Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece)
Abstract
1. Introduction
2. Geological Setting
3. Petrographic Features
3.1. Lherzolite
3.2. Serpentinised Harzburgite
4. Analytical Methods
5. Mineral Chemistry
5.1. Spinel-Group Minerals
5.2. Pyroxenes
5.3. Olivine
6. Geothermobarometry
7. Discussion
7.1. Alteration Features of Spinel-Group Minerals
7.2. Partial Melting of Mantle Peridotites
7.3. Evidence of Melt-Rock Reaction
7.4. Geotectonic Implications
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dilek, Y.; Eddy, C.A. The Troodos (Cyprus) and Kizildag (S. Turkey) ophiolites as structural models for slow-spreading ridge segments. J. Geol. 1992, 100, 305–322. [Google Scholar] [CrossRef]
- Pelletier, L.; Vils, F.; Kalt, A.; Gmeling, K. Li, B and Be contents of harzburgites from the Dramala Complex (Pindos Ophiolite, Greece): Evidence for a MOR-type mantle in a supra-subduction zone environment. J. Petrol. 2008, 49, 2043–2080. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 2011, 123, 387–411. [Google Scholar] [CrossRef]
- Ahmed, A.H. Highly depleted harzburgite-dunite-chromitite complexes from the Neoproterozoic ophiolite, south Eastern Desert, Egypt: a possible recycled upper mantle lithosphere. Precambrian Res. 2013, 233, 173–192. [Google Scholar] [CrossRef]
- Dai, J.; Wang, C.; Polat, A.; Santosh, M.; Li, Y.; Ge, Y. Rapid forearc spreading between 130 and 120 Ma: evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos 2013, 172–173, 1–16. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolites and their origins. Elements 2014, 10, 93–100. [Google Scholar] [CrossRef]
- Ribeiro, A.; Munhá, J.; Fonseca, P.E.; Araújo, A.; Pedro, J.C.; Mateus, A.; Tassinari, C.; Machado, C.; Jesus, A. Variscan ophiolite belts in the Ossa-Morena Zone (Southwest Iberia): Geological characterization and geodynamic significance. Gondwana Res. 2010, 17, 408–421. [Google Scholar] [CrossRef]
- Pearce, J.A.; Robinson, P.T. The Troodos ophiolite complex probably formed in a subduction initiation, slab edge setting. Gondwana Res. 2010, 18, 60–81. [Google Scholar] [CrossRef]
- Chetty, T.R.K.; Yellappa, T.; Nagesh, P.; Mohanty, D.P.; Venkatasivappa, V.; Santosh, M.; Tsunogae, T. Structural anatomy of a dismembered ophiolite suite from Gondwana: The Manamedu complex, Cauvery suture zone, southern India. J. Asian Earth Sci. 2011, 42, 176–190. [Google Scholar] [CrossRef]
- Saccani, E.; Beccaluva, L.; Photiades, A.; Zeda, O. Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albania-Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic-Jurassic evolution of the Neo-Tethys in the Dinaride sector. Lithos 2011, 124, 227–242. [Google Scholar] [CrossRef]
- Allahyari, K.; Saccani, E.; Rahimzadeh, B.; Zeda, O. Mineral chemistry and petrology of highly magnesian ultramafic cumulates from the Sarve-Abad (Sawlava) ophiolites (Kurdistan, NW Iran): New evidence for boninitic magmatism in intra-oceanic fore-arc setting in the Neo-Tethys between Arabia and Iran. J. Asian Earth Sci. 2014, 79, 312–328. [Google Scholar] [CrossRef]
- Magganas, A.; Koutsovitis, P. Composition, melting and evolution of the upper mantle beneath the Jurassic Pindos ocean inferred by ophiolitic ultramafic rocks in East Othris, Greece. Int. J. Earth Sci. 2015, 104, 1185–1207. [Google Scholar] [CrossRef]
- Arai, S.; Kadoshima, K.; Moeishita, T. Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian spinels. J. Geol. Soc. Lond. 2006, 163, 869–879. [Google Scholar] [CrossRef]
- Uysal, I.; Kaliwoda, M.; Karsli, O.; Tarkian, M.; Sadiklar, M.B.; Ottley, C.J. Compositional variations as a result of partial melting and melt-peridotites interaction in an upper mantle section from the Ortaca area, southwestern Turkey. Canad. Mineral. 2007, 45, 1791–1813. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Dick, H.J.B.; Quick, J.E. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 1992, 358, 635–641. [Google Scholar] [CrossRef]
- Parkinson, I.J.; Pearce, J.A. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J. Petrol. 1998, 39, 1577–1618. [Google Scholar] [CrossRef]
- Niu, Y. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J. Petrol. 2004, 45, 2423–2458. [Google Scholar] [CrossRef]
- Dupuis, C.; Hébert, R.; Dubois-Côté, V.; Guilmette, C.; Wang, C.S.; Li, Y.L.; Li, Z.J. The Yarlung Zangbo Suture Zone ophiolite mélange (southern Tibet): new insights from geochemistryof ultramafic rocks. J. Asian Earth Sci. 2005, 25, 937–960. [Google Scholar] [CrossRef]
- Singh, A.K.; Nayak, R.; Khogenkumar, S.; Subramanyam, K.S.V.; Thakur, S.S.; Singh, R.K.B.; Satyanarayanan, M. Genesis and tectonic implications of cumulate pyroxenites and tectonite peridotites from the Nagaland-Manipur ophiolites, Northeast India: constraints from mineralogical and geochemical characteristics. Geol. J. 2017, 52, 415–436. [Google Scholar] [CrossRef]
- Deschamps, F.; Godard, M.; Guillot, S.; Hattori, K. Geochemistry of subduction zone serpentinites: A review. Lithos 2013, 178, 96–127. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Stamatis, P.M.; Tsikouras, B.; Papoulis, D.; Lampropoulou, P.; Hatzipanagiotou, K. The influence of alteration of aggregates on the quality of the concrete: A case study from serpentinites and andesites from central Macedonia (North Greece). Geosciences 2018, 8, 115. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Lampropoulou, P.; Koutsopoulou, E.; Papoulis, D.; Tsikouras, B.; Hatzipanagiotou, K. The Impact of Secondary Phyllosilicate Minerals on the Engineering Properties of Various Igneous Aggregates from Greece. Minerals 2018, 8, 329. [Google Scholar] [CrossRef]
