An Exploration Study of the Kagenfels and Natzwiller Granites, Northern Vosges Mountains, France: A Combined Approach of Stream Sediment Geochemistry and Automated Mineralogy
Abstract
:1. Introduction
2. Geology and Magmatic Pulses of the Northern Vosges Mountains
2.1. Regional Geological Setting
2.2. Magmatic Suites: Geochronology, Geochemistry and Source Rocks
2.3. Mineralisation in the Northern Vosges Mountains and Review of Historic BRGM Regional Geochemical Data
3. Methodology
4. Results
4.1. Univariate Anomaly Analysis of Ore and Incompatible Elements
4.2. Geochemical Classification of Principal Rock Units and Magmatic Fractionation Using Stream Sediment Data
4.3. Bulk Mineralogy, Indicators for Magmatic Fractionation and Link to Stream Sediment Geochemistry
4.3.1. Correlation between Outcrop and Stream Sediment Sample Mineralogy
4.3.2. Petrogenetic Indicators
5. Discussion
6. Conclusions and Implications for Mineral Exploration
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Stream Sediment | Stream Sediment | Stream Sediment | Stream Sediment | Stream Sediment | Stream Sediment | ||||||
2 | 3 | 14 | 15 | 16 | 17 | ||||||
Plagioclase | 27.08 | Plagioclase | 29.01 | Plagioclase | 35.30 | Plagioclase | 32.18 | Plagioclase | 32.38 | Plagioclase | 29.24 |
Quartz | 19.6 | K-Feldspar | 20.96 | K-Feldspar | 28.96 | K-Feldspar | 25.12 | K-Feldspar | 26.44 | Quartz | 24.10 |
K-Feldspar | 18.53 | Quartz | 19.65 | Quartz | 22.12 | Quartz | 24.30 | Quartz | 22.27 | K-Feldspar | 22.14 |
Chlorite | 13.61 | Chlorite | 6.88 | Fe-Ox (Mn)/CO3 | 4.58 | Fe-Ox (Mn)/CO3 | 3.35 | Fe-Ox (Mn)/CO3 | 6.98 | Fe-Ox (Mn)/CO3 | 5.89 |
Tourmaline | 8.48 | Fe-Ox (Mn)/CO3 | 6.73 | Chlorite | 1.47 | Chlorite | 3.14 | Zircon | 2.27 | Chlorite | 3.52 |
Biotite | 3.26 | Hornblende | 3.86 | Biotite | 1.26 | Hornblende | 2.17 | Chlorite | 2.10 | Zircon | 3.10 |
Fe-Ox (Mn)/CO3 | 2.07 | Tourmaline | 3.39 | Zircon | 1.20 | Biotite | 1.52 | Biotite | 1.48 | Hornblende | 3.03 |
Hornblende | 1.92 | Zircon | 2.3 | Ilmenite | 0.98 | Tourmaline | 1.33 | Hornblende | 1.48 | Biotite | 2.01 |
Muscovite | 1.12 | Biotite | 1.98 | Muscovite | 0.83 | Zircon | 1.20 | Ilmenite | 0.87 | Tourmaline | 1.43 |
Rutile | 1.09 | Apatite | 1.26 | Rutile | 0.77 | Rutile | 1.10 | Muscovite | 0.80 | Muscovite | 1.34 |
Kaolinite | 0.76 | Rutile | 1.11 | Tourmaline | 0.51 | Muscovite | 0.84 | Tourmaline | 0.74 | Apatite | 0.97 |
Zircon | 0.57 | Muscovite | 0.71 | Hornblende | 0.49 | Ca-Fe-Al silicates | 0.43 | Rutile | 0.73 | Rutile | 0.70 |
Ca-Fe-Al silicates | 0.38 | Ca-Fe-Al silicates | 0.42 | Monazite | 0.40 | Kaolinite | 0.40 | Apatite | 0.40 | Ilmenite | 0.60 |
Titanite | 0.17 | Titanite | 0.37 | Kaolinite | 0.36 | Ilmenite | 0.28 | Kaolinite | 0.32 | Ca-Fe-Al silicates | 0.50 |
Ilmenite | 0.14 | Ilmenite | 0.33 | Spessartine | 0.21 | Thorite | 0.21 | Ca-Fe-Al silicates | 0.17 | Kaolinite | 0.44 |
Spessartine | 0.12 | Kaolinite | 0.26 | Ca-Fe-Al silicates | 0.17 | Apatite | 0.18 | Ti-Magnetite | 0.13 | Titanite | 0.20 |
Chrome spinel | 0.11 | Spessartine | 0.11 | Ilmenorutile | 0.04 | Spessartine | 0.17 | Spessartine | 0.11 | Ti-Magnetite | 0.18 |
Ti-Magnetite | 0.05 | Ti-Magnetite | 0.08 | Others | 0.35 | Mn Oxides | 0.10 | Monazite | 0.11 | Wolframite | 0.03 |
Monazite | 0.02 | Monazite | 0.04 | Columbite | 0.01 | Ilmenorutile | 0.02 | Ilmenorutile | 0.01 | ||
Ilmenorutile | 0.01 | Ilmenorutile | 0.01 | Cu sulphides | 0.01 | Cassiterite | 0.01 | Spessartine | 0.14 | ||
