The Chemical Evolution from Older (323–318 Ma) towards Younger Highly Evolved Tin Granites (315–314 Ma)—Sources and Metal Enrichment in Variscan Granites of the Western Erzgebirge (Central European Variscides, Germany)
Abstract
:1. Introduction
2. Regional Geology and Previous Geochemistry
3. Samples and Analytical Methods
3.1. Samples
3.2. Bulk Rock Geochemistry
3.3. Bulk Rock Nd Isotope Ratios
3.4. Zircon Geochemistry: Hf Isotope Ratios, O Isotope Ratios, Trace Elements
4. Results
4.1. Bulk Rock Geochemistry
4.2. Zircon Geochemistry
5. Discussion
5.1. Identification of Source Rocks
5.2. Fractional Crystallization and Mixing
5.3. Effect of Greisenization on Geochemistry
5.3.1. Bulk Rock Geochemistry
5.3.2. Zircon Geochemistry
5.4. Factors Necessary for Enrichment of Sn and W to Ore Concentrations
5.4.1. Source Enrichment
5.4.2. Enrichment During the Geochemical Evolution of Variscan Granites
5.4.3. The Role of Hydrothermal Processes for Enrichment
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Breiter, K.; Förster, H.J.; Seltmann, R. Variscan silicic magmatism and related tin-tungsten mineralization in the Erzgebirge-Slavkovsky les metallogenic province. Mineral. Depos. 1999, 34, 505–521. [Google Scholar] [CrossRef]
- Chappell, B.W.; Hine, R. The Cornubian Batholith: An example of magmatic fractionation on a crustal scale. Resour. Geol. 2006, 56, 203–244. [Google Scholar] [CrossRef]
- Breiter, K.; Svojtka, M.; Ackerman, L.; Švecova, K. Trace element composition of quartz from the Variscan Altenberg-Teplice caldera (Krušneé hory/Erzgebirge Mts, Czech Republic/Germany): Insights into the volcano-plutonic complex evolution. Chem. Geol. 2012, 326–327, 38–50. [Google Scholar]
- Förster, H.J.; Tischendorf, G.; Trumbull, R.B.; Gottesmann, B. Late-Collisional granites in the Variscan Erzgebirge, Germany. J. Petrol. 1999, 40, 1613–1645. [Google Scholar] [CrossRef]
- Förster, H.J.; Romer, R.L.; Gottesmann, B.; Tischendorf, G.; Rhede, D. Are the granites of the Aue-Schwarzenberg Zone (Erzgebirge, Germany) a major source for metalliferous ore deposits? A geochemical, Sr-Nd-Pb isotopic, and geochronological study. J. Mineral. Geochem. 2009, 186, 163–184. [Google Scholar] [CrossRef]
- Romer, R.L.; Kroner, U. Sediment and weathering control on the distribution of Paleozoic magmatic tin-tungsten mineralization. Mineral. Depos. 2015, 50, 327–338. [Google Scholar] [CrossRef]
- Wolf, M.; Romer, R.L.; Franz, L.; Lopez-Moro, F.J. Tin in granitic melts: The role of melting temperature and protolith composition. Lithos 2018, 310–311, 20–30. [Google Scholar] [CrossRef]
- Kröner, A.; Willner, A.P.; Hegner, E.; Frischbutter, A.; Hofmann, J.; Bergner, R. Latest Precambrian (Cadomian) zircon ages, Nd isotopic systematics and p-T evolution of granitoid orthogneisses of the Erzgebirge, Saxony and Czech Republic. Geol. Rundsch. 1995, 84, 437–456. [Google Scholar] [CrossRef]
- Schmädicke, E.; Mezger, K.; Cosca, M.A.; Okrusch, M. Variscan Sm-Nd and Ar-Ar ages of eclogite facies rocks from the Erzgebirge, Bohemian massif. J. Metamorph. Geol. 1995, 13, 537–552. [Google Scholar] [CrossRef]
- Schmädicke, E.; Will, T.M.; Ling, X.; Li, X.-H.; Li, Q.-L. Rare peak and ubiquitous post-peak zircon in eclogite: Constraints for the timing of UHP and HP metamorphism in Erzgebirge, Germany. Lithos 2018, 322, 250–267. [Google Scholar] [CrossRef]
- Willner, A.P.; Rötzler, K.; Maresch, W.V. Pressure-Temperature and fluid evolution of quartzo-feldspathic metamorphic rocks with a relic high-pressure, granulite-facies history from the Central Erzgebirge (Saxony, Germany). J. Petrol. 1997, 38, 307–336. [Google Scholar] [CrossRef]
- Mingram, B.; Kröner, A.; Hegner, E.; Krentz, O. Zircon ages, geochemistry, and Nd isotopic systematics of pre-Variscan orthogneisses from the Erzgebirge, Saxony (Germany) and geodynamic interpretation. Int. J. Earth Sci. 2004, 9, 706–727. [Google Scholar] [CrossRef]
- Massonne, H.J.; Kennedy, A.; Nasdala, L.; Theye, Z. Dating of zircon and monazite from diamondiferous quartzofeldspathic rocks of the Saxonian Erzgebirge—Hints at burial and exhumation velocities. Min. Mag. 2007, 71, 371–389. [Google Scholar] [CrossRef] [Green Version]
