Trace Elements of Cu-(Fe)-Sulfide Inclusions in Bronze Age Copper Slags from South Urals and Kazakhstan: Ore Sources and Alloying Additions
Abstract
:1. Introduction
2. Archaeological Sites
3. Materials and Methods
4. Results
4.1. Mineralogy of Slag Cu-(Fe)-Sulfides
4.2. Trace Elements of Slag Cu-(Fe)-Sulfides
5. Discussion
5.1. Mineralogical Criteria
5.2. Geochemical Criteria
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chernykh, E.N. Ancient Metallurgy of the Urals and Volga Region; Nauka: Moscow, Russia, 1970; p. 181. (In Russian) [Google Scholar]
- Chernykh, E.N.; Lebedeva, E.Y.; Kuzminykh, S.V.; Lunkov, V.Y.; Gorozhanin, V.M.; Gorozhanina, E.N.; Ovchinnikov, V.V.; Puchkov, V.N. Kargaly: Geological and geographical characteristics. History of discovery. In Operation and Research. Archaeological Sites; Yazyki Slavyanskoy Kultury: Moscow, Russia, 2002; Volume 1, p. 112. (In Russian) [Google Scholar]
- Bogdanov, S.V. The Copper Era of the Steppe Ural; UrO RAN: Yekaterinburg, Russia, 2004; p. 286. (In Russian) [Google Scholar]
- Morgunova, N.L.; Vasilyeva, I.N.; Kulkova, M.A.; Roslyakova, N.V.; Salugina, N.P.; Turetskiy, M.A.; Fayzullin, A.A.; Khokhlova, O.S. Turganik Settlement in the Orenburg Region; OGPU: Orenburg, Russia, 2017; p. 300. (In Russian) [Google Scholar]
- Ankushev, M.N.; Artemyev, D.A.; Blinov, I.A.; Bogdanov, S.V. Bronze Age metallurgical slags from the South Urals: Types, mineralogy and copper sources. Periodico di Mineralogia 2020, 89. in press. [Google Scholar]
- Matyushin, G.N. Eneolithic of the South Urals; Nauka: Moscow, Russia, 1982; p. 328. (In Russian) [Google Scholar]
- Epimakhov, A.V.; Chuev, N.I. Abashevo and Sintashta sites: Preliminary results of spatial analysis. Bull. Archaeol. Anthropol. Ethnogr. 2011, 2, 47–56. (In Russian) [Google Scholar]
- Zdanovich, G.B. The Bronze Age of the Ural-Kazakhstan Steppes; UrU: Sverdlovsk, Russia, 1988; p. 184. (In Russian) [Google Scholar]
- Margulan, A.K. Mining in Central Kazakhstan in the Ancient and Middle Ages. In Searches and Excavations in Kazakhstan; Nauka: Alma-Ata, Kazakhstan, 1972; pp. 3–30. (In Russian) [Google Scholar]
- Zdanovich, S.Y. Sargary culture—The Bronze Age Final Stage of North Kazakhstan. Ph.D. Thesis, Moscow State University, Moscow, Russia, 1979. (In Russian). [Google Scholar]
- Margulan, A.K. Begazy-Dandybai Culture of Central Kazakhstan; Nauka: Alma-Ata, Kazakhstan, 1979; p. 336. (In Russian) [Google Scholar]
- Degtyareva, A.D. Metal Production in Kazakhstan and Kyrgyzstan in the Late Bronze Age. Ph.D. Thesis, MSU, Moscow, Russia, 1985. (In Russian). [Google Scholar]
- Bachmann, H.G. The Identification of Slags from Archaeological Sites; Occasional Publications no 6; Institute of Archaeology: London, UK, 1982; p. 37. [Google Scholar]
- Tylecote, R.F. The Early History of Metallurgy in Europe; Longman: London, UK, 1987; p. 424. [Google Scholar]
- Zaykov, V.V.; Yuminov, A.M.; Ankushev, M.N.; Tkachev, V.V.; Noskevich, V.V.; Epimakhov, A.V. Mining and metallurgical centers of the Bronze Age in the Trans-Urals and Mugodzhary. Bull. Irkutsk State Univ. Geoarkhaeol. Etnol. Antropol. 2013, 1, 174–195. (In Russian) [Google Scholar]
- Grigoriev, S.A.; Dunaev, A.Y.; Zaykov, V.V. Chromites: An indicator of copper ore source for ancient metallurgy. Dokl. Earth Sci. 2005, 400, 95–98. [Google Scholar]
