Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece)
Abstract
:1. Introduction
2. Geological Setting
3. Petrographic Features
3.1. Lherzolite
3.2. Serpentinised Harzburgite
4. Analytical Methods
5. Mineral Chemistry
5.1. Spinel-Group Minerals
5.2. Pyroxenes
5.3. Olivine
6. Geothermobarometry
7. Discussion
7.1. Alteration Features of Spinel-Group Minerals
7.2. Partial Melting of Mantle Peridotites
7.3. Evidence of Melt-Rock Reaction
7.4. Geotectonic Implications
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dilek, Y.; Eddy, C.A. The Troodos (Cyprus) and Kizildag (S. Turkey) ophiolites as structural models for slow-spreading ridge segments. J. Geol. 1992, 100, 305–322. [Google Scholar] [CrossRef]
- Pelletier, L.; Vils, F.; Kalt, A.; Gmeling, K. Li, B and Be contents of harzburgites from the Dramala Complex (Pindos Ophiolite, Greece): Evidence for a MOR-type mantle in a supra-subduction zone environment. J. Petrol. 2008, 49, 2043–2080. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 2011, 123, 387–411. [Google Scholar] [CrossRef]
- Ahmed, A.H. Highly depleted harzburgite-dunite-chromitite complexes from the Neoproterozoic ophiolite, south Eastern Desert, Egypt: a possible recycled upper mantle lithosphere. Precambrian Res. 2013, 233, 173–192. [Google Scholar] [CrossRef]
- Dai, J.; Wang, C.; Polat, A.; Santosh, M.; Li, Y.; Ge, Y. Rapid forearc spreading between 130 and 120 Ma: evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos 2013, 172–173, 1–16. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolites and their origins. Elements 2014, 10, 93–100. [Google Scholar] [CrossRef]
- Ribeiro, A.; Munhá, J.; Fonseca, P.E.; Araújo, A.; Pedro, J.C.; Mateus, A.; Tassinari, C.; Machado, C.; Jesus, A. Variscan ophiolite belts in the Ossa-Morena Zone (Southwest Iberia): Geological characterization and geodynamic significance. Gondwana Res. 2010, 17, 408–421. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J.A.; Robinson, P.T. The Troodos ophiolite complex probably formed in a subduction initiation, slab edge setting. Gondwana Res. 2010, 18, 60–81. [Google Scholar] [CrossRef]
- Chetty, T.R.K.; Yellappa, T.; Nagesh, P.; Mohanty, D.P.; Venkatasivappa, V.; Santosh, M.; Tsunogae, T. Structural anatomy of a dismembered ophiolite suite from Gondwana: The Manamedu complex, Cauvery suture zone, southern India. J. Asian Earth Sci. 2011, 42, 176–190. [Google Scholar] [CrossRef]
- Saccani, E.; Beccaluva, L.; Photiades, A.; Zeda, O. Petrogenesis and tectono-magmatic significance of basalts and mantle peridotites from the Albania-Greek ophiolites and sub-ophiolitic mélanges. New constraints for the Triassic-Jurassic evolution of the Neo-Tethys in the Dinaride sector. Lithos 2011, 124, 227–242. [Google Scholar] [CrossRef]
- Allahyari, K.; Saccani, E.; Rahimzadeh, B.; Zeda, O. Mineral chemistry and petrology of highly magnesian ultramafic cumulates from the Sarve-Abad (Sawlava) ophiolites (Kurdistan, NW Iran): New evidence for boninitic magmatism in intra-oceanic fore-arc setting in the Neo-Tethys between Arabia and Iran. J. Asian Earth Sci. 2014, 79, 312–328. [Google Scholar] [CrossRef]
- Magganas, A.; Koutsovitis, P. Composition, melting and evolution of the upper mantle beneath the Jurassic Pindos ocean inferred by ophiolitic ultramafic rocks in East Othris, Greece. Int. J. Earth Sci. 2015, 104, 1185–1207. [Google Scholar] [CrossRef]
- Arai, S.; Kadoshima, K.; Moeishita, T. Widespread arc-related melting in the mantle section of the northern Oman ophiolite as inferred from detrital chromian spinels. J. Geol. Soc. Lond. 2006, 163, 869–879. [Google Scholar] [CrossRef]