- Tichomirowa, M.; Berger, H.J.; Koch, E.A.; Belyatski, B.; Götze, J.; Kempe, U.; Nasdala, L.; Schaltegger, U. Zircon ages of high-grade gneisses in the Eastern Erzgebirge (Central European Variscides)—Constraints on origin of the rocks and Precambrian to Ordovician magmatic events in the Variscan foldbelt. Lithos 2001, 56, 303–332. [Google Scholar] [CrossRef]
- Tichomirowa, M.; Whitehouse, M.J.; Nasdala, L. Resorption, growth, solid state recrystallisation, and annealing of granulite facies zircon—A case study from the Central Erzgebirge, Bohemian Massif. Lithos 2005, 82, 25–50. [Google Scholar] [CrossRef]
- Tichomirowa, M.; Sergeev, S.; Berger, H.J.; Leonhardt, D. Inferring protoliths of high-grade metamorphic gneisses of the Erzgebirge using zirconology, geochemistry and comparison with lower-grade rocks from Lusatia (Saxothuringia, Germany). Contrib. Mineral. Petrol. 2012, 164, 375–396. [Google Scholar] [CrossRef]
- Tichomirowa, M.; Whitehouse, M.; Gerdes, A.; Schulz, B. Zircon (Hf, O isotopes) as melt indicator: Melt infiltration and abundant new zircon growth within melt rich layers of granulite-facies lenses versus solid-state recrystallization in hosting amphibolite-facies gneisses (central Erzgebirge, Bohemian Massif). Lithos 2018, 302–303, 65–68. [Google Scholar] [CrossRef]
- Tichomirowa, M.; Käßner, A.; Sperner, B.; Lapp, M.; Leonhardt, D.; Linnemann, U.; Münker, C.; Ovtcharova, M.; Pfänder, J.A.; Schaltegger, U.; et al. Dating multiply overprinted granites: The effect of protracted magmatism and fluid flow on dating systems (zircon U-Pb: SHRIMP/SIMS, LA-ICP-MS, CA-ID-TIMS; and Rb-Sr, Ar-Ar)—Granites from the Western Erzgebirge (Bohemian Massif, Germany). Chem. Geol. 2019, 519, 11–38. [Google Scholar] [CrossRef]
- Rötzler, K.; Plessen, B. The Erzgebirge: A pile of ultrahigh- to low-pressure nappes of Early Paleozoic rocks and their Cadomian basement. In Pre-Mesozoic Geology of Saxo-Thuringia; Linnemann, U., Romer, R.L., Eds.; Schweizerbartsche Verlagsbuchhandlung: Stuttgart, Germany, 2010; pp. 253–270. [Google Scholar]
- Schmädicke, E. Quartz pseudomorphs after coesite in eclogites from the Saxonian Erzgebirge. Eur. J. Mineral. 1991, 3, 231–238. [Google Scholar] [CrossRef]
- Massonne, H.J. A comparison of evolution of diamondiferous quartz-rich rocks from the Saxonian Erzgebirge and the Kokchetav Massif: Are so-called diamondiferous gneisses magmatic rocks? Earth Planet. Sci. Lett. 2003, 216, 347–364. [Google Scholar] [CrossRef]
- Kröner, A.; Willner, A.P. Time of formation and peak of Variscan HP-HT metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, Germany. Contrib. Mineral. Petrol. 1998, 132, 1–20. [Google Scholar] [CrossRef]
- Tichomirowa, M.; Köhler, R. Discrimination of protolithic versus metamorphic zircon ages in eclogites: Constraints from the Erzgebirge metamorphic core complex (Germany). Lithos 2013, 177, 436–450. [Google Scholar] [CrossRef]
- Rötzler, K.; Schumacher, R.; Maresch, W.V.; Willner, A.P. Characterization and geodynamic implications of contrasting metamorphic evolution in juxtaposed high-pressure units of the Western Erzgebirge (Saxony, Germany). Europ. J. Mineral. 1998, 10, 261–280. [Google Scholar] [CrossRef] [Green Version]
- Kroner, U.; Görz, I. Variscan assemblage of the allochthonous domain of the Saxo-Thuringian Zone—A tectonic model. In Pre-Mesozoic Geology of Saxo-Thuringia; Linnemann, U., Romer, R.L., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2010; pp. 271–286. [Google Scholar]
- Thomas, R.; Klemm, W. Microthermometric study of silicate melt inclusions in Variscan granites from SE Germany: Volatile contents and entrapment conditions. J. Petrol. 1997, 38, 1753–1765. [Google Scholar] [CrossRef]
- Brause, H.; Eilers, H.; Baumgart, G. Gravimetrische Übersichtskarte des Freistaates Sachsen 1:400,000, Karte der BOUGER-Schwerestörung; Sächsisches Landesamt für Umwelt und Geologie: Dresden, Germany, 1993. [Google Scholar]
- Baumann, L.; Kuschka, E.; Seifert, T. Lagerstätten des Erzgebirges; Enke im Georg Thieme Verlag: Stuttgart, Germany, 2000; p. 300. [Google Scholar]
- Laube, G. Geologie des Böhmischen Erzgebirges. Comm. Verl. Fr. Rivnac, Prague. 1887. Available online: https://www.zobodat.at/pdf/Archiv-Boehmen_6_0001-0259.pdf (accessed on 10 December 2019).