- Danyushevsky, L.V.; Robinson, R.; Gilbert, S.; Norman, M.; Large, R.; McGoldrick, P.; Shelley, J.M.G. Routine quantitative multielement analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects. Geochem. Explor. Environ. Anal. 2011, 11, 51–60. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V.; Herrington, R.J.; Ayupova, N.R.; Zaykov, V.V.; Lein, A.Y.; Tseluyko, A.S.; Melekestseva, I.Y.; et al. Chimneys in Paleozoic massive sulphide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geol. Rev. 2017, 85, 64–106. [Google Scholar] [CrossRef]
- Dussubieux, L.; Golitko, M.; Gratuze, B. Recent Advances in Laser Ablation ICP-MS for Archaeology; Springer-Verlag: Berlin/Heidelberg, Germany, 2016; p. 358. [Google Scholar] [CrossRef]
- Glascock, M.D.; Speakman, R.J.; Popelka-Filcoff, R.S. Archaeological Chemistry Analytical Techniques and Archaeological Interpretation; American Chemical Society: Washington, DC, USA, 2007; Volume 968, p. 571. [Google Scholar]
- Addis, A.; Angelini, I.; Nimis, P.; Artioli, G. Late Bronze Age copper smelting slags from Luserna (Trentino, Italy): Interpretation of the Metallurgical Process. Archaeometry 2015, 58, 96–114. [Google Scholar] [CrossRef]
- Artioli, G.; Angelini, I.; Tecchiati, U.; Pedrotti, A. Eneolithic copper smelting slags in the Eastern Alps: Local patterns of metallurgical exploitation in the Copper Age. J. Archaeol. Sci. 2015, 63, 78–83. [Google Scholar] [CrossRef]
- Chiarantini, L.; Benvenuti, M.; Costagliola, P.; Fedi, M.E.; Guideri, S.; Romualdi, A. Copper production at Baratti (Populonia, Southern Tuscany) in the early Etruscan period (9th–8th centuries BC). J. Archaeol. Sci. 2009, 36, 1626–1636. [Google Scholar] [CrossRef]
- Ettler, V.; Cervinka, R.; Johan, Z. Mineralogy of medieval slags from lead and silver smelting (Bohutin, Pribram district, Czech Republic): Towards estimation of historical smelting conditions. Archaeometry 2009, 51, 987–1007. [Google Scholar] [CrossRef]
- Georgakopoulou, M.; Bassiakos, Y.; Philaniotou, O. Seriphos surfaces: A study of copper slag heaps and copper sources in the context of Early Bronze Age Aegean metal production. Archaeometry 2011, 53, 123–145. [Google Scholar] [CrossRef]
- Pelton, A.; Stamatakis, M.G.; Kelepertzis, E.; Panagou, T. The origin and archaeometallurgy of a mixed sulphide ore for copper production on the Island of Kea, Aegean Sea, Greece. Archaeometry 2014, 57, 318–343. [Google Scholar] [CrossRef]
- Krismer, M.; Töchterle, U.; Goldenberg, G.; Tropper, P.; Vavtar, F. Mineralogical and petrological investigations of Early Bronze Age copper-smelting remains from the Kiechlberg (Tyrol, Austria). Archaeometry 2012, 55, 923–945. [Google Scholar] [CrossRef]
- Erb-Satullo, N.L.; Gilmour, B.J.J.; Khakhutaishvili, N. Crucible technologies in the Late Bronze—Early Iron Age South Caucasus: Copper processing, tin bronze production, and the possibility of local tin ores. J. Archaeol. Sci. 2015, 61, 260–276. [Google Scholar] [CrossRef]
- Valério, P.; Monge Soares, A.M.; Silva, R.J.C.; Araújo, M.F.; Rebelo, P.; Neto, N.; Santos, R.; Fontes, T. Bronze production in Southwestern Iberian Peninsula: The Late Bronze Age metallurgical workshop from Entre Águas 5 (Portugal). J. Archaeol. Sci. 2013, 40, 439–451. [Google Scholar] [CrossRef]
- Ryndina, N.; Indenbaum, G.; Kolosova, V. Copper production from polymetallic sulphide ores in the Northeastern Balkan eneolithic culture. J. Archaeol. Sci. 1999, 26, 1059–1068. [Google Scholar] [CrossRef]