- Giannakopoulou, P.P.; Petrounias, P.; Rogkala, A.; Tsikouras, B.; Stamatis, P.M.; Pomonis, P.; Hatzipanagiotou, K. The influence of the mineralogical composition of ultramafic rocks on their engineering performance: A case study from the Veria-Naousa and Gerania ophiolite complexes (Greece). Geosciences 2018, 8, 251. [Google Scholar] [CrossRef]
- Barnes, S.J.; Roeder, P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Ghosh, B.; Morishita, T.; Bhatta, K. Significance of chromian spinels from the mantle sequence of the Andaman Ophiolite, India: Paleogeodynamic implications. Lithos 2013, 164–167, 86–96. [Google Scholar] [CrossRef]
- Zhou, M.F.; Robinson, P.T.; Bai, W.J. Formation of podiform chromitites by melt/rock iteraction in the upper mantle. Miner. Depos. 1994, 29, 98–101. [Google Scholar] [CrossRef]
- Karipi, S.; Tsikouras, B.; Hatzipanagiotou, K.; Grammatikopoulos, T.A. Petrogenetic significance of spinel-group minerals from the ultramafic rocks of the Iti and Kallidromo ophiolites (Central Greece). Lithos 2007, 99, 136–149. [Google Scholar] [CrossRef]
- Oh, C.W.; Rajesh, V.J.; Seo, J.; Choi, S.G.; Lee, J.H. Spinel compositions and tectonic relevance of the Bibong ultramafic bodies in the Hongseong collision belt, South Korea. Lithos 2010, 117, 198–208. [Google Scholar] [CrossRef]
- Pomonis, P.; Magganas, A. Petrogenetic Implications for Ophiolite Ultramafic Bodies from Lokris and Beotia (Central Greece) Based on chemistry of their Cr-spinels. Geosciences 2017, 7, 10. [Google Scholar] [CrossRef]
- Guo, G.; Liu, X.; Yang, J.; Pan, J.; Fan, X.; Zhou, W.; Duan, G. Tectonic discrimination of chromian spinels, olivines and pyroxenes in the Northeastern Jiangxi Province ophiolite, South China. Miner. Petrol. 2017, 111, 325–336. [Google Scholar] [CrossRef]
- Rogkala, A.; Petrounias, P.; Tsikouras, B.; Hatzipanagiotou, K. Petrogenetic significance of spinel from serpentinised peridotites from Veria-Naousa ophiolite. Bull. Geol. Soc. Gr. 2016, 50, 1999–2008. [Google Scholar]
- Saccani, E.; Photiades, A.; Santato, A.; Zeda, O. New evidence for supra-subduction zone ophiolites in the Vardar zone of northern Greece: implications for the tectonomagmatic evolution of the Vardar oceanic basin. Ofioliti 2008, 33, 65–85. [Google Scholar]
- Michailidis, K.M. Zoned chromites with high Mn-contents in the Fe-Ni-Cr-laterite ore deposits from the Edessa area in Northern Greece. Miner. Depos. 1990, 25, 190–197. [Google Scholar] [CrossRef]
- Vérgely, P. Origine “vardarienne”, chevauchement vers l’Ouest et rétrocharriage vers l’Est des ophiolites de Macédoine (Grèce) au cours du Jurassique supérieur-Eocrétacé. CR Acad. Sci. Paris 1976, 280, 1063–1066. [Google Scholar]
- Decourt, J.; Aubouin, J.; Savoyat, E. Le sillon mésohellénique et la zone pélagonienne. Bull. Soc. Géol. Fr. 1977, 1, 32–70. [Google Scholar]
- Pe-Piper, G.; Piper, D.J.W. The Igneous Rocks of Greece: The Anatomy of an Orogen; Gebrueder Borntraeger: Berlin/Stuttgart, Germany, 2002. [Google Scholar]
- Rogkala, A.; Petrounias, P.; Tsikouras, B.; Hatzipanagiotou, K. New occurrence of pyroxenites in the Veria-Naousa ophiolite (north Greece): Implications on their origin and petrogenetic evolution. Geosciences 2017, 7, 92. [Google Scholar] [CrossRef]
- Mercier, J.L.; Vergely, P. Geological Map of Greece, Edhessa Sheet, 1:50.000; IGME: Athens, Greece, 1984. [Google Scholar]
- Brunn, J.H. Geological Map of Greece, Veroia Sheet, 1:50.000; IGME: Athens, Greece, 1982. [Google Scholar]
- Eleftheriadis, G.; Castorina, F.; Soldatos, T.; Masi, U. Geochemical and Sr-Nd isotopic evidence for the genesis of the Late Cainozoic Almopia volcanic rocks (Central Macedonia, Greece). Miner. Petrol. 2003, 78, 21–36. [Google Scholar] [CrossRef]
- Arai, S. Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem. Geol. 1994, 113, 191–204. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Lian, D.; Yang, J.; Robinson, P.T.; Liu, F.; Xiong, F.; Zhang, L.; Gao, J.; Wu, W. Tectonic evolution of the western Yarlung Zangbo Ophiolitic Belt, Tibet: implications from the petrology, mineralogy, and geochemistry of peridotites. J. Geol. 2016, 124, 353–376. [Google Scholar] [CrossRef]
- Pirard, C.; Hermann, J.; O’Neil, H.S.C. Petrology and Geochemistry of the Crust-Mantle Boundary in a Nascent Arc, Massif du Sud Ophiolite, New Caledonia, SW Pacific. J. Petrol. 2013, 54, 1759–1792. [Google Scholar] [CrossRef]
- De Hoog, J.C.M.; Gall, L.; Cornell, D. Trace element geochemistry of mantle olivine and applications to mantle petrogenesis and geothermobarometry. Chem. Geol. 2010, 270, 196–215. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Hofmann, A.W.; Sobolev, S.V.; Nikogosian, I.K. An olivine-free mantle source of Hawaiian shield basalts. Nature 2005, 434, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Robinson, P.T.; Maekawa, H.; Fiske, R. Petrological Studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu-Mariana Fore-arc, Leg 125. Proceedings of the Ocean Drilling Program. Scientific Results 125. 1992, pp. 445–485. Available online: http://www-odp.tamu.edu/publications/125_SR/VOLUME/CHAPTERS/sr125_27.pdf (accessed on 17 February 2019).