- Lange, H.; Tischendorf, G.; Pälchen, W.; Klemm, I.; Ossenkopf, W. Zur Petrographie und Geochemie der Granite des Erzgebirges. Geologie 1972, 21, 457–489. [Google Scholar]
- Tischendorf, G.; Geisler, M.; Gerstenberger, H.; Budzinski, H.; Vogler, P. Geochemistry of Variscan granites of the Westerzgebirge Vogtland region—An example of tin deposit-generating granites. Chemie der Erde 1987, 46, 213–235. [Google Scholar]
- Förster, H.J. Die Variszischen Granite des Erzgebirges und Ihre Akzessorischen Minerale. Habilitation Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 1998. [Google Scholar]
- Tischendorf, G. Silicic Magmatism and Metallogenesis of the Erzgebirge; Central Institute for Physics of the Earth: Potsdam, Germany, 1989; p. 316. [Google Scholar]
- Kempe, U.; Bombach, K.; Matukov, D.; Schlothauer, T.; Hutschenreuter, J.; Wolf, D.; Sergeev, S. Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralisation in the Eibenstock granite, Erzgebirge, Germany: Considering effects of zircon alteration. Mineral. Depos. 2004, 39, 646–669. [Google Scholar] [CrossRef]
- Förster, H.J.; Gottesmann, B.; Tischendorf, G.; Siebel, W.; Rhede, D.; Seltmann, R.; Wasternack, J. Permo-Carboniferous subvolcanic rhyolitic dikes in the western Erzgebirge/Vogtland, Germany: A record of source heterogeneity of post-collisional felsic magmatism. J. Mineral. Geochem. 2007, 183, 123–147. [Google Scholar] [CrossRef]
- Förster, H.J.; Romer, R.L. Carboniferous magmatism. In Pre-Mesozoic Geology of Saxo-Thuringia; Linnemann, U., Romer, R.L., Eds.; Schweizerbartsche Verlagsbuchhandlung: Stuttgart, Germany, 2010; pp. 287–310. [Google Scholar]
- Förster, H.J.; Tischendorf, G.; Seltmann, R.; Gottesmann, B. Die variszischen Granite des Erzgebirges: Neue Aspekte aus stofflicher Sicht. Z. Geol. Wiss. 1998, 26, 31–60. [Google Scholar]
- Förster, H.J.; Tischendorf, G. Compositional heterogeneity of silicic magmatic rocks from the German Variscides. Z. Geol. Wiss. 1996, 24, 467–482. [Google Scholar]
- Breiter, K. Nearly contemporaneous evolution of the A- and S-type fractionated granites in the Krušné hory/Erzgebirge Mts., Central Europe. Lithos 2012, 151, 105–121. [Google Scholar] [CrossRef]
- Stemprok, M.; Dolejš, D.; Müller, A.; Seltmann, R. Textural evidence of magma decompression, devolatilization and disequilibrium quenching: An example from the Western Krušné hory/Erzgebirge granite pluton. Contrib. Mineral. Petrol. 2008, 155, 93–109. [Google Scholar] [CrossRef]
- Thomas, R.; Davidson, P.; Rhede, D.; Leh, M. The miarolitic pegmatites from the Königshain: A contribution to understanding the genesis of pegmatites. Contrib. Mineral. Petrol. 2009, 157, 505–523. [Google Scholar] [CrossRef] [Green Version]
- Webster, J.D.; Thomas, R.; Rhede, D.; Förster, H.J.; Seltmann, R. Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids. Geochim. Cosmochim. Acta 1997, 61, 2589–2604. [Google Scholar] [CrossRef]
- Webster, J.; Thomas, R.; Förster, H.J.; Seltmann, R.; Tappen, C. Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Mineral. Depos. 2004, 39, 452–472. [Google Scholar] [CrossRef]
- Thomas, R.; Förster, H.J.; Rickers, K.; Webster, J.D. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: A melt/fluid inclusion study. Contrib. Mineral. Petrol. 2005, 148, 582–601. [Google Scholar] [CrossRef]
- Dolejš, D.; Baker, D.R. Thermodynamic analysis of the system Na2O-K2O-CaO-Al2O3-SiO2-H2O-F2O-1: Stability of fluorine-bearing minerals in felsic igneous suites. Contrib. Mineral. Petrol. 2004, 146, 762–778. [Google Scholar] [CrossRef]
- Müller, A.; Breiter, K.; Seltmann, R.; Pécskay, Z. Quartz and feldspar zoning in the eastern Erzgebirge volcano-plutonic complex (Germany, Czech Republic): Evidence of multiple magma mixing. Lithos 2005, 80, 201–227. [Google Scholar] [CrossRef]
- Romer, R.L.; Meixner, A.; Förster, H.J. Lithium and boron in late-orogenic granites—Isotopic fingerprints for the source of crustal melts? Geochim. Cosmochim. Acta 2014, 131, 98–114. [Google Scholar] [CrossRef]