- Chen, K.; Rehren, T.; Mei, J.; Zhao, C. Special alloys from remote frontiers of the Shang Kingdom: Scientific study of the Hanzhong bronzes from southwest Shaanxi, China. J. Archaeol. Sci. 2009, 36, 2108–2118. [Google Scholar] [CrossRef]
- Frame, L. Metallurgical investigations at Godin Tepe, Iran, Part I: The metal finds. J. Archaeol. Sci. 2010, 37, 1700–1715. [Google Scholar] [CrossRef]
- Valério, P.; Silva, R.J.C.; Monge Soares, A.M.; Araújo, M.F.; Braz Fernandes, F.M.; Silva, A.C.; Berrocal-Rangel, L. Technological continuity in Early Iron Age bronze metallurgy at the South-Western Iberian Peninsula—a sight from Castro dos Ratinhos. J. Archaeol. Sci. 2010, 37, 1811–1819. [Google Scholar] [CrossRef]
- Park, J.-S.; Honeychurch, W.; Chunag, A. Ancient bronze technology and nomadic communities of the Middle Gobi Desert, Mongolia. J. Archaeol. Sci. 2011, 38, 805–817. [Google Scholar] [CrossRef]
- EL Morr, Z.; Cattin, F.; Bourgarit, D.; Lefrais, Y.; Degryse, P. Copper quality and provenance in Middle Bronze Age I Byblos and Tell Arqa (Lebanon). J. Archaeol. Sci. 2013, 40, 4291–4305. [Google Scholar] [CrossRef]
- Park, J.-S.; Shinde, V. Characterization and comparison of the copper-base metallurgy of the Harappan sites at Farmana in Haryana and Kuntasi in Gujarat, India. J. Archaeol. Sci. 2014, 50, 126–138. [Google Scholar] [CrossRef]
- Artemyev, D.A.; Ankushev, M.N.; Blinov, I.A.; Kotlyarov, V.A.; Lukpanova, Y.A. Mineralogy and origin of slags from the 6th kurgan of the Taksay 1 burial complex, Western Kazakhstan. Can. Miner. 2018, 56, 883–904. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Danyushevsky, L.V.; Gilbert, S. Minor elements in bornite and associated Cu-(Fe)-sulphides: A LA-ICPMS study. Geochim. Cosmochim. Acta 2011, 73, 4761–4791. [Google Scholar] [CrossRef]
- Wang, Y.; Han, X.; Petersen, S.; Frische, M.; Qiu, Z.; Cai, Y.; Zhou, P. Trace metal distribution in sulphide minerals from ultramafic-hosted hydrothermal systems: Examples from the Kairei Vent Field, Central Indian Ridge. Minerals 2018, 8, 526. [Google Scholar] [CrossRef]
- Melekestseva, I.Y.; Maslennikov, V.V.; Maslennikova, S.P.; Danyushevsky, L.; Large, R. Covellite from Semenov-2 hydrothermal field (13_31.130 N, Mid-Atlantic Ridge): Enrichment in trace elements according to LA-ICP-MS analysis. Dokl. Earth Sci. 2017, 473, 291–295. [Google Scholar] [CrossRef]
- Krause, R.; Koryakova, L.N. Multidisciplinary Investigations of the Bronze Age Settlements in the South Trans-Urals (Russia); Verlag Dr. Rudolf Habelt GmbH: Bonn, Germany, 2013; p. 352. [Google Scholar]
- Sharapova, S.V.; Krauze, R.; Molchanov, I.V.; Shtobbe, A.; Soldatkin, N.V. Interdisciplinary studies of the Konoplyanka settlement in the South Trans-Urals: Preliminary results. Bull. Novosib. State Univ. Ser. Hist. Philol. 2014, 13, 101–109. (In Russian) [Google Scholar]
- Vinogradov, N.B. (Ed.) Ancient Ustye: A Fortified Bronze Age Settlement in the South Trans-Urals; ABRIS: Chelyabinsk, Russia, 2013; p. 482. (In Russian) [Google Scholar]
- Morgunova, N.L.; Porokhova, O.I. Settlements of Srubna culture in the Orenburg region. In Settlements of Srubna Community; VGU: Voronezh, Russia, 1989; pp. 160–172. (In Russian) [Google Scholar]
- Morgunova, N.L.; Khalyapin, M.V. Research in the Orenburg steppe. In Archaeological Discoveries of 2000; Nauka: Moscow, Russia, 2002. (In Russian) [Google Scholar]