- Uysal, I.; Kaliwoda, M.; Karsli, O.; Tarkian, M.; Sadiklar, M.B.; Ottley, C.J. Compositional variations as a result of partial melting and melt-peridotites interaction in an upper mantle section from the Ortaca area, southwestern Turkey. Canad. Mineral. 2007, 45, 1791–1813. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Dick, H.J.B.; Quick, J.E. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 1992, 358, 635–641. [Google Scholar] [CrossRef]
- Parkinson, I.J.; Pearce, J.A. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J. Petrol. 1998, 39, 1577–1618. [Google Scholar] [CrossRef]
- Niu, Y. Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J. Petrol. 2004, 45, 2423–2458. [Google Scholar] [CrossRef]
- Dupuis, C.; Hébert, R.; Dubois-Côté, V.; Guilmette, C.; Wang, C.S.; Li, Y.L.; Li, Z.J. The Yarlung Zangbo Suture Zone ophiolite mélange (southern Tibet): new insights from geochemistryof ultramafic rocks. J. Asian Earth Sci. 2005, 25, 937–960. [Google Scholar] [CrossRef]
- Singh, A.K.; Nayak, R.; Khogenkumar, S.; Subramanyam, K.S.V.; Thakur, S.S.; Singh, R.K.B.; Satyanarayanan, M. Genesis and tectonic implications of cumulate pyroxenites and tectonite peridotites from the Nagaland-Manipur ophiolites, Northeast India: constraints from mineralogical and geochemical characteristics. Geol. J. 2017, 52, 415–436. [Google Scholar] [CrossRef]
- Deschamps, F.; Godard, M.; Guillot, S.; Hattori, K. Geochemistry of subduction zone serpentinites: A review. Lithos 2013, 178, 96–127. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Stamatis, P.M.; Tsikouras, B.; Papoulis, D.; Lampropoulou, P.; Hatzipanagiotou, K. The influence of alteration of aggregates on the quality of the concrete: A case study from serpentinites and andesites from central Macedonia (North Greece). Geosciences 2018, 8, 115. [Google Scholar] [CrossRef]
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Lampropoulou, P.; Koutsopoulou, E.; Papoulis, D.; Tsikouras, B.; Hatzipanagiotou, K. The Impact of Secondary Phyllosilicate Minerals on the Engineering Properties of Various Igneous Aggregates from Greece. Minerals 2018, 8, 329. [Google Scholar] [CrossRef]
- Giannakopoulou, P.P.; Petrounias, P.; Rogkala, A.; Tsikouras, B.; Stamatis, P.M.; Pomonis, P.; Hatzipanagiotou, K. The influence of the mineralogical composition of ultramafic rocks on their engineering performance: A case study from the Veria-Naousa and Gerania ophiolite complexes (Greece). Geosciences 2018, 8, 251. [Google Scholar] [CrossRef]
- Barnes, S.J.; Roeder, P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Ghosh, B.; Morishita, T.; Bhatta, K. Significance of chromian spinels from the mantle sequence of the Andaman Ophiolite, India: Paleogeodynamic implications. Lithos 2013, 164–167, 86–96. [Google Scholar] [CrossRef]
- Zhou, M.F.; Robinson, P.T.; Bai, W.J. Formation of podiform chromitites by melt/rock iteraction in the upper mantle. Miner. Depos. 1994, 29, 98–101. [Google Scholar] [CrossRef]
- Karipi, S.; Tsikouras, B.; Hatzipanagiotou, K.; Grammatikopoulos, T.A. Petrogenetic significance of spinel-group minerals from the ultramafic rocks of the Iti and Kallidromo ophiolites (Central Greece). Lithos 2007, 99, 136–149. [Google Scholar] [CrossRef]
- Oh, C.W.; Rajesh, V.J.; Seo, J.; Choi, S.G.; Lee, J.H. Spinel compositions and tectonic relevance of the Bibong ultramafic bodies in the Hongseong collision belt, South Korea. Lithos 2010, 117, 198–208. [Google Scholar] [CrossRef]
- Pomonis, P.; Magganas, A. Petrogenetic Implications for Ophiolite Ultramafic Bodies from Lokris and Beotia (Central Greece) Based on chemistry of their Cr-spinels. Geosciences 2017, 7, 10. [Google Scholar] [CrossRef]