- Stemprok, M.; Holub, F.V.; Novak, J.K. Multiple magmatic pulses of the Eastern Volcano-Plutonic Complex, Krušné hory/Erzgebirge batholith, and their phosphorus contents. Bull. Geosci. 2003, 78, 277–296. [Google Scholar]
- DePaolo, D.J. Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic. Nature 1981, 291, 193–196. [Google Scholar] [CrossRef]
- Gerdes, A.; Zeh, A. Combined U-Pb and Hf isotope LA-(MC)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet. Sci. Lett. 2006, 249, 47–61. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.A.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Whitehouse, M.J.; Nemchin, A.A. High precision, high accuracy measurement of oxygen isotopes in a large lunar zircon by SIMS. Chem. Geol. 2009, 261, 32–42. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Hanchar, J.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L. Further characterization of the 91500 zircon crystal. Geostand. Geoanal. Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
- Hinton, R.W.; Upton, B.G.J. The chemistry of zircon: Variations within and between large crystals from syenites and alkali basalt xenoliths. Geochim. Cosmochim. Acta 1991, 55, 3278–3302. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Jung, S.; Pfänder, J.A. Source composition and melting temperatures of orogenic granitoids: Constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. Eur. J. Mineral. 2007, 19, 859–870. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 2006, 151, 413–433. [Google Scholar] [CrossRef]
- Chen, R.-X.; Zheng, Y.-F. Metamorphic zirconology of continental subduction zones. J. Asian Earth Sci. 2017, 145, 149–176. [Google Scholar] [CrossRef]
- Linnemann, U.; Gerdes, A.; Hofmann, M.; Marko, L. The Cadomian orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton—Constraints from U-Pb zircon ages and Hf isotopes (Schwarzburg Antiform, Germany). Precamb. Res. 2014, 244, 236–278. [Google Scholar] [CrossRef]
- Farina, E.; Stevens, G.; Gerdes, A.; Frei, D. Small-scale Hf isotopic variability in the Peninsula pluton (South Africa): The processes that control inheritance of source 176Hf/177Hf diversity in S-type granites. Contrib. Mineral. Petrol. 2014, 168, 1065. [Google Scholar] [CrossRef]
- Bindemann, I.N.; Bekker, A.; Zakharov, D.O. Oxygen isotope persppective on crustal evolution on early Earth: A record of Precambrian shales with emphasis on Paleoproterozoic glaciations and Great Oxygenation Event. Earth Planet. Sci. Lett. 2016, 437, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Massonne, H.J. Pre-conference field trip: Erzgebirge Mountains, Germany; 4–5 August 2011. In Proceedings of the 9th International Eclogite Conference 2011, 6–9 August 2011 Marianzke Lazne, Czech Republic, GeoLines 23, Prague, Czech Republic. Faryad, S.W., Medaris, L.G., Eds.; pp. 29–59. Available online: http://geolines.gli.cas.cz/index.php?id=volume23 (accessed on 10 December 2019).
- Tichomirowa, M.; Leonhardt, D. New age determinations (Pb/Pb zircon evaporation, Rb/Sr) on the granites from Aue-Schwarzenberg and Eibenstock, Western Erzgebirge, Germany. Z. Geol. Wiss. 2010, 38, 99–123. [Google Scholar]
- Mingram, B.; Rötzler, K. Geochemische, petrologische und geochronologische Untersuchungen im Erzgebirgskristrallin—Rekonstruktion eines Krustenstapels. Schriftenr. Geowiss. 1999, 9, 80. [Google Scholar]
- Nägler, T.F.; Schäfer, H.J.; Gebauer, D. Evolution of the Western European continental crust: Implications from Nd and Pb isotopes in Iberian sediments. Chem. Geol. 1995, 121, 345–357. [Google Scholar] [CrossRef]
- Simien, F.; Mattauer, M.; Allegre, C.J. Nd isotopes in the stratigraphical record of the Montagne Noire (French Massif Central): No significant Palaeozoic juvenile inputs, and pre-Hercynian paleogeography. J. Geol. 1999, 107, 87–97. [Google Scholar] [CrossRef]