- Kuptsova, L.V.; Fayzullin, I.A. Rodnikovoe settlement of the Late Bronze Age in the Western Orenburg region. In Archaeological Sites of the Orenburg Region; OGPU: Orenburg, Russia, 2012; Volume 10, pp. 70–100. (In Russian) [Google Scholar]
- Tkachev, V.V.; Baytleu, D.A.; Yuminov, A.M.; Ankushev, M.N.; Zhalmaganbetov, Z.M.; Kalieva, Z.S. Mountain archeology new studies of the South Mugalzhary sites. In Paper of the Branch of theInstitute of Archeology Named after A. Kh. Margulana; IAB: Astana, Kazakhstan, 2013; Volume 2, pp. 264–288. (In Russian) [Google Scholar]
- Yermolayeva, A.S.; Kuzminykh, S.V.; Park, J.-S.; Dubyagina, Y.V. Late Bronze Age weapons from foundry workshops of Taldysay settlement, Central Kazakhstan. Strat. Plus 2019, 2, 109–120. (In Russian) [Google Scholar]
- Hanks, B.K.; Epimakhov, A.V.; Renfrew, A.C. Towards a refined chronology for the Bronze Age of the Southern Urals, Russia. Antiquity 2007, 81, 353–367. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. Atomic Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Wilson, S.A.; Ridley, W.I.; Koenig, A.E. Development of sulphide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J. Anal. At. Spectrom. 2002, 17, 406–409. [Google Scholar] [CrossRef]
- Longerich, H.P.; Jackson, S.E.; Günther, D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. Atomic Spectrom. 1996, 11, 899–904. [Google Scholar] [CrossRef]
- Grigoriev, S. Metallurgical Production in Northern Eurasia in the Bronze Age; Archaeopress Access Archaeology: Oxford, UK, 2016; p. 832. [Google Scholar]
- Grigoryev, S.A.; Rusanov, I.A. Experimental reconstruction of ancient metallurgical production. In Arkaim: Research. Search. Discoveries; Kamenny Poyas: Chelyabinsk, Russia, 1995; pp. 147–158. (In Russian) [Google Scholar]
- Rovira, S.; App, J. Experimental work on the smelting of copper in Kargaly archaic way. In Archaeological Sites of the Orenburg Region; OGPU: Orenburg, Russia, 2004; Volume 1, pp. 64–69. (In Russian) [Google Scholar]
- Bogdanov, S.V. Early Yamna site systematics of the East Ponto-Caspian steppes in the problem’s context of mining and metallurgical traditions transfer to North Eurasia. Strat. Plus 2017, 2, 133–158. (In Russian) [Google Scholar]
- Belogub, E.V.; Novoselov, K.A.; Yakovleva, V.A.; Spiro, B. Supergene sulphides and related minerals in the supergene profiles of VHMS deposits from the South Urals. Ore Geol. Rev. 2008, 33, 239–254. [Google Scholar] [CrossRef]
- Lurye, A.M. Genesis of Cupriferous Sandstones and Cambric Schists; Nauka: Moscow, Russia, 1988; p. 188. (In Russian) [Google Scholar]
- Charles, J.A. Early arsenical bronzes—A metallurgical view. Am. J. Archaeol. 1967, 71, 21–26. [Google Scholar] [CrossRef]
- De Ryck, I.; Adriaens, A.; Adams, F. An overview of Mesopotamian bronze metallurgy during the 3rd millennium BC. J. Cult. Herit. 2005, 6, 261–268. [Google Scholar] [CrossRef]
- Budd, P.; Ottoway, B.S. Eneolithic arsenical copper—chance or choice? In Ancient Mining and Metallurgy in Southeast Europe; Archaeological institute: Bor-Belgrade, Serbia, 1995; pp. 95–102. [Google Scholar]
- Lechtman, H. Arsenic bronze: Dirty copper or chosen alloy? A view from the Americas. J. Field Archaeol. 1996, 23, 477–514. [Google Scholar]
- Bullock, L.A.; Perez, M.; Armstrong, J.G.; Parnell, J.; Still, J.; Feldmann, J. Selenium and tellurium resources in Kisgruva Proterozoic volcanogenic massive sulphide deposit (Norway). Ore Geol. Rev. 2018, 99, 411–424. [Google Scholar] [CrossRef]