Thorite | 0.01 | Columbite | 0.01 | Ilmenorutile | 0.01 | Others | 0.19 | Others | 0.43 | ||
Cu sulphides | 0.01 | Cu sulphides | 0.01 | Others | 1.95 | ||||||
Others | 0.89 | Others | 0.52 | ||||||||
Stream Sediment | Rock | Rock | Stream Sediment | Stream Sediment | |||||||
18 | 17A | 18A | 19 | 20 | |||||||
Plagioclase | 36.97 | K-Feldspar | 35.78 | Quartz | 36.55 | Plagioclase | 33.93 | Plagioclase | 31.05 | ||
K-Feldspar | 25.9 | Plagioclase | 32.23 | K-Feldspar | 31.35 | K-Feldspar | 23.32 | Quartz | 24.65 | ||
Quartz | 24.34 | Quartz | 29.44 | Plagioclase | 29.65 | Quartz | 29.01 | K-Feldspar | 22.23 | ||
Chlorite | 2.56 | Fe-Ox (Mn)/CO3 | 0.77 | Fe-Ox (Mn)/CO3 | 0.8 | Chlorite | 2.88 | Fe-Ox (Mn)/CO3 | 9.81 | ||
Fe-Ox (Mn)/CO3 | 1.91 | Biotite | 0.72 | Biotite | 0.53 | Fe-Ox (Mn)/CO3 | 2.75 | Chlorite | 2.49 | ||
Biotite | 1.79 | Muscovite | 0.46 | Muscovite | 0.42 | Biotite | 1.28 | Biotite | 1.82 | ||
Muscovite | 1.37 | Tourmaline | 0.29 | Tourmaline | 0.22 | Muscovite | 1.46 | Tourmaline | 1.23 | ||
Ilmenite | 0.91 | Chlorite | 0.12 | Ilmenite | 0.18 | Tourmaline | 0.92 | Muscovite | 1.16 | ||
Tourmaline | 0.82 | Ilmenite | 0.09 | Chlorite | 0.12 | Hornblende | 0.75 | Cassiterite | 1.04 | ||
Spessartine | 0.65 | Rutile | 0.04 | Kaolinite | 0.05 | Ca-Fe-Al silicates | 0.4 | Zircon | 0.93 | ||
Zircon | 0.56 | Zircon | 0.02 | Rutile | 0.04 | Spessartine | 0.38 | Calcite | 0.93 | ||
Hornblende | 0.48 | Ti-Magnetite | 0.01 | Zircon | 0.03 | Zircon | 0.54 | Rutile | 0.84 | ||
Rutile | 0.41 | Monazite | 0.01 | Ti-Magnetite | 0.02 | Rutile | 0.62 | Ilmenite | 0.76 | ||
Mn Oxides | 0.33 | Others | 0.02 | Monazite | 0.02 | Ilmenorutile | 0.01 | Kaolinite | 0.33 | ||
Kaolinite | 0.31 | Thorite | 0.02 | Ilmenite | 0.59 | Apatite | 0.19 | ||||
Calcite | 0.23 | Others | 0 | Titanite | 0.13 | Hornblende | 0.14 | ||||
Ca-Fe-Al silicates | 0.19 | Mn Oxides | 0.2 | Ti-Magnetite | 0.12 | ||||||
Ilmenorutile | 0.05 | Columbite | 0.01 | Columbite | 0.01 | ||||||
Others | 0.22 | Cu sulphides | 0.01 | Others | 0.27 | ||||||
Kaolinite | 0.54 | ||||||||||
Others | 0.27 |
Sample ID | As (ppm) | B (ppm) | Be (ppm) | Cs (ppm) | Cu (ppm) | Hf (ppm) | K (ppm) | Li (ppm) | Nb (ppm) | Pb (ppm) | Rb (ppm) | Sn (ppm) | Sr (ppm) | Ta (ppm) | Th (ppm) | Ti (ppm) | W (ppm) | Zr (ppm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 15.35 | 60.25 | 6.35 | 14.41 | 375.63 | 10.11 | 12,513 | 64.24 | 31.12 | 54.29 | 110.2 | 18.4 | 214.44 | 2.54 | 23.37 | 4980 | 11.39 | 378.28 |
2 | 30.45 | 21.99 | 13.47 | 19.53 | 85.34 | 36.88 | 14,558 | 105.1 | 100.33 | 52.22 | 144.1 | 18.38 | 262.37 | 8.12 | 77.95 | 10,502.82 | 21.55 | 1248.59 |
3 | 18.67 | 15.41 | 10.2 | 12.65 | 86.53 | 50.3 | 18,186 | 81.56 | 94.64 | 33.29 | 141.2 | 13.66 | 291.31 | 7.45 | 93.73 | 8639.58 | 34.81 | 1833.39 |
4 | 9.38 | 15.38 | 2.33 | 10.63 | 51.75 | 22.96 | 19,889 | 51.79 | 15.16 | 36.07 | 142.3 | 19.48 | 138.48 | 1.39 | 14.99 | 4241.68 | 21.96 | 1033.49 |
5 | 13.69 | 15.26 | 2.82 | 16.5 | 49.65 | 19.83 | 15,368 | 66.7 | 14.62 | 77.18 | 114.5 | 13.28 | 177.75 | 1.82 | 15.89 | 5048.43 | 36.05 | 844.8 |
6 | 7.28 | 15.43 | 1.25 | 11.99 | 42.99 | 8.65 | 15,425 | 42.14 | 13.47 | 39.22 | 104.3 | 6.31 | 199.66 | 1.16 | 10.41 | 4723.44 | 49.9 | 346.08 |
7 | 16.41 | 14.31 | 3.68 | 17.92 | 62.55 | 9.61 | 16,553 | 78.27 | 15.28 | 93.69 | 116.4 | 5.48 | 132.92 | 1.85 | 10.07 | 5498.79 | 1.89 | 381.42 |
8 | 19.26 | 14.75 | 2.29 | 11.94 | 176.48 | 18.39 | 20,405 | 61.55 | 20.85 | 40.06 | 136.4 | 30.69 | 134.35 | 1.91 | 19.59 | 5539.26 | 6.92 | 776.97 |
