Luminescence of Agrellite Specimen from the Kipawa River Locality
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Nd3+, Yb3+, and Er3+ Luminescence
3.2. Ce3+ Fluorescence
- (a)
- for all substances known from existing literature, the Gd2O3 content was about 25 mol% or more.
- (b)
- the excitation and emission lines of Gd3+ did not appear in the agrellite spectra at all, although certain narrow lines should be clearly visible.
3.2.1. Energy Transfer Ce3+-Dy3+
3.2.2. Energy Transfer Ce3+-Sm3+, Pr3+, and Eu3+
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Common Fluorescent Minerals. Available online: https://www.uvminerals.org/minerals/common-fluorescent-minerals (accessed on 25 Octorber 2019).
- Agrellite. Available online: http://classicgems.net/gem_agrellite.htm (accessed on 25 Octorber 2019).
- Online Database of Luminescent minerals. Available online: http://www.fluomin.org/uk/accueil.php (accessed on 25 October 2019).
- Gorobets, B.S.; Rogojine, A.A. Luminescent Spectra of Minerals; RPC VIMS: Moscow, Russia, 2002; 300p. [Google Scholar]
- Kaneva, E.; Shendrik, R.; Mesto, E.; Bogdanov, A.; Vladykin, N. Spectroscopy and chemical properties of NaCa2[Si4O10]F natural agrellite with tabular structure. Chem. Phys. Lett. 2020, 738, 136868. [Google Scholar] [CrossRef]
- Mickens, M.A.; Assefa, Z. Tunable luminescence and white light emission of novel multiphase sodium calcium silicate nanophosphors doped with Ce3+, Tb3+, and Mn2+ ions. J. Lumin. 2014, 145, 498–506. [Google Scholar] [CrossRef]
- Ghose, S.; Wan, C. Agrellite, Na(Ca,RE)2Si4O10F: A layer structure with silicate tubes. Am. Mineral. 1979, 64, 563–572. [Google Scholar]
- Gaft, M.; Reisfeld, R.; Panczer, G. Luminescence Spectroscopy of Minerals and Materials; Springer: Berlin/Heidelberg, Germany, 2005; 606p. [Google Scholar]
- Czaja, M.B.; Bodył-Gajowska, S.; Mazurak, Z. Steady-state luminescence measurement for qualitative identification of rare earth ions in minerals. J. Miner. Petrol. Sci. 2013, 108, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Song, Z.; Kong, Y.; Liu, Q. Relationship of Stokes shift with composition and structure in Ce3+/Eu2+-doped inorganic compounds. J. Lumin. 2019, 212, 250–263. [Google Scholar] [CrossRef]
- Dorenbos, P.; Andriessen, J.; Marsman, M.; van Eik, C.W.E. On the Stokes shift of the Ce3+ 5d4f luminescence in inorganic crystals. Radiat. Eff. Defects Solids 2001, 154, 237–241. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Jin, Y.; Zhang, X.; Hao, Z.; Wang, X. Energy transfer in Y3Al5O12: Ce3+, Pr3+ and CaMoO4: Sm3+, Eu3+ phosphors. J. Lumin. 2011, 131, 429–432. [Google Scholar] [CrossRef]
- Grzyb, T.; Runowski, M.; Lis, S. Facile synthesis, structural and spectroscopic properties of GdF3: Ce3+, Ln3+(Ln3+ = Sm3+, Eu3+, Tb3+, Dy3+) nanocrystals with bright multicolor luminescence. J. Lumin. 2014, 154, 479–486. [Google Scholar] [CrossRef]
- Caldiño, U.; Lira, A.; Meza-Rocha, A.N.; Pasquini, E.; Pelli, S.; Speghini, H.; Bettinelli, M.; Righini, G.C. White light generation in Dy3+ -and Ce3+/Dy3+ -doped zinc–sodium–aluminosilicate glasses. J. Lumin. 2015, 167, 327–332. [Google Scholar] [CrossRef]
- Zeng, H.; You, F.; Peng, H.; Huang, S. Energy transfer from Ce3+ to Tb3+, Dy3+ and Eu3+ in Na3Y(BO3)2. J. Rare Earths 2015, 33, 1051–1055. [Google Scholar] [CrossRef]
- Nair, G.B.; Dhoble, S.J. White light emission through efficient energy transfer from Ce3+ to Dy3+ ions in Ca3Mg3(PO4)4 matrix aided by Li+ charge compensator. J. Lumin. 2017, 192, 1157–1166. [Google Scholar] [CrossRef]