- Martin, A.J.; McDonald, I.; MacLeod, C.J.; Prichard, H.M.; McFall, K. Extreme enrichment of selenium in the Apliki Cyprus-type VMS deposit, Troodos, Cyprus. Mineral. Mag. 2018, 82, 697–724. [Google Scholar] [CrossRef] [Green Version]
- Dussubieux, L.; Walder, H. Identifying American native and European smelted coppers with pXRF: A case study of artifacts from the Upper Great Lakes region. J. Archaeol. Sci. 2015, 59, 169–178. [Google Scholar] [CrossRef]
- El-Nafaty, J.M. Geology and trace element geochemistry of the barite-copper mineralization in Gulani Area, NE Nigeria. IOSR J. Appl. Geol. Geophys. 2017, 5. [Google Scholar] [CrossRef]
No | Settlement Site | Localization | Culture (Age Sites) | Slag Type | Reference |
---|---|---|---|---|---|
1 | Kamenny Ambar | Trans-Urals | Sintashta–Alakul (2030–1730 cal. BC) | Cr-rich spinel-containing olivine slags, sulfide-containing olivine slags | [41] |
2 | Konoplyanka | Trans-Urals | Sintashta–Alakul (1920–1745 cal. BC) | Cr-rich spinel-containing olivine slags, sulfide-containing olivine slags | [42] |
3 | Ustye | Trans-Urals | Sintashta (2030–1740 cal. BC) | Cr-rich spinel-containing olivine slags | [43] |
4 | Katzbach 6 | Trans-Urals | Alakul (by ceramic dating) | Sulfide-containing glassy slags | - |
5 | Ordynsky Ovrag (Kargaly) | Cis-Urals | Srubna (1690–1390 cal. BC) | Sulfide-containing glassy slags | [2] |
6 | Turganik | Cis-Urals | Early Yamna (3940–3480 cal. BC)–Srubna (by ceramic dating) | Cr-rich spinel-containing olivine slags, sulfide-containing glassy slags | [4] |
7 | Tokskoe | Cis-Urals | Srubna (by ceramic dating) | Sulfide-containing glassy slags | [44] |
8 | Ivanovskoe | Cis-Urals | Srubna (by ceramic dating) | Sulfide-containing glassy slags | [44] |
9 | Bulanovskoe 2 | Cis-Urals | Abashevo–Srubna (by ceramic dating) | Sulfide-containing glassy slags | [45] |
10 | Kuzminkovskoe 2 | Cis-Urals | Srubna (by ceramic dating) | Sulfide-containing glassy slags | [44] |
11 | Pokrovskoe | Cis-Urals | Srubna (by ceramic dating) | Sulfide-containing glassy slags | [44] |
12 | Rodnikovoe | Cis-Urals | Abashevo–Srubna–Sargary-Alekseevo (by ceramic dating) | Sulfide-containing glassy slags, pyroxene slags | [46] |
13 | Sarlybay 3 | Mugodzary | Alakul (by ceramic dating) | Sulfide-containing glassy slags | [47] |
14 | Taldysay | Ulytau | Alakul–Begazy-Dandybai (by ceramic dating) | Sulfide-containing glassy slags | [48] |
Settlement Site | P.S. | Slag Type | Morphology | Size Sulfides | Copper Sulfides |
---|---|---|---|---|---|
Kamenny Ambar | 4 | Sulfide-containing olivine slags | Rounded droplets, crescent droplets, clasts | Up to 5 mm | covellite |
Konoplyanka | 2 | Sulfide-containing olivine slags | Rounded droplets, clasts, crescent droplets | Up to 1 mm | covellite |
Ustye | 1 | Cr-spinel-containing olivine slags | Rounded droplets | Up to 0.05 mm | Copper sulfoarsenides |
Katzbach 6 | 2 | Sulfide-containing olivine slags | Clasts, xenomorphic droplets | Up to 0.25 mm | covellite, bornite |
Ordynsky Ovrag (Kargaly) | 2 | Sulfide-containing olivine slags | Rounded droplets, crescent droplets | Up to 3 mm | Chalcocite-covellite |
Turganik | 2 | Cr-spinel-containing olivine slags | Crescent droplets, clasts | Up to 2 mm | Chalcocite, bornite |