9 | 50.27 | 13.48 | 1.73 | 27.42 | 70.08 | 12.41 | 18,473 | 79.66 | 9.93 | 28.29 | 77.9 | 34.06 | 98.89 | 0.76 | 8.87 | 4093.86 | 3.53 | 478.42 |
10 | 125.97 | 12.8 | 24.06 | 9.25 | 25.05 | 37.22 | 23,638 | 54.77 | 198.29 | 54.23 | 366.6 | 6.5 | 53.17 | 11.77 | 59.76 | 2170.97 | 11.83 | 711.86 |
11 | 73.95 | 13.85 | 34.22 | 10.88 | 48.77 | 32.66 | 18,266 | 49.35 | 126.27 | 46.11 | 195.5 | 30.82 | 49.41 | 7.55 | 66.3 | 2637.35 | 10.42 | 827.32 |
12 | 17.55 | 15.45 | 2.8 | 11.93 | 102.23 | 13.38 | 17,816 | 41.45 | 18.29 | 26.97 | 152.2 | 41.55 | 102.73 | 1.55 | 24.45 | 3839.98 | 1.8 | 552.45 |
13 | 44.09 | 12.1 | 10.32 | 3.59 | 7.88 | 35.85 | 22,682 | 12.13 | 99.06 | 8.72 | 190.2 | 7.19 | 21.41 | 5.87 | 47.58 | 2784.06 | 14.56 | 905.28 |
14 | 92.71 | 12.7 | 19.18 | 9.54 | 60.8 | 64.86 | 25,376 | 34.12 | 192.26 | 26.08 | 242 | 21.92 | 43.13 | 10.83 | 86.53 | 3994 | 8.76 | 1695.02 |
15 | 25.52 | 11.25 | 13.66 | 13.29 | 120.18 | 40.27 | 15,796 | 44.4 | 53.14 | 35.79 | 157 | 21.61 | 147.74 | 3.8 | 38.33 | 4208.34 | 29.11 | 1408.45 |
16 | 52.17 | 9.91 | 13.41 | 10.53 | 88.88 | 45.08 | 21,273 | 41.38 | 92.71 | 20.13 | 210.1 | 26.29 | 101.8 | 5.85 | 56.71 | 4133.23 | 28.7 | 1441.4 |
17 | 28.68 | 9.9 | 12.82 | 12.14 | 122.74 | 50.72 | 19,535 | 52.61 | 63.67 | 39.57 | 177.7 | 14.14 | 183.39 | 4.55 | 66.16 | 5683.34 | 102.56 | 1923.08 |
18 | 83.4 | 10.46 | 21.8 | 7.62 | 59.56 | 34.05 | 20,270 | 26.16 | 92.76 | 26.64 | 186.4 | 10.07 | 36.22 | 5.5 | 46.62 | 3223.2 | 6.94 | 899.06 |
19 | 68.71 | 12.02 | 10.22 | 11.36 | 166.61 | 28.35 | 15,251 | 35.5 | 66.55 | 40.69 | 152.7 | 20.05 | 78.5 | 4.06 | 41.08 | 3681.99 | 10.84 | 870.06 |
20 | 9.04 | 15.46 | 8.03 | 9.35 | 116.28 | 17.45 | 12,924 | 47.29 | 29.72 | 99.56 | 47.3 | 17.98 | 179.99 | 2.69 | 21.65 | 3896.3 | 23.26 | 698.02 |
References
- European Commission. Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs (European Commission) Study on the Review of the List of Critical Raw Materials 2017; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Romer, R.L.; Kroner, U. Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res. 2016, 31, 60–95. [Google Scholar] [CrossRef]
- Steiner, B.M. W and Li-Cs-Ta signatures in I-type granites—A case study from the Vosges Mountains, NE France. J. Geochem. Expl. 2019, 197, 238–250. [Google Scholar] [CrossRef]
- Bureau de Recherches Géologiques et Minières BRGM InfoTerre. Available online: http://www.infoterre.brgm.fr (accessed on 20 October 2019).
- Leduc, C. Paris-Vosges—Zones D et E. Prospection Géochimique Stratégique Cirey-sur-Vezouze et Molsheim. Interprétation des Résultats Analytiques; Bureau de Recherches Géologiques et Minières: Orléans, France, 1984; p. 93. [Google Scholar]
- Tabaud, A.-S.; Whitechurch, H.; Rossi, P.; Schulmann, K.; Guerrot, C.; Cocherie, A. Devonian–Permian magmatic pulses in the northern Vosges Mountains (NE France): Result of continuous subduction of the Rhenohercynian Ocean and Avalonian passive margin. Geol. Soc. Lond. 2014, 405, 197–223. [Google Scholar] [CrossRef]
- Altherr, R.; Holl, A.; Hegner, E.; Langer, C.; Kreuzner, H. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos 2000, 50, 51–73. [Google Scholar] [CrossRef]
- Bernstein, S.; Frei, D.; McLimans, R.K.; Knudsen, C.; Vasudev, V.N. Application of CCSEM to heavy mineral deposits: Source of high-Ti ilmenite sand deposits of South Kerala beaches, SW India. J. Geochem. Expl. 2008, 96, 25–42. [Google Scholar] [CrossRef]