- Brey, G.P.; Köhler, T. Geothermobarometry in four-phase lherzolites. II. New thermobarometers and practical assessment of existing thermobarometers. J. Petrol. 1990, 31, 1353–1378. [Google Scholar] [CrossRef]
- Mellini, M.; Rumori, C.; Viti, C. Hydrothermally reset magmatic spinels in retrograde serpentinites: Formation of “ferritchromit” rims and chlorite aureoles. Contrib. Mineral. Petrol. 2005, 149, 266–275. [Google Scholar] [CrossRef]
- Banerjee, R.; Ray, D.; Ishii, T. Mineral Chemistry and Alteration Characteristics of Spinel in Serpentinised Peridotites from the Northern Central Indian Ridge. J. Geol. Soc. India 2015, 86, 41–51. [Google Scholar] [CrossRef]
- Barnes, S.J. Chromite in komatiites. II. Modification during greenschist to mid-amphibolite facies metamorphism. J. Petrol. 2000, 41, 387–409. [Google Scholar] [CrossRef]
- Sabah, A.I. Chemistry of accessory chromian spinel in serpentinites from the Panjwen ophiolite rocks, Zagros thrust zone, northeastern Iraq. J. Kirkuk University-Scientific Studies 2009, 4, 1–21. [Google Scholar]
- Economou-Eliopoulos, M. Apatite and Mn, Zn, Co-enriched chromite in Ni Laterites of northern Greece and their genetic significance. J. Geochem. Explor. 2003, 80, 41–54. [Google Scholar] [CrossRef]
- Gahlan, H.A.; Arai, S. Genesis of peculiarly zoned Co, Zn and Mn-rich chromian spinel in serpentinite of Bou-Azzer ophiolite, Anti-Atlas, Morocco. J. Miner. Petrol. Sci. 2007, 102, 69–85. [Google Scholar] [CrossRef]
- Barra, F.; Gervilla, F.; Hernández, E.; Reich, M.; Padrón-Navarta, J.A.; González-Jiménez, J.M. Alteration patterns of chromian spinels from La Cabana peridotite, south-central Chile. Miner. Petrol. 2014, 108, 819–836. [Google Scholar] [CrossRef]
- Li, X.P.; Zhang, L.; Wei, C.; Ai, Y.; Chen, J. Petrology of rodingite derived from eclogite in western Tianshan, China. J. Metamorph. Geol. 2007, 25, 363–382. [Google Scholar] [CrossRef]
- Tsikouras, B.; Karipi, S.; Rigopoulos, I.; Perraki, M.; Pomonis, P.; Hatzipanagiotou, K. Geochemical processes and petrogenetic evolution of rodingite dykes in the ophiolite complex of Othrys (Central Greece). Lithos 2009, 113, 540–554. [Google Scholar] [CrossRef]
- Tsikouras, B.; Karipi, S.; Hatzipanagiotou, K. Evolution of rodingites along stratigraphic depth in the Iti and Kallidromon ophiolites (Central Greece). Lithos 2013, 175–176, 16–29. [Google Scholar] [CrossRef]
- Choi, S.H.; Shervais, J.W.; Mukasa, S.B. Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contrib. Mineral. Petrol. 2008, 156, 551–576. [Google Scholar] [CrossRef]
- Pearce, J.A.; Barker, P.F.; Edwards, S.J.; Parkinson, I.J.; Leat, P.T. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, south Atlantic. Contrib. Mineral. Petrol. 2000, 139, 36–53. [Google Scholar] [CrossRef]
- Baker, M.B.; Stolper, E.M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta 1994, 58, 2811–2827. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Natland, J.H. Late stage melt evolution and transport in the shallow mantle neneath the East Pacific Rise. In Proceedings-Ocean Drilling Program Scientific Results; National Science Foundation: Alexandria, VA, USA, 1996; pp. 103–134. [Google Scholar]
- Uysal, I.; Ersoy, E.Y.; Karsli, O.; Dilek, Y.; Burthan Sadiklar, M.; Ottley, C.J.; Tiepolo, M.; Meisel, T. Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a neo-Tethyan ophiolite in SW Turkey: constraints from mineral composition, whole-rock geochemistry (major-rare-REE-PGE), and Re-Os isotope systematics. Lithos 2012, 132–133, 50–69. [Google Scholar] [CrossRef]
- Arai, S. Commotional variation of olivine-chromian spinel in Mg-rich magma as guide to their residual spinel peridotites. J. Geol. Soc. Lond. 1994, 163, 869–879. [Google Scholar] [CrossRef]
- Dokz, A.; Uysal, I.; Kaliwoda, M.; Karsli, O.; Ottley, C.J.; Kandemir, R. Early abyssal- and late SSZ-type vestiges of the Rheic oceanic mantle in the Variscanbasement of the Sakaryan Zone, NE Turkey: Implications for the sense of subduction and opening of the Paleotethys. Lithos 2011, 127, 176–191. [Google Scholar] [CrossRef]
- Seyler, M.; Lorand, J.P.; Dick, H.J.B.; Drouin, M. Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15o 20´N: ODP Hole 1274A. Contrib. Mineral. Petrol. 2007, 153, 303–319. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Fisher, R.L. Mineralogical studies of the residues of mantle melting: abyssal and alpine-type peridotites. In Kimberlite II the Mantle and Crust-Mantle Relationships; Kornprobst, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 295–308. [Google Scholar]
- Zhou, M.F.; Robinson, P.T.; Malpas, J.; Edwards, S.J.; Qi, L. REE and PGE geochemical constraints on the formation of dunites in the Luobusa Ophiolite, southern Tibet. J. Petrol. 2005, 46, 615–639. [Google Scholar] [CrossRef]
- Uysal, I.; Ersoy, E.Y.; Dilek, Y.; Kapsiotis, A.; Sarifakioğlu, E. Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the heterogeneous upper mantle sequence of the Neotethyan Eldivan ophiolite, Turkey. Lithos 2016, 246–247, 228–245. [Google Scholar] [CrossRef]
- Hébert, R.; Adamson, A.C.; Komor, S.C. Metamorphic petrology of ODP 109, Hole 670A serpentinized peridotites: serpentinization processes at a slow spreading ridge environment. Proceedings of the ODP, Sci. Results 106/109. Detrick, R., Honnorez, J., Bryan, W.B., Juteau, T., Eds.; 1990, pp. 103–115. Available online: http://www-odp.tamu.edu/publications/106109SR/VOLUME/CHAPTERS/sr106109_09.pdf (accessed on 17 February 2019).