- Li, B.; Huang, X.; Lin, J. Single-phased white-emitting Ca3Y(GaO)3(BO3)4: Ce3+, Tb3+, Sm3+ phosphors with high-efficiency: Photoluminescence, energy transfer and application in near-UV-pumped white LEDs. J. Lumin. 2018, 204, 410–418. [Google Scholar] [CrossRef]
- Dev, K.; Selot, A.; Nair, G.B.; Barai, V.L.; Haque, F.Z.; Aynyas, M.; Dhoble, S.J. Energy transfer from Ce3+ to Dy3+ ions for white light emission in Sr2MgAl22O36:Ce3+, Dy3+ phosphor. J. Lumin. 2019, 206, 380–385. [Google Scholar] [CrossRef]
- Tarashchan, A.N. Luminescence of Minerals; NaukovaDumka: Kiev, Ukraine, 1978. [Google Scholar]
- Lisiecki, R.; Głowacki, M.; Berkowski, M.; Ryba-Romanowski, W. Contribution of energy transfer process to excitation and relaxation of Yb3+ ions in Gd3(Al,Ga)5O12: Re3+, Yb3+ (RE3+ = Tm3+, Er3+, Ho3+, Pr3+). J. Lumin. 2019, 211, 54–61. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, D.; Sing, T. Sm3+ and Gd3+ Co-doped lead phosphate glasses for γ-rays shielding and sensing. J. Lumin. 2019, 209, 74–88. [Google Scholar] [CrossRef]
- Khan, I.; Rooh, G.; Rajaramakrishna, R.; Sirsittipokakun, N.; Kim, H.J.; Wondeeying, C.; Kaewkhao, J. Development of Eu3+ doped Li2O–BaO–GdF3–SiO2 oxyfluoride glass for efficient energy transfer from Gd3+ to Eu3+ in red emission solid state device application. J. Lumin. 2018, 203, 515–524. [Google Scholar] [CrossRef]
- Fan, B.; Qi, S.; Zhao, W.; Li, S.; An, S. Photoluminescence properties and energy transfer of red phosphors Y2P4O13:Gd3+, Eu3+. J. Lumin. 2018, 196, 520–524. [Google Scholar] [CrossRef]
- Gupta, P.; Bedyal, A.K.; Kumar, V.; Khajuria, Y.; Sharma, V.; Ntwaeaborwa, O.M.; Swart, H.C. Energy transfer mechanism from Gd3+ to Sm3+ in K3Gd(PO4)2: Sm3+ phosphor. Mater. Res. Express 2015, 2, 076202. [Google Scholar] [CrossRef]
- Wantana, N.; Kaewjaeng, S.; Kothan, S.; Kim, H.J.; Kaewkhao, J. Energy transfer from Gd3+ to Sm3+ and luminescence characteristics of CaO–Gd2O3–SiO2–B2O3 scintillating glasses. J. Lumin. 2017, 181, 382–386. [Google Scholar] [CrossRef]
- Liu, C.; Liu, J.; Lu, S.; Chen, B.; Zhang, J. Energy migration and transfer of Tm3+-Gd3+-Dy3+ system in NaGdF4 under VUV and UV excitations. J. Lumin. 2007, 122, 970–972. [Google Scholar] [CrossRef]
- Reisfeld, R.; Greenberg, E.; Biron, E. Energy transfer between Gd3+ and Sm3+. The effect of Gd3+ on quenching of Sm3+ and intensity parameters of Sm3+ in borate glasses. J. Solid State Chem. 1974, 9, 224–233. [Google Scholar] [CrossRef]
Contents (ppm) | |||||||
Y | La + Lu | Ce | Pr | Nd | Sm | Eu | Gd |
>2000 | >2000 | >2000 | 1174 | >2000 | 1034 | 136 | 1265 |
Contents (ppm) | |||||||
Tb | Dy | Ho | Er | Tm | Yb | Mn | Fe |
221 | 1419 | 282 | 772 | 93 | 458 | 1454 | <2000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czaja, M.; Lisiecki, R. Luminescence of Agrellite Specimen from the Kipawa River Locality. Minerals 2019, 9, 752. https://doi.org/10.3390/min9120752
Czaja M, Lisiecki R. Luminescence of Agrellite Specimen from the Kipawa River Locality. Minerals. 2019; 9(12):752. https://doi.org/10.3390/min9120752
Chicago/Turabian StyleCzaja, Maria, and Radosław Lisiecki. 2019. "Luminescence of Agrellite Specimen from the Kipawa River Locality" Minerals 9, no. 12: 752. https://doi.org/10.3390/min9120752
APA StyleCzaja, M., & Lisiecki, R. (2019). Luminescence of Agrellite Specimen from the Kipawa River Locality. Minerals, 9(12), 752. https://doi.org/10.3390/min9120752