- Vila, M.; Pin, C. Geochemistry and Nd isotope signature of the Collserola Range Palaeozoic succesion (NE Iberia): Gondwana heritage and pre-Mesozoic geodynamic evolution. Geol. Mag. 2016, 153, 643–662. [Google Scholar] [CrossRef]
- Clemens, J.D. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Sci. Rev. 2003, 61, 1–18. [Google Scholar] [CrossRef]
- Wang, L.X.; Ma, C.Q.; Zhang, C.; Zhang, J.Y.; Marks, M.A.W. Genesis of leucogranite by prolonged fractional crystallization: A case study of the Mufushan complex, South China. Lithos 2014, 206–207, 147–163. [Google Scholar] [CrossRef]
- Clemens, J.D.; Stevens, G. What controls chemical variation in granitic magmas? Lithos 2012, 134–135, 317–329. [Google Scholar] [CrossRef]
- Villaros, A.; Stevens, G.; Moyen, J.F.; Buick, I.S. The trace element composition of S-type granites: Evidence for disequilibrium melting and accessory phase entrainment in the source. Contrib. Mineral. Petrol. 2009, 158, 543–561. [Google Scholar] [CrossRef]
- Clemens, J.D. Element concentrations in granitic magmas: Ghost of textures past? J. Geol. Soc. Lond. 2014, 171, 13–19. [Google Scholar] [CrossRef]
- Boehnke, P.; Bruce-Watson, E.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon saturation re-visited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
- Pupin, J.P. Zircon and granite petrology. Contrib. Mineral. Petrol. 1980, 73, 207–220. [Google Scholar] [CrossRef]
- Schiller, D.; Finger, F. Application of Ti-in-zircon thermometry to granite studies: Problems and possible solutions. Contrib. Mineral. Petrol. 2019, 174, 51. [Google Scholar] [CrossRef] [Green Version]
- Lackey, J.S.; Valley, J.W.; Chen, J.H.; Stockli, D.F. Dynamic Magma Systems, Crustal Recycling, and Alteration in the Central Sierra Nevada Batholith: The Oxygen Isotope Record. J. Petrol. 2008, 49, 1397–1426. [Google Scholar] [CrossRef] [Green Version]
- Chappell, B.W.; White, A.J.R. Two contrasting granite types. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Werner, O.; Lippolt, H.J. White mica 40Ar/39Ar ages of the Erzgebirge metamorphic rocks: Simulating the chronological results by a model of Variscan crustal imbrication. In Orogenic Processes: Quantification and Modelling in the Variscan Belt; Franke, W., Haak, V., Oncken, O., Tanner, D., Eds.; Geological Society London Special Publications: London, UK, 2000; pp. 323–336. [Google Scholar]
- Zack, T.; Luvizottow, G.L. Application of rutile thermometry to eclogites. Mineral. Petrol. 2006, 88, 69–85. [Google Scholar] [CrossRef]
- Wang, R.C.; Xie, L.; Chen, J.; Yu, A.; Wang, L.; Lu, J.; Zhu, J. Tin-carrier minerals in metaluminous granites of the western Nanling Range (southern China): Constraints on processes of tin mineralization in oxidized granites. J. Asian Earth Sci. 2013, 74, 361–372. [Google Scholar] [CrossRef]
- Carocci, E.; Marignac, C.; Cathelineau, M.; Truche, L.; Andreï Lecomte, A.; Pinto, F. Rutile from Panasqueira (Central Portugal): An Excellent Pathfinder for Wolframite Deposition. Minerals 2019, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Luvizotto, G.L.; Zack, T.; Meyer, H.P.; Ludwig, T.; Triebold, S.; Kronz, A.; Münker, C.; Stockli, D.F.; Prowatke, A.; Klemme, S.; et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem. Geol. 2009, 261, 346–369. [Google Scholar] [CrossRef]
- Neves, L.J.P.F. Trace element content and partitioning between biotite and muscovite of granitic rocks: A study in the Viseu region (Central Portugal). Eur. J. Mineral. 1997, 9, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Tischendorf, G.; Förster, H.J.; Gottesmann, B. Minor- and trace-element composition of trioctahedral micas: A review. Mineral. Mag. 2001, 65, 249–276. [Google Scholar] [CrossRef]
- Du Bray, E.A. Garnet compositions and their use as indicators of peraluminous granitoid petrogenesis—Southeastern Arabian Shield. Contrib. Mineral. Petrol. 1988, 100, 205–212. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of elements: Meteoric and solar. Geochim. Cosmochim. Acta 1989, 53, 44–451. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 4, pp. 1–51. [Google Scholar]