2 | Sulfide-containing olivine slags | Crescent droplets, clasts, rounded droplets | Up to 2 mm | Chalcocite-covellite | |
Tokskoe | 2 | Sulfide-containing olivine slags | Crescent droplets, clasts, rounded droplets | Up to 1 mm | Chalcocite, bornite, covellite |
Ivanovskoe | 3 | Sulfide-containing olivine slags | Rounded droplets, crescent droplets, clasts | Up to 2 mm | Chalcocite-covellite, bornite |
Bulanovskoe 2 | 2 | Sulfide-containing olivine slags | Rounded droplets | Up to 1 mm | Chalcocite-covellite |
Kuzminkovskoe 2 | 1 | Sulfide-containing olivine slags | Rounded droplets | Up to 0.5 mm | Chalcocite-covellite |
Pokrovskoe | 2 | Sulfide-containing olivine slags | Crescent droplets, rounded droplets | Up to 2 mm | Chalcocite-covellite |
Rodnikovoe | 2 | Sulfide-containing olivine slags | Crescent droplets, rounded droplets | Up to 0.5 mm | Chalcocite-covellite |
1 | Pyroxene slags | Rounded droplets, Crescent droplets | Up to 0.1 mm | covellite | |
Sarlybay 3 | 2 | Sulfide-containing olivine slags | Crescent droplets, rounded droplets | Up to 0.4 mm | Chalcocite-covellite |
Taldysay | 2 | Sulfide-containing olivine slags | Clasts, rounded droplets | Up to 1 mm | covellite, chalcocite, bornite, chalcopyrite |
Concentration, wt. % | Concentration, ppm | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Fe | S | Co | Ni | As | Zn | Mo | Se | Ag | Sn | Sb | Te | Ba | Pb | Bi | U |
0.1 † | 0.15 † | 0.50 † | 5.0 † | 0.15 † | 8.0 † | 0.10 † | 1.0 † | 0.2 † | 3.0 † | 0.3 † | 0.4 † | 0.15 † | 0.1 † | |||
Kamenny Ambar (63 analyses) | ||||||||||||||||
49.4–73.7 62.8 (62.9) | 0.30–22.6 3.4 (1.5) | 24.3–39.7 33.5 (34.1) | 3.73–319 88.0 (47.5) | <0.09–16.8 3.2 (2.1) | <1.5–19.6 4.1 (1.9) | <2.9–1720 102 (17.3) | <0.36–133 15.5 (6.7) | 1003–9200 2818 (2686) | 0.85–78.7 9.3 (5.6) | <1.5–229 7.9 (1.1) | <0.40–1.13 0.2 (0.2) | 3.10–39.0 12.5 (10.0) | <0.14–841 29.2 (1.6) | <0.45–4.80 0.6 (0.4) | <0.20–5.51 1.0 (0.6) | <0.12–17.3 1.5 (0.2) |
Konoplyanka (32 analyses) | ||||||||||||||||
62.0–73.0 65.5 (65.4) | 0.29–4.57 1.1 (1.0) | 25.3–36.5 32.6 (33.2) | 1.18–144 33.6 (36.4) | 0.23–8.81 3.3 (3.0) | <0.32–82.1 8.8 (1.3) | <1.1–55.0 7.7 (5.7) | 0.30–55.0 5.8 (1.1) | 1745–7100 5064 (5145) | 3.57–33.5 12.4 (10.9) | <0.46–44.4 2.9 (0.4) | <0.2 | 6.90–49.8 29.7 (29.1) | <0.12–110 13.6 (1.9) | <0.42–1.67 0.7 (0.5) | <0.08–1.38 0.4 (0.3) | <0.03–14.8 2.0 (0.4) |
Ustye (7 analyses) | ||||||||||||||||
33.7–86.2 66.3 (73.1) | 0.03–49.8 12.9 (0.4) | 1.18–19.0 8.0 (7.8) | 2.30–732 224 (88.6) | 52.9–2400 701 (480) | 0.64–35.7% * 12.7% (12.8%) * | <1.0–370 64.6 (10.0) | <1.6–38.7 12.9 (1.7) | 40.0–186 110 (124) | 26.0–168 74.3 (51.0) | <1.0–109 37.9 (23.2) | 10.0–678 327 (382) | <2.6–102 32.7 (20.0) | 0.49–49.0 20.0 (9.9) | 1.41–57.0 21.4 (9.0) | 0.19–53.1 24.6 (22.7) | <0.22–5.63 3.0 (3.2) |
Katzbakh 6 (30 analyses) | ||||||||||||||||
44.5–78.0 61.1 (59.3) | 0.03–21.9 3.8 (2.9) | 20.8–41.6 35.0 (35.8) | 0.48–63.9 8.2 (6.0) | 0.28–31.8 2.9 (1.5) | <3.2–122 20.7 (3.0) | <0.8–234 28.8 (11.6) | <0.26–168 39.3 (27.6) | <4.0–46.9 19.5 (17.0) | 24.1–1396 330 (224) | <1.17 | 0.57–1.80 1.2 (1.1) | <1.6 | 12.5–28,100 3393 (590) | <0.58–6010 250 (8.1) | <0.12–2.01 0.4 (0.3) | <0.10–11.0 1.8 (0.6) |
Ordynsky Ovrag (47 analyses) | ||||||||||||||||