- Keulen, N.; Frei, D.; Riisager, P.; Knudsen, C. Analysis of heavy minerals in sediments by computer-controlled scanning electron microscopy (CCSEM): Principles and applications. Mineral. Assoc. Can. Short Course 2012, 42, 67–184. [Google Scholar]
- Mackay, D.A.R.; Simandl, G.J.; Ma, W.; Redfearn, M.; Gravel, J. Indicator mineral-based exploration for carbonatites and related specialty metal deposits—A QEMSCAN® orientation survey, British Columbia, Canada. J. Geochem. Expl. 2016, 165, 159–173. [Google Scholar] [CrossRef]
- Piqué, A.; Fluck, P.; Schneider, J.L.; Whitechurch, H. The Vosges Massif. In Pre-Mesozoic Geology in France and Related Areas; Chantraine, J., Rolet, J., Santallier, D.S., Piqué, A., Keppie, J.D., Eds.; IGCP-Project 233; Springer: Berlin, Heidelberg, 1994; pp. 416–425. [Google Scholar]
- Tabaud, A.-S.; Janoušek, V.; Skrzypek, E.; Schulmann, K.; Rossi, P.; Whitechurch, H.; Guerrot, C.; Paquette, J.-L. Chronology, petrogenesis and heat sources for successive Carboniferous magmatic events in the Southern–Central Variscan Vosges Mts (NE France). J. Geol. Soc. 2015, 172, 87–102. [Google Scholar] [CrossRef]
- Schulmann, K.; Martínez Catalán, J.R.; Lardeaux, J.M.; Janoušek, V.; Oggiano, G. The Variscan orogeny: Extent, timescale and the formation of the European crust. Geol. Soc. Lond. 2014, 405, 1–6. [Google Scholar] [CrossRef]
- Hess, J.C.; Lippolt, H.J.; Kober, B. The age of the Kagenfels granite (northern Vosges) and its bearing on the intrusion scheme of late Variscan granitoids. Geol. Rundsch. 1995, 84, 568–577. [Google Scholar] [CrossRef]
- Elsass, P.; Eller, J.P.; Stussi, J.M. Géologie du Massif du Champ du Feu et de ses Abords: Éléments de Notice Pour la Feuille Géologique 307 Sélestat.; Bureau de Recherches Géologiques et Minières: Orléans, France, 2008; p. 187. [Google Scholar]
- Dekoninck, A.; Rochez, G.; Yans, J.; Fluck, P. Mineralizing events in the Vosges massif: Insights from the Mn-W Haut-Poirot deposit (NE France). Proc. Miner. Resour. Discov. 2017, 4, 1519–1522. [Google Scholar]
- Fluck, P.; Stein, S. Espèces minérales des principaux districts miniers du massif vosgien. Pierres et Terre 1992, 35, 107–115. [Google Scholar]
- Fluck, P. Metallogeny of Vosges; Freiberger Forschungshefte: Salamanca, Spain, 1977; pp. 83–93. [Google Scholar]
- Fluck, P.; Weil, R. Géologie des Gîtes Minéraux des Vosges et des Régions Limitrophes; Mémoires du, B.R.G.M., Ed.; Bureau de Recherches Géologiques et Minières: Orléans, France, 1976. [Google Scholar]
- Mariet, A.L.; Bégeot, C.; Gimbert, F.; Gauthier, J.; Fluck, P.; Walter-Simonnet, A.V. Past mining activities in the Vosges Mountains (eastern France): Impact on vegetation and metal contamination over the past millennium. Holocene 2016, 26, 1225–1236. [Google Scholar] [CrossRef]
- Forel, B.; Monna, F.; Petit, C.; Bruguier, O.; Losno, R.; Fluck, P.; Begeot, C.; Richard, H.; Bichet, V.; Chateau, C. Historical mining and smelting in the Vosges Mountains (France) recorded in two ombrotrophic peat bogs. J. Geochem. Expl. 2010, 107, 9–20. [Google Scholar] [CrossRef]
- Billa, M.; Gloaguen, E.; Melleton, J.; Tourlière, B. Consolidation des Anomalies Géochimiques et Géophysiques du Territoire Métropolitain; Bureau de Recherches Géologiques et Minières: Orléans, France, 2016; p. 42. [Google Scholar]
- Weil, R. Sur la présence de l’adulaire dans la Grotte des Partisans. Sciences Géologiques Bulletins et Mémoires 1936, 3, 27–28. [Google Scholar] [CrossRef]
- Bureau de Recherches Géologiques et Minières SIG Mines France. Available online: http://sigminesfrance.brgm.fr/sig.asp (accessed on 20 October 2019).