- Hellebrand, E.; Show, J.F.; Dick, H.J.B.; Hofmann, A.W. Coupled major and trace elements as indicators of the extent of melting in the mid-ocean-ridge peridotites. Nature 2001, 410, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Ishiwatari, A.; Sokolov, S.D.; Vysotskiy, S.V. Petrological diversity and origin of ophiolites in Japan and Far East Russia with emphasis on depleted harzburgite. Geol. Soc. Lond. Spec. Publ. 2003, 218, 597–617.s. [Google Scholar] [CrossRef]
- Suhr, G.; Kelemen, P.; Paulick, H. Microstructures in Hole 1274A peridotites, ODP Leg 209, Mid-Atlantic Ridge: Tracking the fate of melts percolating in peridotite as the lithosphere is intercepted. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef]
- Seyler, M.; Toplis, M.J.; Lorand, J.P.; Luguet, A.; Cannat, M. Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology 2001, 29, 155–158. [Google Scholar] [CrossRef]
- Hellebrand, E.; Snow, J.E.; Hoppe, P.; Hofmann, A.W. Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J. Petrol. 2002, 43, 2305–2338. [Google Scholar] [CrossRef]
- Brunelli, D.; Seyler, M.; Cipriano, A.; Ottolini, L.; Bonatti, E. Discontinuous melt extraction and weak refertilization of mantle Peridotites at the Vema Lithospheric Section (Mid-Antlantic Ridge). J. Petrol. 2006, 47, 745–771. [Google Scholar] [CrossRef]
- Spiegelman, M.; Kelemen, P.B.; Aharonov, E. Causes and consequences of flow organization during melt transport: The Reaction infiltration instability. J. Geophys. Res. 2001, 106, 2061–2078. [Google Scholar] [CrossRef]
- Matsumoto, I.; Arai, S. Morphological and chemical variations of chromian spinel in dunite-harzburgite complexes from the Sangun Zone (SW Japan): Implications for mantle/melt reaction and chromitite formation processes. Mineral. Petrol. 2001, 73, 305–323. [Google Scholar] [CrossRef]
- Cannat, M.; Lagabrielle, Y.; Bougault, H.; Casev, J.; de Coutures, N.; Dmitriev, L.; Fouquet, Y. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15°N region. Tectonophysics 1997, 279, 193–213. [Google Scholar] [CrossRef]
- Hellebrand, E.; Snow, J.; Dick, H.J.B.; Devey, C.W.; Hofmann, A.W. Reactive crack flow in the oceanic mantle: an ion probe study on cpx from vein-bearing abyssal peridotites. Ofioliti 1999, 24, 106–107. [Google Scholar]
- Kaczmarek, M.A.; Müntener, O. Juxtaposition of melt impregnation and high-temperature shear zone in the mantle; Field and petrological constraints form the Lanzo peridotite (Northern Italy). J. Petrol. 2008, 49, 2187–2220. [Google Scholar] [CrossRef]
- Zhang, P.; Uysal, I.; Zhou, M.; Su, B.; Avci, E. Subduction initiation for the formation of high-Cr chromitites in the kop ophiolite, NE Turkey. Lithos 2016, 260, 345–355. [Google Scholar] [CrossRef]
- Batanova, V.G.; Sobolev, A.V. Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geology 2000, 28, 55–58. [Google Scholar] [CrossRef]
- Parkinson, I.J.; Pearce, J.A.; Thirwall, M.F.; Johnson, K.T.M.; Ingram, G. Trace Element Geochemistry of Peridotites from the Izu-Bonin-Mariana forearc, Leg 125. Available online: http://www-odp.tamu.edu/publications/125_SR/VOLUME/CHAPTERS/sr125_28.pdf (accessed on 3 March 2017).
- Smith, A.G. Tectonic significance of the Hellenic-Dinaric ophiolites. Geol. Soc. Lond. Spec. Publ. 1993, 76, 213–243. [Google Scholar] [CrossRef]
- Bizimis, M.; Salters, V.J.M.; Bonatti, E. Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem. Geol. 2000, 165, 67–85. [Google Scholar] [CrossRef]
- Parkinson, I.J.; Pearce, J.A.; Thirwall, M.F.; Johnson, K.T.M.; Ingram, G. Trace element geochemistry of peridotites from the Izu-Bonin-Mariana forearc, Leg 125. Proceedings of the ODP science results, 125. Ocean Drilling Program, College Station. Fryer, P., Pearce, J.A., Stokking, L.B., Eds.; 1992, pp. 487–506. Available online: https://pdfs.semanticscholar.org/23cb/d23207c20eb9e2c1664d4a01a9b036da9bfa.pdf (accessed on 17 February 2019).