- Guo, G.; Liu, X.; Yang, J.; Pan, J.; Fan, X.; Zhou, W.; Duan, G. Tectonic discrimination of chromian spinels, olivines and pyroxenes in the Northeastern Jiangxi Province ophiolite, South China. Miner. Petrol. 2017, 111, 325–336. [Google Scholar] [CrossRef]
- Rogkala, A.; Petrounias, P.; Tsikouras, B.; Hatzipanagiotou, K. Petrogenetic significance of spinel from serpentinised peridotites from Veria-Naousa ophiolite. Bull. Geol. Soc. Gr. 2016, 50, 1999–2008. [Google Scholar]
- Saccani, E.; Photiades, A.; Santato, A.; Zeda, O. New evidence for supra-subduction zone ophiolites in the Vardar zone of northern Greece: implications for the tectonomagmatic evolution of the Vardar oceanic basin. Ofioliti 2008, 33, 65–85. [Google Scholar]
- Michailidis, K.M. Zoned chromites with high Mn-contents in the Fe-Ni-Cr-laterite ore deposits from the Edessa area in Northern Greece. Miner. Depos. 1990, 25, 190–197. [Google Scholar] [CrossRef]
- Vérgely, P. Origine “vardarienne”, chevauchement vers l’Ouest et rétrocharriage vers l’Est des ophiolites de Macédoine (Grèce) au cours du Jurassique supérieur-Eocrétacé. CR Acad. Sci. Paris 1976, 280, 1063–1066. [Google Scholar]
- Decourt, J.; Aubouin, J.; Savoyat, E. Le sillon mésohellénique et la zone pélagonienne. Bull. Soc. Géol. Fr. 1977, 1, 32–70. [Google Scholar]
- Pe-Piper, G.; Piper, D.J.W. The Igneous Rocks of Greece: The Anatomy of an Orogen; Gebrueder Borntraeger: Berlin/Stuttgart, Germany, 2002. [Google Scholar]
- Rogkala, A.; Petrounias, P.; Tsikouras, B.; Hatzipanagiotou, K. New occurrence of pyroxenites in the Veria-Naousa ophiolite (north Greece): Implications on their origin and petrogenetic evolution. Geosciences 2017, 7, 92. [Google Scholar] [CrossRef]
- Mercier, J.L.; Vergely, P. Geological Map of Greece, Edhessa Sheet, 1:50.000; IGME: Athens, Greece, 1984. [Google Scholar]
- Brunn, J.H. Geological Map of Greece, Veroia Sheet, 1:50.000; IGME: Athens, Greece, 1982. [Google Scholar]
- Eleftheriadis, G.; Castorina, F.; Soldatos, T.; Masi, U. Geochemical and Sr-Nd isotopic evidence for the genesis of the Late Cainozoic Almopia volcanic rocks (Central Macedonia, Greece). Miner. Petrol. 2003, 78, 21–36. [Google Scholar] [CrossRef]
- Arai, S. Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem. Geol. 1994, 113, 191–204. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Lian, D.; Yang, J.; Robinson, P.T.; Liu, F.; Xiong, F.; Zhang, L.; Gao, J.; Wu, W. Tectonic evolution of the western Yarlung Zangbo Ophiolitic Belt, Tibet: implications from the petrology, mineralogy, and geochemistry of peridotites. J. Geol. 2016, 124, 353–376. [Google Scholar] [CrossRef]
- Pirard, C.; Hermann, J.; O’Neil, H.S.C. Petrology and Geochemistry of the Crust-Mantle Boundary in a Nascent Arc, Massif du Sud Ophiolite, New Caledonia, SW Pacific. J. Petrol. 2013, 54, 1759–1792. [Google Scholar] [CrossRef]
- De Hoog, J.C.M.; Gall, L.; Cornell, D. Trace element geochemistry of mantle olivine and applications to mantle petrogenesis and geothermobarometry. Chem. Geol. 2010, 270, 196–215. [Google Scholar] [CrossRef]
- Sobolev, A.V.; Hofmann, A.W.; Sobolev, S.V.; Nikogosian, I.K. An olivine-free mantle source of Hawaiian shield basalts. Nature 2005, 434, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Robinson, P.T.; Maekawa, H.; Fiske, R. Petrological Studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu-Mariana Fore-arc, Leg 125. Proceedings of the Ocean Drilling Program. Scientific Results 125. 1992, pp. 445–485. Available online: http://www-odp.tamu.edu/publications/125_SR/VOLUME/CHAPTERS/sr125_27.pdf (accessed on 17 February 2019).