- Schneider, M. Vogesengranit—Letter: Natzweiler-Struthof Memorial Museum Collection 1940; Natzweiler-Struthof Memorial Museum Collection: Natzwiller, France, 1940. [Google Scholar]
- Steiner, B.M. Tools and Workflows for Grassroots Li-Cs-Ta (LCT) pegmatite exploration. Minerals 2019, 9, 499. [Google Scholar] [CrossRef] [Green Version]
- Ballouard, C.; Poujol, M.; Boulvais, P.; Branquet, Y.; Tartèse, R.; Vigneresse, J.L. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic–hydrothermal transition. Geology 2016, 44, 231–234. [Google Scholar] [CrossRef]
- Breiter, K.; Škoda, R. Zircon and whole-rock Zr/Hf ratios as markers of the evolution of granitic magmas: Examples from the Teplice caldera (Czech Republic/Germany). Mineral. Petrol. 2017, 111, 435–457. [Google Scholar] [CrossRef]
- Linnen, R.L.; Keppler, H. Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust. Contrib. Mineral. Petrol. 1997, 128, 213–227. [Google Scholar] [CrossRef]
- Steiner, B.M. Using Tellus stream sediment geochemistry to fingerprint regional geology and mineralisation systems in southeast Ireland. Irish J. Earth Sci. 2018, 36, 45–61. [Google Scholar] [CrossRef]
- Gottlieb, P.; Wilkie, G.; Sutherland, D.; Ho-Tun, E.; Suthers, S.; Perera, K.; Jenkins, B.; Spencer, S.; Butcher, A.; Rayner, J. Using Quantitative Electron Microscopy for Process Mineralogy Applications. JOM 2000, 52, 24–25. [Google Scholar] [CrossRef]
- Pirrie, D.; Butcher, A.; Power, M.R.; Gottlieb, P.; Miller, G.L. Rapid quantitative mineral and phase analysis using automated scanning electron microscopy (QEMSCAN®); potential applications in forensic geoscience. Geol. Soc. Lond. 2004, 232, 123–136. [Google Scholar] [CrossRef]
- Pirrie, D.; Rollinson, G.K. Unlocking the applications of automated mineral analysis. Geol. Today 2011, 27, 235–244. [Google Scholar] [CrossRef]
- Rollinson, G.K. Automated Mineralogy by SEM-EDS. In Earth Systems and Environmental Sciences; Science Direct; John Wiley and Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Rollinson, G.K.; Stickland, R.J.; Andersen, J.C.Ø.; Fairhurst, R.; Boni, M. Characterisation of Supergene Non-Sulphide Zinc Deposits using QEMSCAN®. Miner. Eng. 2011, 24, 778–787. [Google Scholar] [CrossRef]
- Simons, B.; Rollinson, G.K.; Andersen, J.C.Ø. Characterisation of lithium minerals in granite-related pegmatites and greisens by SEM-based automated mineralogy 2018. In Proceedings of the Mineral Deposits Study Group Winter Meeting, Brighton, UK, 3–5 January 2018. [Google Scholar]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1965, 28, 1273–1285. [Google Scholar] [CrossRef]
- Andersen, J.C.Ø.; Stickland, R.J.; Rollinson, G.K.; Shail, R.K. Indium mineralisation in SW England: Host parageneses and mineralogical relations. Ore Geol. Rev. 2016, 78, 213–238. [Google Scholar] [CrossRef] [Green Version]
- Fleet, M.E. Sheet Silicates: Micas; Deer, Howie and Zussman Rock Forming Minerals Series; Geological Society: London, UK, 2003. [Google Scholar]
- Breiter, K.; Ďurišová, J.; Hrstka, T.; Korbelová, Z.; Vašinová Galiová, M.; Müller, A.; Simons, B.; Shail, R.K.; Williamson, B.J.; Davies, J.A. The transition from granite to banded aplite-pegmatite sheet complexes: An example from Megiliggar Rocks, Tregonning topaz granite, Cornwall. Lithos 2018, 302, 370–388. [Google Scholar] [CrossRef]
- Simons, B.; Andersen, J.C.Ø.; Shail, R.K.; Jenner, F.E. Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous Early Permian Variscan granites of the Cornubian Batholith: Precursor processes to magmatic-hydrothermal mineralisation. Lithos 2017, 278, 491–512. [Google Scholar] [CrossRef]
- Selway, J.B.; Breaks, F.W.; Tindle, A.G. Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Explor. Min. Geol. 2005, 14, 1–30. [Google Scholar] [CrossRef]
- Černý, P. Exploration strategy and methods for pegmatite deposits of tantalum. In Lanthanides, Tantalum, and Niobium; Moller, P., Černý, P., Saupe, F., Eds.; Springer: New York, NY, USA, 1989; pp. 274–302. [Google Scholar]
