A.R.; Mills, S.J.; Rumsey, M.S.; Dini, M.; Birch, W.D.; Spratt, J.; Pluth, J.J.; Steele, I.M.; Jenkins, R.A.; Pinch, W.W. The heteropolymolybdate family: Structural relations, nomenclature scheme and new species. Mineral. Mag. 2012, 76, 1175–1207. [Google Scholar] [CrossRef]
- Cámara, F.; Ciriotti, M.E.; Bittarello, E.; Nestola, F.; Massimi, F.; Radica, F.; Costa, E.; Benna, P.; Piccoli, G.C. As-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: I. Grandaite, Sr2Al(AsO4)2(OH), description and crystal structure. Mineral. Mag. 2014, 78, 757–774. [Google Scholar] [CrossRef]
- Pieczka, A.; Evans, R.J.; Grew, E.S.; Groat, L.A.; Ma, C.; Rossman, G.R. The dumortierite supergroup. I. A new nomenclature for the dumortierite and holtite groups. Mineral. Mag. 2013, 77, 2825–2839. [Google Scholar] [CrossRef]
- Armbruster, T.; Bonazzi, P.; Akasaka, M.; Bermanec, V.; Chopin, C.; Gieré, R.; Heuss-Assbichler, S.; Liebscher, A.; Menchetti, S.; Pan, Y.; et al. Recommended nomenclature of epidote-group minerals. Eur. J. Mineral. 2006, 18, 551–567. [Google Scholar] [CrossRef] [Green Version]
- Bačik, P.; Miyawaki, R.; Atencio, D.; Cámara, F.; Fridichova, J. Nomenclature of the gadolinite group. Eur. J. Mineral. 2017, 29, 1067–1082. [Google Scholar] [CrossRef]
- Bonazzi, P.; Holtstam, D.; Bindi, L. Gatelite-supergroup minerals: Recommended nomenclature and review. Eur. J. Miner. 2019, 31, 173–181. [Google Scholar] [CrossRef]
- Armbruster, T. Revised nomenclature of högbomite, nigerite, and taaffeite minerals. Eur. J. Miner. 2002, 14, 389–395. [Google Scholar] [CrossRef]
- Biagioni, C.; Capalbo, C.; Pasero, M. Nomenclature tunings in the hollandite supergroup. Eur. J. Mineral. 2013, 25, 85–90. [Google Scholar] [CrossRef]
- Mills, S.J.; Christy, A.G.; Génin, J.-M.R.; Kameda, T.; Colombo, F. Nomenclature of the hydrotalcite supergroup: Natural layered double hydroxides. Mineral. Mag. 2012, 76, 1289–1336. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Pekov, I.V.; Khomyakov, A.P. Recommended nomenclature for labuntsovite-group minerals. Eur. J. Mineral. 2002, 14, 165–173. [Google Scholar] [CrossRef]
- Mills, S.J.; Grey, I.E. Nomenclature of the laueite supergroup. Mineral. Mag. 2015, 79, 243–246. [Google Scholar] [CrossRef]
- Plášil, J.; Sejkora, J.; Škoda, R.; Novák, M.; Kasatkin, A.V.; Škácha, P.; Veselovský, F.; Fejfarová, K.; Ondruš, P. Hloušekite, (Ni,Co)Cu4(AsO4)2(AsO3OH)2(H2O)9, a new member of the lindackerite supergroup from Jáchymov, Czech Republic. Mineral. Mag. 2014, 78, 1341–1353. [Google Scholar] [CrossRef]
- Pekov, I.V.; Krivovichev, S.V.; Zolotarev, A.A.; Yakovenchuk, V.N.; Armbruster, T.; Pakhomovsky, Y.A. Crystal chemistry and nomenclature of the lovozerite group. Eur. J. Mineral. 2009, 21, 1061–1071. [Google Scholar] [CrossRef] [Green Version]
- Galuskin, E.V.; Krüger, B.; Galuskina, I.O.; Krüger, H.; Vapnik, Y.; Wojdyla, J.A.; Murashko, M. New Mineral with Modular Structure Derived from Hatrurite from the Pyrometamorphic Rocks of the Hatrurim Complex: Ariegilatite, BaCa12(SiO4)4(PO4)2F2O, from Negev Desert, Israel. Minerals 2018, 8, 109. [Google Scholar] [CrossRef]
- Mitchell, R.H.; Welch, M.D.; Chakhmouradian, A.R. Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition. Mineral. Mag. 2017, 81, 411–461. [Google Scholar] [CrossRef] [Green Version]
- Rumsey, M.S.; Mills, S.J.; Spratt, J. Natropharmacoalumite, NaAl4[(OH)4(AsO4)3]∙4H2O, a new mineral of the pharmacosiderite supergroup and the renaming of aluminopharmacosiderite to pharmacoalumite. Mineral. Mag. 2010, 74, 929–936. [Google Scholar] [CrossRef]
- Grew, E.S.; Hålenius, U.; Pasero, M.; Barbier, J. Recommended nomenclature for sapphirine and surinamite groups (sapphirine supergroup). Mineral. Mag. 2008, 72, 839–876. [Google Scholar] [CrossRef]
- Sokolova, E.; Cámara, F. The seidozerite supergroup of TS-block minerals: Nomenclature and classification, with change of the following names: Rinkite to rinkite-(Ce), mosandrite to mosandrite-(Ce), hainite to hainite-(Y) and innelite-1T to innelite-1A. Mineral. Mag. 2017, 81, 1457–1484. [Google Scholar] [CrossRef]
- Biagioni, C.; Merlino, S.; Bonaccorsi, E. The tobermorite supergroup: A new nomenclature. Mineral. Mag. 2015, 79, 485–495. [Google Scholar] [CrossRef]
- Zoltai, T. Classification of silicates and other minerals with tetrahedral structures. Am. Mineral. 1960, 45, 960–973. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosi, F.; Biagioni, C.; Oberti, R. On the Chemical Identification and Classification of Minerals. Minerals 2019, 9, 591. https://doi.org/10.3390/min9100591
Bosi F, Biagioni C, Oberti R. On the Chemical Identification and Classification of Minerals. Minerals. 2019; 9(10):591. https://doi.org/10.3390/min9100591
Chicago/Turabian StyleBosi, Ferdinando, Cristian Biagioni, and Roberta Oberti. 2019. "On the Chemical Identification and Classification of Minerals" Minerals 9, no. 10: 591. https://doi.org/10.3390/min9100591