- Yang, J.S.; Robinson, P.T.; Dilek, Y. Diamonds in ophiolites. Elements 2014, 10, 127–130. [Google Scholar] [CrossRef]
- Shervais, J.W. Birth, death, and resurrection: the life cycle of subduction zone ophiolites. Geochem. Geophys. 2001, 2, 1010. [Google Scholar] [CrossRef]
Rock-Type | Lherzolite | Harzburgite | ||||||||||||||||
Sample | ED.88 | ED.89 | BE.117 | |||||||||||||||
Anal.NO. | 14 | 16 | 28 | 38 | 54 | 79 | 92 | 28 | 30 | 34 | 36 | 66 | 90 | 1 | 3 | 4 | 5 | 6 |
wt. % | Al-sp | Al-sp | Al-sp | Al-sp | Al-sp | Cr-sp | Cr-sp | Al-sp | Al-sp | Al-sp | Al-sp | Al-sp | Al-sp | Cr-sp | Cr-sp | Cr-sp | Cr-sp | Cr-sp |
TiO2 | - | 0.15 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Al2O3 | 59.03 | 50.70 | 42.31 | 56.25 | 56.29 | 31.78 | 40.39 | 52.39 | 44.74 | 56.71 | 54.82 | 58.79 | 57.81 | 41.17 | 39.65 | 40.93 | 39.88 | 41.47 |
FeO | 12.15 | 14.17 | 17.57 | 12.48 | 12.68 | 22.58 | 19.35 | 15.15 | 16.05 | 13.48 | 13.48 | 11.35 | 13.46 | 13.70 | 14.54 | 13.95 | 13.86 | 14.51 |
MnO | - | 0.14 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.20 | 0.34 | - |
MgO | 20.01 | 18.74 | 14.86 | 19.36 | 20.18 | 11.50 | 14.34 | 18.60 | 16.22 | 19.87 | 19.15 | 20.55 | 20.34 | 16.64 | 16.42 | 16.77 | 15.61 | 16.53 |
Cr2O3 | 7.11 | 16.15 | 25.30 | 8.58 | 10.87 | 34.01 | 27.41 | 14.51 | 21.47 | 9.64 | 10.72 | 7.44 | 10.34 | 27.44 | 28.55 | 27.17 | 28.24 | 27.59 |
NiO | 0.44 | 0.27 | - | 0.59 | 0.24 | - | - | - | - | 0.52 | 0.38 | 0.53 | - | 0.25 | 0.18 | 0.20 | 0.34 | 0.44 |
Sum | 98.74 | 100.2 | 100.04 | 97.26 | 100.26 | 99.87 | 101.49 | 100.65 | 98.48 | 100.22 | 98.55 | 98.66 | 101.95 | 99.20 | 99.34 | 99.26 | 98.27 | 100.54 |
Formula units based on 3 cations | ||||||||||||||||||
Al | 1.806 | 1.590 | 1.402 | 1.762 | 1.718 | 1.119 | 1.337 | 1.630 | 1.474 | 1.732 | 1.712 | 1.796 | 1.734 | 1.364 | 1.321 | 1.355 | 1.346 | 1.360 |
Ti | - | 0.003 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.001 | - | - |
Cr | 0.146 | 0.340 | 0.562 | 0.180 | 0.223 | 0.804 | 0.609 | 0.303 | 0.475 | 0.198 | 0.225 | 0.152 | 0.208 | 0.610 | 0.638 | 0.604 | 0.639 | 0.607 |
Fe3+ | 0.048 | 0.064 | 0.036 | 0.057 | 0.059 | 0.077 | 0.055 | 0.067 | 0.051 | 0.071 | 0.063 | 0.051 | 0.058 | 0.025 | 0.040 | 0.038 | 0.014 | 0.033 |
Mg | 0.775 | 0.743 | 0.623 | 0.767 | 0.779 | 0.512 | 0.600 | 0.732 | 0.676 | 0.768 | 0.756 | 0.794 | 0.772 | 0.698 | 0.692 | 0.702 | 0.666 | 0.686 |
Ni | 0.009 | 0.006 | - | 0.013 | 0.005 | - | - | - | - | 0.011 | 0.008 | 0.011 | - | 0.006 | 0.004 | 0.005 | 0.008 | 0.010 |
Fe2+ | 0.216 | 0.251 | 0.377 | 0.220 | 0.216 | 0.488 | 0.400 | 0.268 | 0.324 | 0.222 | 0.235 | 0.195 | 0.228 | 0.297 | 0.304 | 0.290 | 0.317 | 0.305 |
Mn | - | 0.003 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.005 | 0.008 | - |
Cr# | 7.5 | 17.6 | 28.6 | 9.3 | 11.5 | 41.8 | 31.3 | 15.7 | 24.4 | 10.2 | 11.6 | 7.8 | 10.7 | 30.9 | 32.6 | 30.8 | 32.2 | 30.9 |
Mg# | 78.2 | 74.7 | 62.3 | 77.7 | 78.3 | 51.2 | 60.0 | 73.2 | 67.6 | 77.6 | 76.3 | 80.3 | 77.2 | 70.2 | 69.5 | 70.4 | 67.7 | 69.2 |
F | 1 | 7 | 12 | 1 | 2 | * | * | 5 | 10 | 1 | 2 | 1 | 2 | 12 | 13 | 12 | 13 | 12 |
Rock-Type | Harzburgite | |||||||||||||||||
Sample | ED.28.2 | ED.33 | ED.115 | |||||||||||||||
Anal. No. | 6 | 51 | 101 | 124 | 145 | 12 | 58 | 60 | 1 | 3 | 16 | 20 | 1 | 3 | 4 | 16 | 17 | |
wt. % | Cr-sp | Cr-sp | Cr-sp | Cr-sp | Cr-sp | Fe-chr | Fe-chr | Fe-chr | Cr-sp | Cr-sp | Cr-sp | Fe-chr | Chr | Chr | Chr | Chr | Chr | |