- Shaw, D. A review of K-Rb fractionation trends by covariance analysis. Geochim. Cosmochim. Acta 1968, 32, 573–601. [Google Scholar] [CrossRef]
- Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib. Mineral. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Fujimaki, H. Partition-coefficients of Hf, Zr, and REE between zircon, apatite and liquid. Contrib. Mineral. Petrol. 1986, 94, 42–45. [Google Scholar] [CrossRef]
Summary Statistics | B (ppm) | Be (ppm) | Cu (ppm) | Nb (ppm) | Sn (ppm) | W (ppm) |
---|---|---|---|---|---|---|
Lower Limit of Detection (LoD) | 10 | 1 | 10 | 10 | 20 | 10 |
Minimum (LoD/2) | 5 | 0.5 | 5 | 5 | 10 | 5 |
Maximum | 63 | 43 | 155 | 57 | 35 | 56 |
Mean | 10 | 3.2 | 17.5 | 30.3 | 10.2 | 5.4 |
Median | 5 | 3 | 15 | 30 | 10 | 5 |
5 percentile | 5 | 0.5 | 5 | 16 | 10 | 5 |
10 percentile | 5 | 0.5 | 5 | 20 | 10 | 5 |
25 percentile | 5 | 2 | 5 | 25 | 10 | 5 |
30 percentile | 5 | 2 | 11 | 26 | 10 | 5 |
60 percentile | 5 | 3 | 16 | 32 | 10 | 5 |
75 percentile | 12 | 4 | 21 | 36 | 10 | 5 |
80 percentile | 14 | 4 | 23 | 37 | 10 | 5 |
90 percentile | 22 | 5 | 31 | 41 | 10 | 5 |
95 percentile | 30 | 6 | 42 | 44 | 10 | 5 |
98 percentile | 44 | 9 | 63.4 | 48 | 10 | 5 |
99 percentile | 47 | 22.5 | 86.4 | 51.4 | 27.6 | 24 |
As (ppm) | B (ppm) | Be (ppm) | Cs (ppm) | Cu (ppm) | Hf (ppm) | K (ppm) | Li (ppm) | Nb (ppm) | Pb (ppm) | Rb (ppm) | |
Lower Limit of Detection | 0.0003 | 4.14 | 0.0003 | 0.0007 | 0.00005 | 0.0003 | 0.006 | 0.0002 | 0.0003 | 0.0003 | 0.0003 |
Minimum | 7.28 | 9.9 | 1.25 | 3.59 | 7.88 | 8.65 | 12,513 | 12.13 | 9.93 | 8.72 | 47.3 |
Maximum | 125.97 | 60.25 | 34.22 | 27.42 | 375.63 | 64.86 | 25,376 | 105.1 | 198.29 | 99.56 | 366.6 |
Mean | 40.13 | 16.11 | 10.73 | 12.62 | 96 | 29.45 | 18,210 | 53.51 | 67.41 | 43.94 | 140.69 |
Median | 27.1 | 14.08 | 10.21 | 11.93 | 77.71 | 30.51 | 18,226 | 50.57 | 58.41 | 39.39 | 136.4 |
5 percentile | 7.37 | 9.9 | 1.27 | 3.79 | 8.74 | 8.7 | 12,533 | 12.83 | 10.11 | 9.29 | 67.1 |
10 percentile | 9.07 | 9.97 | 1.79 | 7.78 | 26.84 | 9.66 | 13,087 | 26.96 | 13.59 | 20.73 | 77.9 |
25 percentile | 15.62 | 12.04 | 2.8 | 9.79 | 50.18 | 14.4 | 15,382 | 41.4 | 16.03 | 27.3 | 112.75 |
30 percentile | 16.75 | 12.28 | 3.08 | 10.56 | 54.09 | 17.73 | 15,536 | 41.65 | 19.06 | 29.79 | 116.3 |
60 percentile | 38.63 | 15.06 | 11.82 | 12.08 | 87.94 | 35.13 | 19,110 | 53.9 | 82.25 | 40.44 | 144.9 |
75 percentile | 64.57 | 15.43 | 13.61 | 14.13 | 119.21 | 39.51 | 20,371 | 66.09 | 97.96 | 53.73 | 162.55 |
80 percentile | 72.9 | 15.45 | 18.08 | 16.08 | 122.23 | 44.12 | 21,099 | 75.96 | 100.08 | 54.28 | 175.2 |
90 percentile | 91.78 | 21.34 | 23.83 | 19.37 | 175.49 | 50.68 | 23,542 | 81.37 | 185.66 | 92.04 | 192.5 |
95 percentile | 124.31 | 58.34 | 33.71 | 27.03 | 365.67 | 64.15 | 25,289 | 103.92 | 197.99 | 99.27 | 215.7 |
98 percentile | 125.97 | 60.25 | 34.22 | 27.42 | 375.63 | 64.86 | 25,376 | 105.1 | 198.29 | 99.56 | 316.76 |
99 percentile | 125.97 | 60.25 | 34.22 | 27.42 | 375.63 | 64.86 | 25,376 | 105.1 | 198.29 | 99.56 | 366.6 |
Sn (ppm) | Sr (ppm) | Ta (ppm) | Th (ppm) | Ti (ppm) | W (ppm) | Zr (ppm) | K/Rb | Nb/Ta | Zr/Hf | ||
Lower Limit of Detection | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.0007 | 0.0006 | 0.0003 | ||||
Minimum | 5.48 | 21.41 | 0.76 | 8.87 | 2171 | 1.8 | 346.08 | 64.5 | 8.03 | 19.13 | |
Maximum | 41.55 | 291.31 | 11.77 | 93.73 | 10,503 | 102.56 | 1923.08 | 273.2 | 17.75 | 45.01 | |
Mean | 18.89 | 132.38 | 4.55 | 41.5 | 4676 | 21.84 | 962.67 | 134.74 | 13.41 | 34.75 | |
Median | 18.39 | 133.64 | 3.93 | 39.7 | 4171 | 13.2 | 857.43 | 131 | 12.88 | 36.93 | |
5 percentile | 5.52 | 22.15 | 0.78 | 8.93 | 2194 | 1.8 | 347.69 | 100.25 | 8.04 | 19.43 | |
10 percentile | 6.33 | 36.91 | 1.183 | 10.1 | 2652 | 2.05 | 378.59 | 104.2 | 8.52 | 25.26 | |
25 percentile | 10.87 | 59.5 | 1.83 | 16.82 | 3721 | 7.4 | 588.84 | 111 | 11.19 | 27.48 | |
30 percentile | 13.39 | 84.617 | 1.87 | 20.21 | 3857 | 9.26 | 702.17 | 102.38 | 11.67 | 31.07 | |