Sample Name | Location Name | Latitude (N) | Longitude (E) | Rock Description | Bulk Rock Geochemistry | 143Nd/144Nd Bulk Rock | 87Sr/86Sr Bulk Rock * | δ18O of Zircon | 176Hf/177Hf of Zircon | Trace Elements in Zircon |
---|---|---|---|---|---|---|---|---|---|---|
(a) granites from Aue-Schwarzenberg (ASB, Western Erzgebirge) | ||||||||||
ASB 664 | Niederpfannenstiel | 12°43′20.01″ | 50°35′15.60″ | Medium grained (granite Aue) | X | |||||
ASB 665 | Aue | 12°42′2.07″ | 50°35′40.02″ | Medium grained porphyritic | X | X | X | X | ||
ASB 666 | Auerhammer | 12°39′59.92″ | 50°35′32.00″ | Coarse grained porphyritic | X | X | X | X | X | |
ASB 667 | Schalenberg, Lauter | 12°43′44.11″ | 50°33′53.24″ | Fine grained (granite Lauter) | X | |||||
ASB 668 | Lauter | 12°44′7.70″ | 50°34′3.77″ | Medium grained porphyritic | X | X | X | X | ||
ASB 669 | Lauterer Förstel | 12°45′23.15″ | 50°33′15.38″ | Fine grained (granite Neuwelt) | X | |||||
ASB 670 | Schwarzenberg | 12°47′0.49″ | 50°32′1.59″ | Medium grained | X | X | X | X | X | |
(b) granites from the Bergen pluton (BER, Western Erzgebirge) | ||||||||||
BER 788 | quarry Streuberg | 12°15′37.46″ | 50°28′13.11″ | Coarse-grained porphyritic | X | X | X | X | ||
BER 789 | quarry NW Trieb | 12°17′11.93″ | 50°29′18.27″ | medium grained | X | X | X | X | ||
BER 790 | quarry SE Trieb | 12°18′26.78″ | 50°28′41.18″ | fine grained | X | X | X | X | ||
BER 791 | quarry Kuxenberghäuser | 12°20′37.46″ | 50°31′45.30″ | medium grained | X | X | X | X | ||
(c) granites from the Kirchberg pluton (KIB, Western Erzgebirge) | ||||||||||
KIB 768 | Giegengrün | 12°30′46.87″ | 50°35′22.50″ | fine grained (slightly porphyritic) | X | |||||
KIB 770 | Crinitzberg | 12°30′35.93″ | 50°33′47.88″ | coarse grained porphyritic | X | |||||
KIB 786 | Obercrinitz | 12°29′25.93″ | 50°33′59.35″ | fine grained | X | X | X | X | ||
KIB 794 | Leutersbach | 12°32′0.06″ | 50°36′28.20″ | fine grained (slightly porphyritic) | X | X | X | X | X | |
KIB 796 | E Saupersdorf | 12°33′44.07″ | 50°36′48.75″ | coarse grained porphyritic | X | X | X | X | X | |
KIB 837 | Schelmberg | 12°32′9.30″ | 50°38′22.83″ | coarse grained porphyritic | X | |||||
KIB 839 | SW Giegengrün | 12°30′42.22″ | 50°34′52.75″ | coarse grained porphyritic | X | |||||
(d) granites from the Eibenstock pluton (EIB, Western Erzgebirge) | ||||||||||
EIB 612 | Falkenstein | 12°39′56.10″ | 50°32′12.65″ | fine grained greisen | X | X | X | X | X | X |
EIB 709 | Kamelfelsen | 12°37′23.18″ | 50°28′56.05″ | coarse grained porphyritic (type Eibenstock) | X | |||||
EIB 710 | Kamelfelsen | 12°37′25.23″ | 50°28′57.66″ | fine grained | X | |||||
EIB 712 | Weiterswiese | 12°35′54.99″ | 50°25′41.67″ | medium grained granite (type Blauenthal) | X | X | X | X | ||
EIB 713 | Weiterswiese | 12°35′54.99″ | 50°25′41.67″ | fine grained greisen | X | |||||
EIB 714 | quarry Seerbächel | 12°34′24.89″ | 50°24′25.09″ | medium grained porphyritic (type Walfischkopf) | X | X | ||||
EIB 718 | Krinitzberg | 12°34′4.82″ | 50°29′37.52″ | fine grained porphyritic (type Krinitzberg) | X | X | X | X | X | |
EIB 719 | Walfischkopf | 12°33′30.57″ | 50°29′58.73″ | fine grained porphyritic (type Walfischkopf) | X | X | X | X | X | X |
EIB 551 | Rabenberg | 12°44′11.22″ | 50°28′11.11″ | fine grained | X | |||||
EIB 552 | Erlabrunn | 12°43′30.24″ | 50°28′17.03″ | coarse grained porphyritic (type Eibenstock) | X | |||||
EIB 576 | Pechtute/Bockau | 12°41′11.44″ | 50°31′22.66″ | fine to medium grained porphyritic | X | |||||
EIB 711 | Schöne Aussicht/Wildenthal | 12°37′50.52″ | 50°26′25.73″ | coarse grained porphyritic (type Eibenstock) | X | |||||
EIB 715 | Blechhammer | 12°33′49.70″ | 50°26′59.60″ | fine grained | X | |||||
EIB 716 | Tannenberg | 12°33′28.72″ | 50°27′47.49″ | medium grained granite (type Blauenthal) | X | |||||
EIB 742 | Schönheide | 12°31′3.37″ | 50°28′26.19″ | fine-grained | X | |||||