Al2O3 | 31.24 | 33.67 | 27.56 | 24.35 | 25.90 | 8.56 | 3.36 | 2.30 | 23.37 | 23.59 | 24.62 | 1.68 | 15.88 | 14.83 | 16.30 | 15.95 | 15.33 | |
FeO | 19.05 | 18.56 | 19.46 | 18.51 | 17.95 | 43.54 | 59.64 | 58.33 | 15.22 | 15.45 | 16.42 | 38.12 | 18.73 | 18.43 | 19.31 | 19.94 | 19.57 | |
MnO | - | - | - | - | - | 9.51 | 5.35 | 6.39 | - | - | - | 12.12 | - | - | - | - | - | |
MgO | 13.32 | 13.76 | 13.75 | 14.18 | 13.09 | 1.71 | 1.68 | 1.65 | 14.09 | 14.03 | 13.83 | 2.15 | 10.79 | 11.19 | 10.53 | 9.63 | 10.79 | |
Cr2O3 | 37.40 | 35.91 | 40.51 | 42.89 | 44.04 | 36.24 | 29.42 | 31.26 | 49.19 | 47.28 | 45.79 | 41.60 | 54.99 | 55.12 | 53.19 | 54.68 | 54.30 | |
NiO | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
ZnO | - | - | - | - | - | - | - | - | - | - | - | 3.02 | - | - | - | - | - | |
Sum | 101.01 | 101.90 | 101.28 | 99.93 | 100.98 | 99.56 | 99.45 | 99.93 | 101.87 | 100.35 | 100.66 | 98.69 | 100.39 | 99.57 | 99.33 | 100.20 | 99.99 | |
Formula units based on 3 cations | ||||||||||||||||||
Al | 1.081 | 1.143 | 0.962 | 0.868 | 0.917 | 0.353 | 0.141 | 0.097 | 0.825 | 0.842 | 0.874 | 0.072 | 0.598 | 0.563 | 0.619 | 0.606 | 0.580 | |
Cr | 0.868 | 0.818 | 0.949 | 1.025 | 1.046 | 1.002 | 0.829 | 0.882 | 1.165 | 1.133 | 1.091 | 1.197 | 1.388 | 1.403 | 1.355 | 1.394 | 1.378 | |
Fe3+ | 0.051 | 0.038 | 0.089 | 0.107 | 0.037 | 0.645 | 1.029 | 1.021 | 0.010 | 0.025 | 0.035 | 0.731 | 0.014 | 0.034 | 0.026 | - | 0.042 | |
Mg | 0.583 | 0.591 | 0.607 | 0.639 | 0.586 | 0.089 | 0.089 | 0.088 | 0.629 | 0.634 | 0.621 | 0.117 | 0.514 | 0.537 | 0.506 | 0.463 | 0.516 | |
Ni | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Fe2+ | 0.417 | 0.409 | 0.393 | 0.361 | 0.414 | 0.629 | 0.749 | 0.719 | 0.371 | 0.366 | 0.379 | 0.429 | 0.486 | 0.463 | 0.494 | 0.537 | 0.484 | |
Mn | - | - | - | - | - | 0.282 | 0.162 | 0.193 | - | - | - | 0.374 | - | - | - | - | - | |
Zn | - | - | - | - | - | - | - | - | - | - | - | 0.081 | - | - | - | - | - | |
Cr# | 44.5 | 41.7 | 49.6 | 54.2 | 53.3 | 74.0 | 85.5 | 90.1 | 58.5 | 57.4 | 55.5 | 94.3 | 69.9 | 71.4 | 68.6 | 69.7 | 70.4 | |
Mg# | 58.3 | 59.1 | 60.7 | 63.9 | 58.6 | 12.4 | 10.7 | 10.9 | 62.9 | 63.4 | 62.1 | 21.4 | 51.4 | 53.7 | 50.6 | 46.3 | 51.6 | |
F | 16 | 15 | 17 | 18 | 18 | * | * | * | 19 | 18 | 18 | * | * | * | * | * | * |
Rock-Type | Lherzolite | Harzburgite | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | ED.88 | ED.89 | BE.117 | |||||||||||
Anal. No | 75 | 76 | 107 | 83 | 95 | 102 | 52 | 53 | 60 | 18 | 19 | 21 | 39 | 43 |
wt. % | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Neobl. | Neobl. | Neobl. | Porph. | Porph. | Porph. | Porph. | Porph. |
SiO2 | 54.13 | 53.59 | 52.78 | 54.71 | 53.38 | 52.04 | 54.66 | 53.59 | 55.44 | 52.18 | 52.76 | 52.56 | 55.44 | 52.81 |
TiO2 | 0.71 | 0.64 | 1.14 | 0.67 | 0.49 | 0.29 | 0.15 | 0.95 | 0.25 | - | - | - | - | - |
Al2O3 | 6.05 | 6.60 | 5.25 | 1.74 | 4.71 | 6.21 | 2.30 | 2.60 | 1.46 | 4.58 | 3.47 | 3.65 | 2.38 | 3.23 |
FeO | 3.06 | 2.70 | 2.61 | 2.53 | 2.69 | 2.92 | 2.28 | 2.33 | 2.21 | 2.06 | 2.07 | 2.23 | 2.12 | 1.66 |
MgO | 15.30 | 13.80 | 14.81 | 16.49 | 15.01 | 13.46 | 16.29 | 15.88 | 16.81 | 16.16 | 15.99 | 16.62 | 16.42 | 16.07 |
CaO | 21.14 | 21.42 | 23.51 | 23.10 | 22.03 | 20.61 | 23.36 | 22.65 | 23.04 | 22.96 | 24.34 | 23.14 | 23.17 | 23.47 |
Na2O | 0.81 | 0.93 | 0.82 | - | 0.78 | 0.97 | - | - | - | - | - | - | - | - |
Cr2O3 | 0.58 | 0.45 | 0.59 | 0.61 | 0.93 | 1.06 | 0.50 | 0.62 | 0.41 | 1.39 | 0.83 | 1.35 | 0.57 | 0.78 |
Sum | 101.78 | 100.13 | 101.51 | 99.85 | 100.02 | 97.56 | 99.54 | 98.62 | 99.62 | 99.33 | 99.46 | 99.55 | 100.10 | 98.02 |