60 percentile | 19.82 | 144.036 | 5.12 | 47.2 | 4531 | 21.8 | 902.79 | 125 | 13.99 | 38.3 | |
75 percentile | 25.2 | 182.54 | 7.06 | 64.56 | 5386 | 29.01 | 1368.48 | 141.2 | 16.641 | 40.01 | |
80 percentile | 29.81 | 196.41 | 7.53 | 66.27 | 5531 | 33.67 | 1434.81 | 146.76 | 16.82 | 41.03 | |
90 percentile | 33.74 | 257.58 | 10.56 | 85.67 | 8344 | 48.52 | 1819.55 | 228.35 | 16.87 | 42.57 | |
95 percentile | 41.18 | 289.86 | 11.72 | 93.37 | 10,410 | 99.92 | 1918.6 | 271.4 | 17.71 | 44.89 | |
98 percentile | 41.55 | 291.31 | 11.77 | 93.73 | 10,503 | 102.56 | 1923.08 | 273.2 | 17.75 | 45.01 | |
99 percentile | 41.55 | 291.31 | 11.77 | 93.73 | 10,503 | 102.56 | 1923.08 | 273.2 | 17.75 | 45.01 |
(a) Correlation | B (ppm) | Be (ppm) | Cu (ppm) | Li (ppm) | Nb (ppm) | Rb (ppm) | Sn (ppm) | Ta (ppm) | Th (ppm) | Ti (ppm) | W (ppm) | Zr (ppm) |
B (ppm) | 1 | −0.22 | 0.43 | 0.38 | −0.23 | −0.26 | 0.07 | −0.19 | −0.2 | 0.32 | −0.1 | −0.45 |
Be (ppm) | −0.22 | 1 | −0.11 | −0.26 | 0.93 | 0.75 | −0.04 | 0.93 | 0.87 | −0.28 | 0.17 | 0.57 |
Cu (ppm) | 0.43 | −0.11 | 1 | 0.49 | −0.23 | −0.36 | 0.52 | −0.21 | −0.08 | 0.44 | −0.02 | −0.02 |
Li (ppm) | 0.38 | −0.26 | 0.49 | 1 | −0.32 | −0.23 | 0.19 | −0.22 | −0.2 | 0.64 | 0 | -0.1 |
Nb (ppm) | −0.23 | 0.93 | −0.23 | −0.32 | 1 | 0.81 | −0.1 | 0.98 | 0.94 | −0.23 | 0.21 | 0.62 |
Rb (ppm) | −0.26 | 0.75 | −0.36 | −0.23 | 0.81 | 1 | −0.01 | 0.77 | 0.67 | −0.55 | 0.02 | 0.35 |
Sn (ppm) | 0.07 | −0.04 | 0.52 | 0.19 | −0.1 | −0.01 | 1 | −0.15 | 0.07 | 0.08 | −0.19 | 0.21 |
Ta (ppm) | −0.19 | 0.93 | −0.21 | −0.22 | 0.98 | 0.77 | −0.15 | 1 | 0.94 | −0.13 | 0.24 | 0.63 |
Th (ppm) | −0.2 | 0.87 | −0.08 | −0.2 | 0.94 | 0.67 | 0.07 | 0.94 | 1 | 0 | 0.31 | 0.77 |
Ti (ppm) | 0.32 | −0.28 | 0.44 | 0.64 | −0.23 | −0.55 | 0.08 | −0.13 | 0 | 1 | 0.26 | 0.21 |
W (ppm) | −0.1 | 0.17 | −0.02 | 0 | 0.21 | 0.02 | −0.19 | 0.24 | 0.31 | 0.26 | 1 | 0.51 |
Zr (ppm) | −0.45 | 0.57 | −0.02 | −0.1 | 0.62 | 0.35 | 0.21 | 0.63 | 0.77 | 0.21 | 0.51 | 1 |
(b) | Eigenvalues | Percent | Cumulative % | |||||||||
PC1 | 5.321 | 44.35 | 44.35 | |||||||||
PC2 | 2.386 | 19.88 | 64.23 | |||||||||
PC3 | 1.432 | 11.93 | 76.16 | |||||||||
PC4 | 1.143 | 9.524 | 85.68 | |||||||||
PC5 | 0.6511 | 5.426 | 91.11 | |||||||||
PC6 | 0.5012 | 4.177 | 95.28 | |||||||||
PC7 | 0.3569 | 2.974 | 98.26 | |||||||||
PC8 | 0.09674 | 0.8062 | 99.06 | |||||||||
PC9 | 0.07267 | 0.6056 | 99.67 | |||||||||
PC10 | 0.02147 | 0.1789 | 99.85 | |||||||||
PC11 | 0.0125 | 0.1042 | 99.95 | |||||||||
PC12 | 0.005843 | 0.04869 | 100 | |||||||||
(c) Scaled Coordinates | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | PC7 | PC8 | PC9 | PC10 | PC11 | PC12 |
B (ppm) | 0.408 | 0.3572 | 0.3255 | 0.6315 | 0.3509 | 0.01225 | 0.2645 | 0.04051 | 0.07987 | 0.00297 | 0.00218 | 0.00289 |
Be (ppm) | −0.917 | 0.1213 | 0.1951 | 0.1241 | 0.04045 | −0.04277 | −0.1874 | 0.2209 | −0.03386 | −0.02367 | 0.04212 | −0.00409 |
Cu (ppm) | 0.3415 | 0.72 | 0.3555 | −0.09954 | 0.2485 | −0.03138 | −0.3918 | −0.1048 | 0.03856 | −0.00284 | 0.00383 | −0.00283 |
Li (ppm) | 0.4033 | 0.6475 | 0.07263 | 0.2348 | −0.4995 | 0.3126 | −0.06785 | 0.06441 | 0.00516 | 0.0317 | −0.02365 | 0.00966 |
Nb (ppm) | −0.9695 | 0.09748 | 0.1066 | 0.1512 | 0.01134 | −0.0767 | −0.00449 | −0.05642 | −0.04153 | −0.03102 | −0.0283 | 0.05989 |
Rb (ppm) | −0.8252 | −0.1733 | 0.3217 | 0.1054 | −0.1527 | 0.3506 | 0.06946 | −0.1358 | 0.03502 | −0.03331 | 0.05013 | −0.01149 |
Sn (ppm) | 0.1 | 0.4327 | 0.5633 | −0.6311 | 0.0861 | 0.1112 | 0.2403 | 0.0451 | −0.0835 | −0.01961 | −0.01414 | −0.00206 |
Ta (ppm) | −0.9489 | 0.1672 | 0.05228 | 0.2242 | −0.04822 | −0.09056 | −0.00587 | −0.02147 | −0.00787 | −0.03192 | −0.0687 | −0.04341 |
Th (ppm) | −0.917 | 0.3374 | 0.04044 | 0.02026 | 0.02975 | −0.1245 | 0.08018 | −0.05258 | −0.06128 | 0.1162 | 0.01846 | −0.00596 |
Ti (ppm) | 0.316 | 0.7821 | −0.3607 | 0.1243 | −0.2014 | −0.2717 | 0.1259 | −0.05419 | −0.07271 | −0.05353 | 0.03931 | −0.00605 |