EIB 771 | Steinberg | 12°38′5.50″ | 50°32′28.12″ | fine grained (slightly porphyritic) | X | |||||
EIB 772 | Burkhardtsgrün | 12°38′50.63″ | 50°32′22.53″ | medium grained porphyritic (type Walfischkopf) | X | |||||
EIB 773 | quarry Blauenthal | 12°37′58.74″ | 50°31′0.45″ | medium grained granite (type Blauenthal) | X |
Sample Number | Sm ppm | Nd ppm | 147Sm/144Nd | 143Nd/144Nd | 2 SE | εNd (320 Ma) | T DM (Ma) | 87Sr/86Sr i * |
---|---|---|---|---|---|---|---|---|
ASB 665 | 4.8 | 23.7 | 0.1224 | 0.512289 | 0.000006 | −3.8 | 1358 | |
ASB 666 | 5.7 | 33.4 | 0.1032 | 0.512271 | 0.000014 | −3.3 | 1158 | 0.7071 |
ASB 668 | 6.6 | 39.1 | 0.1020 | 0.512288 | 0.000008 | −3.0 | 1124 | |
ASB 670 | 2.1 | 9.5 | 0.1336 | 0.512283 | 0.000008 | −4.3 | 1546 | 0.7091 |
mean | −3.6 | 1296 | 0.7081 | |||||
BER 788 | 5.5 | 29.5 | 0.1127 | 0.512293 | 0.000030 | −3.3 | 1229 | |
BER 789 | 2.2 | 11.5 | 0.1156 | 0.512279 | 0.000003 | −3.7 | 1284 | |
BER 790 | 0.7 | 2.1 | 0.2015 | 0.512421 | 0.000006 | 4.4 | (6249) | |
BER 791 | 2.3 | 11.9 | 0.1168 | 0.512279 | 0.000003 | −3.7 | 1299 | |
mean | −3.8 | 1271 | ||||||
KIB 786 | 4.2 | 20.2 | 0.1257 | 0.512319 | 0.000004 | −3.3 | 1357 | |
KIB 794 | 6.5 | 32.2 | 0.1220 | 0.512308 | 0.000009 | −3.4 | 1323 | 0.7064 |
KIB 796 | 7.3 | 37.0 | 0.1193 | 0.512269 | 0.000006 | −4.0 | 1347 | 0.7076 |
mean | −3.6 | 1342 | 0.7070 | |||||
EIB 612 | 0.7 | 2.2 | 0.1895 | 0.512466 | 0.000004 | −3.1 | (3510) | (0.7198) |
EIB 712 | 1.8 | 6.9 | 0.1577 | 0.512334 | 0.000004 | −4.3 | 2024 | |
EIB 718 | 4.1 | 18.2 | 0.1362 | 0.512223 | 0.000003 | −5.6 | 1704 | 0.7090 |
EIB 719 | 4.2 | 17.4 | 0.1459 | 0.512278 | 0.000003 | −5.0 | 1815 | 0.7104 |
mean | 4.5 | 1848 | 0.7097 |
Spot | CL Pattern | Ca | Ti | Sr | Y | Nb | Ba | La | Ce | Pr | Nd | Sm | Eu | Gd | Dy | Er | Yb | Lu | Hf | Th | U | T (°C) [58] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
sample EIB 612 (greisen) | ||||||||||||||||||||||
1a | 57.1 | 23.5 | 0.9 | 1418 | 18.5 | 2.4 | 0.4 | 25.2 | 1.1 | 8.6 | 10.2 | 0.3 | 35.2 | 131 | 242 | 419 | 65.3 | 8806 | 196 | 363 | 822 | |
1b | black | 8929 | 561 | 312 | 25,831 | 2604 | 3836 | 89.6 | 2875 | 327 | 2057 | 1654 | 84.4 | 2278 | 4116 | 2618 | 4579 | 610 | 17,864 | 21,134 | 25,298 | 1285 |
2a | 59.4 | 15.0 | 1.4 | 2302 | 14.2 | 3.7 | 0.5 | 14.6 | 1.2 | 11.1 | 16.8 | 0.6 | 56.6 | 219 | 386 | 661 | 99.1 | 8950 | 231 | 1134 | 778 | |
2b | black, porous | 310 | 7.9 | 11.6 | 2045 | 27.4 | 64.7 | 2.9 | 31.1 | 5.4 | 38.0 | 46.3 | 3.0 | 86.3 | 241 | 275 | 822 | 125 | 25,610 | 121 | 6387 | 721 |
4a | 14.5 | 15.3 | 0.7 | 2001 | 7.1 | 1.2 | 0.1 | 12.4 | 0.2 | 3.4 | 9.7 | 0.3 | 44.1 | 182 | 328 | 514 | 77.8 | 9658 | 233 | 501 | 780 | |
4b | bright + black | 95.6 | 15.2 | 1.2 | 2220 | 8.5 | 4.0 | 1.2 | 16.9 | 1.7 | 13.9 | 16.0 | 0.5 | 52.0 | 197 | 372 | 614 | 92.1 | 9197 | 265 | 812 | 779 |
5a | 170 | 6.8 | 5.6 | 940 | 77.2 | 69.6 | 3.5 | 55.7 | 7.1 | 39.7 | 24.0 | 1.2 | 43.7 | 106 | 134 | 313 | 48.7 | 13,185 | 385 | 1487 | 708 | |
5b | black + porous | 4772 | 104 | 143 | 11,769 | 784 | 1214 | 137 | 2467 | 317 | 1759 | 925 | 39.8 | 1188 | 1699 | 1120 | 2413 | 341 | 23,168 | 2272 | 14,625 | 1000 |
6a | 208 | 16.6 | 2.7 | 2292 | 49.5 | 38.1 | 5.1 | 180.4 | 15.9 | 92.1 | 51.2 | 3.0 | 98.9 | 237 | 359 | 625 | 97.8 | 7010 | 1416 | 1909 | 787 | |
6b | black + porous | 2175 | 40.6 | 32.9 | 6610 | 230 | 499 | 58.7 | 985.2 | 135 | 715 | 330 | 16.2 | 510 | 848 | 836 | 1387 | 205 | 7605 | 5419 | 6437 | 881 |
9a | 6.3 | 22.8 | 0.5 | 1150 | 6.8 | 0.8 | 0.1 | 7.4 | 0.2 | 3.0 | 6.4 | 0.2 | 27.8 | 101 | 195 | 324 | 52.3 | 8093 | 99 | 181 | 819 | |
9b | black | 6026 | 127 | 226 | 12,463 | 528 | 1482 | 69.1 | 1566 | 226 | 1342 | 780 | 34.6 | 971 | 1522 | 1425 | 2783 | 376 | 15,856 | 2402 | 18,410 | 1027 |
12a | 63.2 | 13.0 | 2.1 | 3309 | 22.2 | 6.2 | 0.6 | 31.6 | 3.0 | 24.5 | 25.8 | 0.9 | 77.5 | 291 | 518 | 833 | 127 | 9523 | 605 | 785 | 765 | |