Formula units based on 6 oxygens | ||||||||||||||
Si | 1.916 | 1.925 | 1.891 | 1.981 | 1.930 | 1.924 | 1.983 | 1.963 | 2.000 | 1.903 | 1.927 | 1.916 | 1.994 | 1.947 |
Aliv | 0.084 | 0.075 | 0.109 | 0.019 | 0.070 | 0.076 | 0.017 | 0.037 | - | 0.097 | 0.073 | 0.084 | 0.006 | 0.053 |
Alvi | 0.168 | 0.205 | 0.112 | 0.056 | 0.131 | 0.195 | 0.081 | 0.075 | 0.062 | 0.100 | 0.076 | 0.073 | 0.095 | 0.087 |
Fe3+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Ti | 0.019 | 0.017 | 0.031 | 0.018 | 0.013 | 0.008 | 0.004 | 0.026 | 0.007 | - | - | - | - | - |
Cr | 0.016 | 0.013 | 0.017 | 0.017 | 0.027 | 0.031 | 0.014 | 0.018 | 0.012 | 0.040 | 0.024 | 0.039 | 0.016 | 0.023 |
Mg | 0.807 | 0.739 | 0.791 | 0.890 | 0.809 | 0.742 | 0.881 | 0.867 | 0.906 | 0.879 | 0.871 | 0.903 | 0.880 | 0.883 |
Fe2+ | 0.091 | 0.081 | 0.078 | 0.077 | 0.081 | 0.090 | 0.069 | 0.071 | 0.067 | 0.063 | 0.063 | 0.068 | 0.064 | 0.051 |
Ca | 0.802 | 0.824 | 0.902 | 0.896 | 0.854 | 0.816 | 0.908 | 0.889 | 0.893 | 0.897 | 0.952 | 0.904 | 0.893 | 0.927 |
Na | 0.056 | 0.065 | 0.057 | - | 0.055 | 0.070 | - | - | - | - | - | - | - | - |
En | 47.5 | 44.9 | 44.7 | 47.8 | 46.4 | 45.0 | 47.4 | 47.5 | 48.6 | 47.8 | 46.2 | 48.2 | 47.9 | 47.4 |
Fs | 5.3 | 4.9 | 4.4 | 4.1 | 4.7 | 5.5 | 3.7 | 3.9 | 3.6 | 3.4 | 3.4 | 3.6 | 3.5 | 2.7 |
Wo | 47.2 | 50.1 | 50.9 | 48.1 | 48.9 | 49.5 | 48.9 | 48.6 | 47.9 | 48.8 | 50.5 | 48.2 | 48.6 | 49.8 |
Mg# | 89.9 | 90.1 | 91.0 | 92.1 | 90.9 | 89.2 | 92.7 | 92.4 | 93.1 | 93.3 | 93.2 | 93.0 | 93.2 | 94.5 |
Rock-Type | Lherzolite | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | ED.88 | ED.89 | |||||||||||
Anal. No | 16 | 17 | 19 | 101 | 102 | 104 | 111 | 14 | 24 | 46 | 68 | 69 | 70 |
wt. % | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. |
SiO2 | 57.91 | 57.57 | 58.34 | 56.62 | 55.45 | 57.60 | 56.35 | 56.27 | 57.15 | 56.41 | 57.17 | 56.35 | 56.06 |
TiO2 | - | 0.16 | 0.23 | - | 0.52 | - | - | - | - | 0.29 | - | - | - |
Al2O3 | 4.48 | 4.04 | 3.09 | 4.84 | 4.03 | 4.01 | 4.63 | 5.07 | 4.46 | 2.94 | 3.35 | 3.86 | 4.24 |
FeO | 6.18 | 6.55 | 6.63 | 6.58 | 5.95 | 5.98 | 6.06 | 6.48 | 6.32 | 6.35 | 6.36 | 6.46 | 6.19 |
MnO | - | 0.30 | 0.33 | 0.27 | - | - | - | - | - | - | - | - | - |
MgO | 31.93 | 31.97 | 32.55 | 31.67 | 31.29 | 32.57 | 31.15 | 32.28 | 32.65 | 32.18 | 32.54 | 33.11 | 31.66 |
CaO | 0.53 | 0.45 | - | 0.52 | 0.27 | 0.43 | 0.72 | 1.10 | 0.45 | 0.42 | 0.60 | 0.29 | 0.32 |
Na2O | - | - | - | - | - | - | - | - | - | - | - | - | - |
Cr2O3 | 0.33 | - | 0.49 | - | 0.32 | - | 0.42 | - | 0.57 | 0.33 | 0.56 | 0.11 | 0.37 |
NiO | - | - | - | - | - | - | - | - | - | - | - | - | - |
Sum | 101.46 | 101.04 | 101.66 | 100.50 | 97.83 | 100.59 | 99.33 | 101.20 | 101.60 | 98.92 | 100.58 | 100.18 | 98.84 |
Formula units based on 6 oxygens | |||||||||||||
Si | 1.957 | 1.958 | 1.973 | 1.938 | 1.945 | 1.960 | 1.947 | 1.916 | 1.934 | 1.961 | 1.956 | 1.935 | 1.947 |
Aliv | 0.043 | 0.042 | 0.027 | 0.062 | 0.055 | 0.040 | 0.053 | 0.084 | 0.066 | 0.039 | 0.044 | 0.065 | 0.053 |
Alvi | 0.136 | 0.120 | 0.096 | 0.133 | 0.111 | 0.121 | 0.135 | 0.119 | 0.112 | 0.082 | 0.091 | 0.091 | 0.120 |
Fe3+ | - | - | - | - | - | - | - | - | - | - | - | - | - |
Ti | - | 0.004 | 0.006 | - | 0.014 | - | - | - | - | 0.008 | - | - | - |
Cr | 0.009 | - | 0.013 | - | 0.009 | - | 0.011 | - | 0.015 | 0.009 | 0.015 | 0.003 | 0.010 |
Ni | - | - | - | - | - | - | - | - | - | - | - | - | - |
Mg | 1.609 | 1.621 | 1.641 | 1.616 | 1.636 | 1.652 | 1.604 | 1.638 | 1.647 | 1.668 | 1.659 | 1.695 | 1.639 |