- Brey, G.P.; Köhler, T. Geothermobarometry in four-phase lherzolites. II. New thermobarometers and practical assessment of existing thermobarometers. J. Petrol. 1990, 31, 1353–1378. [Google Scholar] [CrossRef]
- Mellini, M.; Rumori, C.; Viti, C. Hydrothermally reset magmatic spinels in retrograde serpentinites: Formation of “ferritchromit” rims and chlorite aureoles. Contrib. Mineral. Petrol. 2005, 149, 266–275. [Google Scholar] [CrossRef]
- Banerjee, R.; Ray, D.; Ishii, T. Mineral Chemistry and Alteration Characteristics of Spinel in Serpentinised Peridotites from the Northern Central Indian Ridge. J. Geol. Soc. India 2015, 86, 41–51. [Google Scholar] [CrossRef]
- Barnes, S.J. Chromite in komatiites. II. Modification during greenschist to mid-amphibolite facies metamorphism. J. Petrol. 2000, 41, 387–409. [Google Scholar] [CrossRef]
- Sabah, A.I. Chemistry of accessory chromian spinel in serpentinites from the Panjwen ophiolite rocks, Zagros thrust zone, northeastern Iraq. J. Kirkuk University-Scientific Studies 2009, 4, 1–21. [Google Scholar]
- Economou-Eliopoulos, M. Apatite and Mn, Zn, Co-enriched chromite in Ni Laterites of northern Greece and their genetic significance. J. Geochem. Explor. 2003, 80, 41–54. [Google Scholar] [CrossRef]
- Gahlan, H.A.; Arai, S. Genesis of peculiarly zoned Co, Zn and Mn-rich chromian spinel in serpentinite of Bou-Azzer ophiolite, Anti-Atlas, Morocco. J. Miner. Petrol. Sci. 2007, 102, 69–85. [Google Scholar] [CrossRef] [Green Version]
- Barra, F.; Gervilla, F.; Hernández, E.; Reich, M.; Padrón-Navarta, J.A.; González-Jiménez, J.M. Alteration patterns of chromian spinels from La Cabana peridotite, south-central Chile. Miner. Petrol. 2014, 108, 819–836. [Google Scholar] [CrossRef]
- Li, X.P.; Zhang, L.; Wei, C.; Ai, Y.; Chen, J. Petrology of rodingite derived from eclogite in western Tianshan, China. J. Metamorph. Geol. 2007, 25, 363–382. [Google Scholar] [CrossRef]
- Tsikouras, B.; Karipi, S.; Rigopoulos, I.; Perraki, M.; Pomonis, P.; Hatzipanagiotou, K. Geochemical processes and petrogenetic evolution of rodingite dykes in the ophiolite complex of Othrys (Central Greece). Lithos 2009, 113, 540–554. [Google Scholar] [CrossRef]
- Tsikouras, B.; Karipi, S.; Hatzipanagiotou, K. Evolution of rodingites along stratigraphic depth in the Iti and Kallidromon ophiolites (Central Greece). Lithos 2013, 175–176, 16–29. [Google Scholar] [CrossRef]
- Choi, S.H.; Shervais, J.W.; Mukasa, S.B. Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contrib. Mineral. Petrol. 2008, 156, 551–576. [Google Scholar] [CrossRef]
- Pearce, J.A.; Barker, P.F.; Edwards, S.J.; Parkinson, I.J.; Leat, P.T. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, south Atlantic. Contrib. Mineral. Petrol. 2000, 139, 36–53. [Google Scholar] [CrossRef]