49.8–84.1 71.3 (70.9) | 0.00–3.50 0.8 (0.4) | 15.0–49.0 27.7(28.0) | 0.48–25.4 6.95 (6.55) | <0.3–124 10.3 (5.30) | 3.00–610 76.8 (50.0) | <5.0–1590 117 (27.0) | 0.21–74.0 13.3 (4.4) | 12.0–107 51.2 (50.0) | 8.30–840 167 (133) | <1.5 | 0.40–42.5 6.2 (4.7) | <10.0 | 0.31–790 75.9 (37.0) | 9.50–683 172 (163) | <1.4–3.20 1.0 (0.8) | <0.08–17.3 1.1 (0.1) |
Turganik type 1 (9 analyses) | ||||||||||||||||
54.8–76.3 64.2 (56.7) | 0.23–13.86 7.1 (11.1) | 23.1–32.6 28.4 (30.8) | 9.00–61.4 31.0 (38.4) | 3.80–213 76.0 (88.7) | 872–4150 1946 (1963) | <1.0–106 36.9 (30.0) | 0.38–11.8 3.2 (2.1) | 969–1681 1279 (1392) | 102–232 155 (126) | <1.14–3.38 1.5 (1.3) | 0.91–9.00 3.3 (2.6) | 15.3–68.8 26.2 (20.3) | <0.26–5.60 1.6 (1.4) | 2.08–10.8 6.5 (8.3) | 0.31–4.62 1.3 (0.9) | <0.37–2.43 0.8 (0.5) |
Turganik type 2 (17 analyses) | ||||||||||||||||
71.4–80.8 77.1 (78.2) | 0.01–5.60 0.7 (0.2) | 19.1–28.1 22.2 (21.2) | <0.1–8.50 1.9 (1.2) | 0.21–28.3 4.9 (1.6) | 12.0–207 91.6 (88.2) | <1.3–99.0 23.9 (7.1) | 1.94–125 17.4 (7.2) | 21.8–157 58.5 (43.0) | 82.6–757 234 (163) | <0.6–8.10 1.2 (0.6) | <0.12–8.40 1.6 (1.2) | <2.2 | 1.58–6600 527 (9.5) | 0.54–210 44.3 (19.9) | <0.16–7.10 0.8 (0.2) | <0.16–9.40 1.8 (0.1) |
Tokskoe (24 analyses) | ||||||||||||||||
50.6–83.6 68.5 (71.0) | 0.00–10.5 3.6 (1.5) | 16.1–40.0 27.7 (27.4) | 0.20–34.4 7.8 (5.6) | 0.30–117 8.7 (1.9) | 6.35–136 30.1 (22.1) | <1.0–557 72.2 (9.8) | 1.72–598 121 (63.9) | 34.6–936 332 (143) | 35.5–2380 509 (296) | <0.87–1.90 0.5 (0.4) | <0.44–14.4 1.9 (0.9) | <2.8 | 9.40–6600 534 (106) | 1.90–624 182 (165) | <0.12–3.80 0.5 (0.2) | <0.15–39.0 4.1 (0.2) |
Ivanovskoe (75 analyses) | ||||||||||||||||
52.6–83.9 74.5 (76.9) | 0.00–13.4 1.2 (0.1) | 15.8–35.2 24.2 (22.8) | <0.15–68.7 6.2 (0.5) | 0.28–60.7 7.1 (2.8) | 4.70–247 54.6 (41.7) | <1.4–263 25.1 (4.1) | 0.26–265 25.1 (11.1) | 8.00–1026 206 (82.5) | 24.5–994 288 (228) | <0.4–2.42 0.5 (0.4) | <0.26–8.60 1.6 (1.1) | <3.2 | <0.15–48,500 1285 (15.3) | 0.78–452 35.4 (10.4) | <0.12–1.60 0.2 (0.2) | <0.08–146 8.0 (0.3) |
Bulanovskoe 2 (19 analyses) | ||||||||||||||||
67.2–76.8 71.3 (70.0) | 0.01–2.89 0.5 (0.1) | 23.1–32.2 28.1 (28.2) | <0.05–4.89 1.2 (0.4) | 0.57–38.3 5.9 (3.4) | 5.70–94.1 45.2 (47.6) | <3.3–36.0 10.3 (5.3) | 1.92–101 17.1 (9.6) | <4.4–201 123 (133) | 111–492 261 (225) | <0.59–2.04 0.7 (0.7) | <0.1–3.20 0.8 (0.7) | <2.4 | <0.23–1286 190 (2.6) | 1.70–114.4 29.9 (22.1) | <0.16–1.60 0.2 (0.1) | 0.16–9.00 1.1 (0.5) |
Kuzminkovskoe 2 (4 analyses) | ||||||||||||||||
75.7–83.9 78.8-77.9 | 0.11–0.60 0.3 (0.2) | 14.9–23.7 20.5 (21.8) | 0.49–5.69 2.2 (1.4) | 14.0–75.0 38.0 (31.5) | 274–778 562 (598) | <8.0–30.0 12.2 (9.4) | 2.37–55.3 25.7 (22.5) | 371–1328 867 (884) | 53.1–4680 2109 (1852) | <1.0 | 5.60–14.7 8.0 (5.9) | <3.2 | 1.63–1850 631 (337) | 7.50–19.0 14.2 (15.2) | <0.22–0.79 0.3 (0.2) | 4.20–9.90 6.6 (5.8) |
Pokrovskoe (20 analyses) | ||||||||||||||||
68.0–80.0 75.9 (76.4) | 0.04–3.13 0.5 (0.2) | 19.9–30.3 23.5 (23.2) | <0.05–26.8 3.0 (1.2) | 0.47–164 25.4 (9.9) | 1.00–163 28.9 (20.8) | <3.3–2180 194 (13.0) | 0.27–38.0 7.5 (2.3) | <24.1–631 91.6 (45.4) | 0.73–266 59.6 (49.2) | <1.2–4.10 1.7 (1.6) | <0.27–9.10 2.4 (1.5) | <1.6 | <1.3–24,900 1864 (72.3) | 0.37–638 54.2 (28.8) | <0.25–3.07 0.5 (0.1) | <0.10–53.2 5.4(0.6) |
Rodnikovoe type 1 (23 analyses) | ||||||||||||||||
63.0–77.9 72.9 (74.0) | 0.01–0.13 0.04 (0.03) | 22.0–36.9 27.0 (25.9) | <0.18–6.09 0.9 (0.4) | <0.11–64.0 11.1 (6.4) | 5.90–114 29.7 (17.1) | <9.0–29.0 11.2 (9.6) | 3.21–378 43.4 (15.7) | <3.6-467 142 (154) | 19.9-818 287 (243) | <1.1–6.15 0.8 (0.5) | <0.8–4.30 1.3 (1.0) | <3.1 | <0.56–1019 142 (17.8) | 2.11–26.8 10.5 (10.9) | <0.33–2.20 0.5 (0.3) | <0.08–4.16 0.6 (0.4) |