Fe2+ | 0.175 | 0.186 | 0.188 | 0.188 | 0.174 | 0.170 | 0.175 | 0.185 | 0.179 | 0.185 | 0.182 | 0.186 | 0.180 |
Mn | - | 0.009 | 0.009 | 0.008 | - | - | - | - | - | - | - | - | - |
Ca | 0.019 | 0.016 | - | 0.019 | 0.010 | 0.016 | 0.027 | 0.040 | 0.016 | 0.016 | 0.022 | 0.011 | 0.012 |
Na | - | - | - | - | - | - | - | - | - | - | - | - | - |
En | 89.3 | 88.5 | 89.3 | 88.3 | 89.9 | 89.9 | 88.8 | 87.9 | 89.4 | 89.3 | 89.1 | 89.6 | 89.5 |
Fs | 9.7 | 10.6 | 10.7 | 10.7 | 9.6 | 9.3 | 9.7 | 9.9 | 9.7 | 9.9 | 9.8 | 9.8 | 9.8 |
Wo | 1.1 | 0.9 | 0.00 | 1.0 | 0.6 | 0.9 | 1.5 | 2.2 | 0.9 | 0.8 | 1.2 | 0.6 | 0.6 |
Mg# | 90.2 | 89.3 | 89.3 | 89.2 | 90.4 | 90.7 | 90.2 | 89.9 | 90.2 | 90.0 | 90.1 | 90.1 | 90.1 |
Sample | ED.88 | ED.89 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anal. No | 6 | 65 | 68 | 32 | 34 | 98 | 109 | 5 | 6 | 7 | 62 | 63 | 64 | 65 |
wt. % | Porph. | Porph. | Porph. | Neobl. | Neobl. | Neobl. | Neobl. | Porph. | Porph. | Porph. | Neobl. | Neobl. | Neobl. | Neobl. |
SiO2 | 43.23 | 42.10 | 42.29 | 41.82 | 43.16 | 43.40 | 42.79 | 42.57 | 41.66 | 42.03 | 41.38 | 41.32 | 45.90 | 42.04 |
FeO | 9.74 | 9.14 | 9.78 | 9.48 | 9.61 | 10.13 | 10.25 | 8.86 | 9.26 | 10.24 | 9.60 | 9.48 | 8.87 | 9.24 |
MnO | - | - | - | - | - | - | - | - | - | - | - | - | 0.28 | - |
MgO | 47.09 | 46.94 | 45.53 | 47.01 | 48.18 | 47.20 | 45.98 | 46.62 | 48.62 | 46.27 | 46.55 | 47.76 | 44.54 | 46.63 |
NiO | 0.37 | 0.51 | 0.85 | 0.29 | - | - | - | 0.76 | 0.41 | 0.38 | 0.61 | 0.48 | - | 0.48 |
Sum | 100.43 | 98.69 | 98.45 | 98.60 | 100.95 | 100.73 | 99.02 | 98.81 | 99.95 | 99.31 | 98.14 | 99.04 | 99.59 | 98.39 |
Formula units based on 4 oxygens | ||||||||||||||
Si | 1.047 | 1.038 | 1.049 | 1.033 | 1.039 | 1.048 | 1.052 | 1.047 | 1.017 | 1.034 | 1.030 | 1.019 | 1.107 | 1.040 |
Mg | 1.701 | 1.725 | 1.683 | 1.732 | 1.729 | 1.699 | 1.685 | 1.709 | 1.769 | 1.697 | 1.728 | 1.756 | 1.601 | 1.720 |
Fe2+ | 0.197 | 0.188 | 0.203 | 0.196 | 0.193 | 0.205 | 0.211 | 0.182 | 0.189 | 0.211 | 0.200 | 0.196 | 0.179 | 0.191 |
Mn | - | - | - | - | - | - | - | - | - | - | - | - | 0.006 | - |
Ni | 0.007 | 0.010 | 0.017 | 0.006 | - | - | - | 0.015 | 0.008 | 0.008 | 0.012 | 0.010 | - | 0.010 |
Total | 2.953 | 2.962 | 2.951 | 2.967 | 2.961 | 2.952 | 2.948 | 2.953 | 2.983 | 2.960 | 2.970 | 2.981 | 2.893 | 2.960 |
Fo | 89.6 | 90.1 | 89.2 | 89.8 | 89.9 | 89.2 | 88.9 | 90.4 | 90.4 | 89.0 | 89.6 | 90.0 | 90.0 | 90.0 |
Fa | 10.4 | 9.9 | 10.8 | 10.2 | 10.1 | 10.8 | 11.1 | 9.6 | 9.6 | 11.0 | 10.4 | 10.0 | 10.0 | 10.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogkala, A.; Petrounias, P.; Tsikouras, B.; Giannakopoulou, P.P.; Hatzipanagiotou, K. Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece). Minerals 2019, 9, 120. https://doi.org/10.3390/min9020120
Rogkala A, Petrounias P, Tsikouras B, Giannakopoulou PP, Hatzipanagiotou K. Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece). Minerals. 2019; 9(2):120. https://doi.org/10.3390/min9020120
Chicago/Turabian StyleRogkala, Aikaterini, Petros Petrounias, Basilios Tsikouras, Panagiota P. Giannakopoulou, and Konstantin Hatzipanagiotou. 2019. "Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece)" Minerals 9, no. 2: 120. https://doi.org/10.3390/min9020120
APA StyleRogkala, A., Petrounias, P., Tsikouras, B., Giannakopoulou, P. P., & Hatzipanagiotou, K. (2019). Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece). Minerals, 9(2), 120. https://doi.org/10.3390/min9020120