12b | 17.1 | 8.7 | 0.9 | 1575 | 7.3 | 1.4 | 0.3 | 6.9 | 0.7 | 5.3 | 6.5 | 0.2 | 21.5 | 126 | 259 | 475 | 74.5 | 11,457 | 64 | 817 | 729 | |
19a | 32.4 | 9.7 | 1.3 | 3925 | 10.8 | 5.4 | 1.4 | 54.6 | 4.4 | 32.9 | 28.7 | 0.7 | 108 | 373 | 671 | 1011 | 150 | 7064 | 873 | 1041 | 738 | |
19b | black | 2765 | 16.3 | 18.7 | 9287 | 77.8 | 139.7 | 59.3 | 1953 | 238 | 1546 | 835 | 28.8 | 932 | 1218 | 938 | 1282 | 177 | 17,104 | 563 | 15,227 | 786 |
20a | 16.8 | 19.9 | 1.6 | 1547 | 14.7 | 1.8 | 0.1 | 5.9 | 0.3 | 3.9 | 9.6 | 0.3 | 37.7 | 141 | 265 | 450 | 70.2 | 8494 | 183 | 332 | 806 | |
20b | black + porous | 12,689 | 565 | 684 | 32,604 | 4771 | 5935 | 108 | 1121 | 173 | 964 | 1414 | 92.9 | 2585 | 4739 | 2979 | 5641 | 700 | 29,834 | 1939 | 29,362 | 1286 |
21a | 59.9 | 24.9 | 1.6 | 3608 | 44.0 | 6.9 | 0.8 | 43.4 | 3.6 | 36.0 | 38.3 | 1.5 | 116 | 341 | 582 | 896 | 137 | 8852 | 386 | 777 | 828 | |
21b | black | 3675 | 12.8 | 43.3 | 12,107 | 133 | 213 | 26.8 | 2346 | 174 | 1307 | 976 | 50.5 | 1373 | 1976 | 1167 | 1729 | 262 | 18,430 | 1383 | 14,542 | 763 |
sample EIB 719 | ||||||||||||||||||||||
B2 | 3.7 | 20.0 | 0.9 | 2385 | 14.2 | 1.2 | 0.1 | 6.5 | 0.3 | 5.1 | 11.2 | 0.4 | 56.0 | 211 | 411 | 658 | 103 | 8861 | 187 | 466 | 806 | |
B3 | 19.8 | 21.4 | 1.0 | 2233 | 18.7 | 1.8 | 0.4 | 9.9 | 0.6 | 9.1 | 15.5 | 0.6 | 66.6 | 216 | 380 | 585 | 89.0 | 7984 | 240 | 405 | 812 | |
B6 | 1854 | 12.7 | 2.8 | 2903 | 13.2 | 1.2 | 14.4 | 45.7 | 6.0 | 34.7 | 18.5 | 0.3 | 59.0 | 243 | 519 | 901 | 141 | 9389 | 150 | 721 | 762 | |
B7 | 2.4 | 19.8 | 0.8 | 1512 | 13.7 | 0.7 | 0.1 | 6.1 | 0.1 | 2.8 | 7.2 | 0.2 | 33.6 | 133 | 263 | 447 | 69.8 | 8541 | 116 | 255 | 805 | |
B8a | 19.3 | 11.2 | 1.2 | 4606 | 14.9 | 1.5 | 2.6 | 41.4 | 2.0 | 20.2 | 30.5 | 1.0 | 126 | 429 | 750 | 1083 | 163 | 7302 | 941 | 1397 | 751 | |
B8b | black CL | 23.9 | 3.0 | 1.6 | 4998 | 11.5 | 1.4 | 0.3 | 1.3 | 0.1 | 1.1 | 5.9 | 0.1 | 48.6 | 407 | 706 | 1090 | 146 | 12,728 | 160 | 7957 | 644 |
A2 | 5.1 | 30.0 | 0.8 | 2693 | 32.4 | 1.2 | 0.2 | 31.6 | 1.0 | 14.0 | 20.2 | 5.6 | 84.5 | 258 | 448 | 733 | 114 | 7183 | 507 | 637 | 848 | |
A5 | 1.1 | 27.9 | 0.8 | 2199 | 21.8 | 1.2 | 0.2 | 27.2 | 0.9 | 12.0 | 16.5 | 4.3 | 67.0 | 207 | 358 | 591 | 93.8 | 7102 | 394 | 499 | 840 | |
A6 | 13.1 | 7.9 | 1.2 | 3100 | 16.5 | 1.0 | 0.2 | 4.5 | 0.2 | 2.2 | 6.9 | 0.2 | 43.0 | 260 | 492 | 803 | 117 | 10,628 | 133 | 1516 | 721 | |
A8 | 6.9 | 24.0 | 0.8 | 2017 | 15.4 | 0.9 | 0.2 | 7.3 | 0.3 | 5.1 | 10.3 | 0.2 | 50.1 | 187 | 345 | 560 | 88.8 | 8616 | 147 | 279 | 824 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tichomirowa, M.; Gerdes, A.; Lapp, M.; Leonhardt, D.; Whitehouse, M. The Chemical Evolution from Older (323–318 Ma) towards Younger Highly Evolved Tin Granites (315–314 Ma)—Sources and Metal Enrichment in Variscan Granites of the Western Erzgebirge (Central European Variscides, Germany). Minerals 2019, 9, 769. https://doi.org/10.3390/min9120769
Tichomirowa M, Gerdes A, Lapp M, Leonhardt D, Whitehouse M. The Chemical Evolution from Older (323–318 Ma) towards Younger Highly Evolved Tin Granites (315–314 Ma)—Sources and Metal Enrichment in Variscan Granites of the Western Erzgebirge (Central European Variscides, Germany). Minerals. 2019; 9(12):769. https://doi.org/10.3390/min9120769
Chicago/Turabian StyleTichomirowa, Marion, Axel Gerdes, Manuel Lapp, Dietmar Leonhardt, and Martin Whitehouse. 2019. "The Chemical Evolution from Older (323–318 Ma) towards Younger Highly Evolved Tin Granites (315–314 Ma)—Sources and Metal Enrichment in Variscan Granites of the Western Erzgebirge (Central European Variscides, Germany)" Minerals 9, no. 12: 769. https://doi.org/10.3390/min9120769
APA StyleTichomirowa, M., Gerdes, A., Lapp, M., Leonhardt, D., & Whitehouse, M. (2019). The Chemical Evolution from Older (323–318 Ma) towards Younger Highly Evolved Tin Granites (315–314 Ma)—Sources and Metal Enrichment in Variscan Granites of the Western Erzgebirge (Central European Variscides, Germany). Minerals, 9(12), 769. https://doi.org/10.3390/min9120769