W (ppm) | −0.2828 | 0.3478 | −0.7064 | −0.00598 | 0.371 | 0.3977 | −0.01112 | 0.007 | −0.0623 | −0.00659 | −0.00518 | −0.00106 |
Zr (ppm) | −0.6948 | 0.4521 | −0.3004 | −0.4066 | −0.05321 | −0.06105 | 0.09301 | 0.03585 | 0.2018 | −0.00142 | 0.00119 | 0.00592 |
Stream Sediment | Stream Sediment | Stream Sediment | Stream Sediment | Rock | Rock | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 17 | 18 | 17A | 18A | ||||||
Plagioclase | 27.08 | Plagioclase | 29.01 | Plagioclase | 29.24 | Plagioclase | 36.97 | K-Feldspar | 35.78 | Quartz | 36.55 |
Quartz | 19.6 | K-Feldspar | 20.96 | Quartz | 24.10 | K-Feldspar | 25.9 | Plagioclase | 32.23 | K-Feldspar | 31.35 |
K-Feldspar | 18.53 | Quartz | 19.65 | K-Feldspar | 22.14 | Quartz | 24.34 | Quartz | 29.44 | Plagioclase | 29.65 |
Chlorite | 13.61 | Chlorite | 6.88 | Fe-Ox (Mn)/CO3 | 5.89 | Chlorite | 2.56 | Fe-Ox (Mn)/CO3 | 0.77 | Fe-Ox (Mn)/CO3 | 0.8 |
Tourmaline | 8.48 | Fe-Ox (Mn)/CO3 | 6.73 | Chlorite | 3.52 | Fe-Ox (Mn)/CO3 | 1.91 | Biotite | 0.72 | Biotite | 0.53 |
Biotite | 3.26 | Hornblende | 3.86 | Zircon | 3.10 | Biotite | 1.79 | Muscovite | 0.46 | Muscovite | 0.42 |
Fe-Ox (Mn)/CO3 | 2.07 | Tourmaline | 3.39 | Hornblende | 3.03 | Muscovite | 1.37 | Tourmaline | 0.29 | Tourmaline | 0.22 |
Hornblende | 1.92 | Zircon | 2.3 | Biotite | 2.01 | Ilmenite | 0.91 | Chlorite | 0.12 | Ilmenite | 0.18 |
Muscovite | 1.12 | Biotite | 1.98 | Tourmaline | 1.43 | Tourmaline | 0.82 | Ilmenite | 0.09 | Chlorite | 0.12 |
Rutile | 1.09 | Apatite | 1.26 | Muscovite | 1.34 | Spessartine | 0.65 | Rutile | 0.04 | Kaolinite | 0.05 |
Kaolinite | 0.76 | Rutile | 1.11 | Apatite | 0.97 | Zircon | 0.56 | Zircon | 0.02 | Rutile | 0.04 |
Zircon | 0.57 | Muscovite | 0.71 | Rutile | 0.70 | Hornblende | 0.48 | Ti-Magnetite | 0.01 | Zircon | 0.03 |
Ca-Fe-Al silicates | 0.38 | Ca-Fe-Al silicates | 0.42 | Ilmenite | 0.60 | Rutile | 0.41 | Monazite | 0.01 | Ti-Magnetite | 0.02 |
Titanite | 0.17 | Titanite | 0.37 | Ca-Fe-Al silicates | 0.50 | Mn Oxides | 0.33 | Others | 0.02 | Monazite | 0.02 |
Ilmenite | 0.14 | Ilmenite | 0.33 | Kaolinite | 0.44 | Kaolinite | 0.31 | Thorite | 0.02 | ||
Spessartine | 0.12 | Kaolinite | 0.26 | Titanite | 0.20 | Calcite | 0.23 | Others | 0 | ||
Chrome spinel | 0.11 | Spessartine | 0.11 | Ti-Magnetite | 0.18 | Ca-Fe-Al silicates | 0.19 | ||||
Ti-Magnetite | 0.05 | Ti-Magnetite | 0.08 | Wolframite | 0.03 | Ilmenorutile | 0.05 | ||||
Monazite | 0.02 | Monazite | 0.04 | Ilmenorutile | 0.01 | Others | 0.22 | ||||
Ilmenorutile | 0.01 | Ilmenorutile | 0.01 | Spessartine | 0.14 | ||||||
Thorite | 0.01 | Columbite | 0.01 | Others | 0.43 | ||||||
Cu sulphides | 0.01 | Cu sulphides | 0.01 | ||||||||
Others | 0.89 | Others | 0.52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner, B.M.; Rollinson, G.K.; Condron, J.M. An Exploration Study of the Kagenfels and Natzwiller Granites, Northern Vosges Mountains, France: A Combined Approach of Stream Sediment Geochemistry and Automated Mineralogy. Minerals 2019, 9, 750. https://doi.org/10.3390/min9120750
Steiner BM, Rollinson GK, Condron JM. An Exploration Study of the Kagenfels and Natzwiller Granites, Northern Vosges Mountains, France: A Combined Approach of Stream Sediment Geochemistry and Automated Mineralogy. Minerals. 2019; 9(12):750. https://doi.org/10.3390/min9120750
Chicago/Turabian StyleSteiner, Benedikt M., Gavyn K. Rollinson, and John M. Condron. 2019. "An Exploration Study of the Kagenfels and Natzwiller Granites, Northern Vosges Mountains, France: A Combined Approach of Stream Sediment Geochemistry and Automated Mineralogy" Minerals 9, no. 12: 750. https://doi.org/10.3390/min9120750
APA StyleSteiner, B. M., Rollinson, G. K., & Condron, J. M. (2019). An Exploration Study of the Kagenfels and Natzwiller Granites, Northern Vosges Mountains, France: A Combined Approach of Stream Sediment Geochemistry and Automated Mineralogy. Minerals, 9(12), 750. https://doi.org/10.3390/min9120750