Rodnikovoe type 2 (4 analyses) | ||||||||||||||||
31.4–82.2 63.4 (70.0) | 0.46–32.0 8.4 (0.5) | 17.0–36.6 28.0 (29.2) | 0.59–56.0 14.9 (1.5) | 0.46–124 44.6 (27.0) | 548–3010 1467 (1155) | 1.00–580 197 (11.2) | 4.10–256 90.9 (51.8) | 215–242 229 (229) | 187–2779 1103 (722) | <1.4–22.5 6.9 (2.2) | 12.9–196 71.9 (39.4) | <4.6 | 146–86,000 24,097 (5120) | 130–810 453 (436) | <0.16–1.10 0.5 (0.1) | 2.00–196 56.9 (14.8) |
Sarlybay 3 (23 analyses) | ||||||||||||||||
55.5–78.1 73.2 (75.2) | 0.06–19.6 3.8 (1.3) | 14.3–28.4 22.9 (22.7) | 2.35–299 58.7 (27.1) | 0.31–115 14.6 (2.9) | 5.70–162 35.8 (15.6) | 3.50–446 83.0 (38.6) | <1.1–11.8 1.5 (0.1) | 360–2440 1640 (1920) | 2.18–375 28.1 (7.7) | <3.3–131 10.8 (2.9) | <0.11–4.50 0.9 (0.3) | <2.0–49.0 11.1 (4.4) | 1.00–2.10 1.6 (1.6) | <0.67–31.6 6.8 (2.1) | <0.35–8.20 2.7 (1.5) | <0.08–3.44 0.5 (0.2) |
Taldysay (29 analyses) | ||||||||||||||||
31.4–82.8 63.4 (64.2) | 0.45–24.1 4.4 (2.6) | 0.60–43.0 22.4 (22.1) | 6.24–1626 247 (73.4) | 1.06–1451 249 (40.0) | 0.24–45.5% * 10.7% (2.53%) * | <4.7–1010 147 (38.5) | <0.7–7.00 2.77 (2.59) | 45.0–2550 317 (233) | 16.5–1981 256 (130) | 0.79–4460 371 (27.6) | 0.32–138 30.8 (17.6) | <2.0 | <0.45–698 56.7 (14.6) | 83.4–45,300 5292 (2060) | 0.20–800 115 (22.2) | <0.05–17.2 4.4 (3.5) |
Formation | Basalt Volcanogenic Rocks | Ultrabasic Rocks | Sedimentary Rocks | |||||
---|---|---|---|---|---|---|---|---|
Deposits Type | Volcanogenic Massive Sulfide (VMS) | Skarn Copper | Porphyry Copper | Quartz Vein | VMS | Skarn Copper | Quartz Vein | Copper Sandstone |
Marker elements | Co, Se, Te | As, Co, Ni | Ag, Pb | |||||
Additional elements | +Zn ±Ba | +Fe | ±Mo ±B | +Ag ±Au | ±Sb | +Fe | +Ag ±Au | ±Ba ±Bi |
Deposits | Bakr-Uzyak, Sarlybay, Shuuldak | Novonikolaevskoe, Mikheevskoe, Gumeshevskoe | Elenovskoe, Ush-Katta | Nikolskoe, Kichigino | Ishkinino, Dergamysh, Shanshar | Novotemirskoe, Vorovskaya Yama | Tash-Kazgan | Kargaly ore field (and Cis-Urals), Jezkazgan ore field |
Ore sources for copper slags of archaeological sites | Sarlybay 3 | Kamenny Ambar, Konoplyanka | - | Katzbach 6 | Turganik | Ustye Kuzminkovskoe 2 | - | Turganik, Ordynsky Ovrag, Tokskoe, Ivanovskoe, Bulanovskoe 2, Pokrovskoe, Rodnikovoe, Kuzminkovskoe 2, Taldysay |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artemyev, D.A.; Ankushev, M.N. Trace Elements of Cu-(Fe)-Sulfide Inclusions in Bronze Age Copper Slags from South Urals and Kazakhstan: Ore Sources and Alloying Additions. Minerals 2019, 9, 746. https://doi.org/10.3390/min9120746
Artemyev DA, Ankushev MN. Trace Elements of Cu-(Fe)-Sulfide Inclusions in Bronze Age Copper Slags from South Urals and Kazakhstan: Ore Sources and Alloying Additions. Minerals. 2019; 9(12):746. https://doi.org/10.3390/min9120746
Chicago/Turabian StyleArtemyev, Dmitry A., and Maksim N. Ankushev. 2019. "Trace Elements of Cu-(Fe)-Sulfide Inclusions in Bronze Age Copper Slags from South Urals and Kazakhstan: Ore Sources and Alloying Additions" Minerals 9, no. 12: 746. https://doi.org/10.3390/min9120746
APA StyleArtemyev, D. A., & Ankushev, M. N. (2019). Trace Elements of Cu-(Fe)-Sulfide Inclusions in Bronze Age Copper Slags from South Urals and Kazakhstan: Ore Sources and Alloying Additions. Minerals, 9(12), 746. https://doi.org/10.3390/min9120746