- Baker, M.B.; Stolper, E.M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta 1994, 58, 2811–2827. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Natland, J.H. Late stage melt evolution and transport in the shallow mantle neneath the East Pacific Rise. In Proceedings-Ocean Drilling Program Scientific Results; National Science Foundation: Alexandria, VA, USA, 1996; pp. 103–134. [Google Scholar]
- Uysal, I.; Ersoy, E.Y.; Karsli, O.; Dilek, Y.; Burthan Sadiklar, M.; Ottley, C.J.; Tiepolo, M.; Meisel, T. Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a neo-Tethyan ophiolite in SW Turkey: constraints from mineral composition, whole-rock geochemistry (major-rare-REE-PGE), and Re-Os isotope systematics. Lithos 2012, 132–133, 50–69. [Google Scholar] [CrossRef]
- Arai, S. Commotional variation of olivine-chromian spinel in Mg-rich magma as guide to their residual spinel peridotites. J. Geol. Soc. Lond. 1994, 163, 869–879. [Google Scholar] [CrossRef]
- Dokz, A.; Uysal, I.; Kaliwoda, M.; Karsli, O.; Ottley, C.J.; Kandemir, R. Early abyssal- and late SSZ-type vestiges of the Rheic oceanic mantle in the Variscanbasement of the Sakaryan Zone, NE Turkey: Implications for the sense of subduction and opening of the Paleotethys. Lithos 2011, 127, 176–191. [Google Scholar] [CrossRef]
- Seyler, M.; Lorand, J.P.; Dick, H.J.B.; Drouin, M. Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15o 20´N: ODP Hole 1274A. Contrib. Mineral. Petrol. 2007, 153, 303–319. [Google Scholar] [CrossRef]
- Dick, H.J.B.; Fisher, R.L. Mineralogical studies of the residues of mantle melting: abyssal and alpine-type peridotites. In Kimberlite II the Mantle and Crust-Mantle Relationships; Kornprobst, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 295–308. [Google Scholar]
- Zhou, M.F.; Robinson, P.T.; Malpas, J.; Edwards, S.J.; Qi, L. REE and PGE geochemical constraints on the formation of dunites in the Luobusa Ophiolite, southern Tibet. J. Petrol. 2005, 46, 615–639. [Google Scholar] [CrossRef]
- Uysal, I.; Ersoy, E.Y.; Dilek, Y.; Kapsiotis, A.; Sarifakioğlu, E. Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the heterogeneous upper mantle sequence of the Neotethyan Eldivan ophiolite, Turkey. Lithos 2016, 246–247, 228–245. [Google Scholar] [CrossRef]
- Hébert, R.; Adamson, A.C.; Komor, S.C. Metamorphic petrology of ODP 109, Hole 670A serpentinized peridotites: serpentinization processes at a slow spreading ridge environment. Proceedings of the ODP, Sci. Results 106/109. Detrick, R., Honnorez, J., Bryan, W.B., Juteau, T., Eds.; 1990, pp. 103–115. Available online: http://www-odp.tamu.edu/publications/106109SR/VOLUME/CHAPTERS/sr106109_09.pdf (accessed on 17 February 2019).
- Hellebrand, E.; Show, J.F.; Dick, H.J.B.; Hofmann, A.W. Coupled major and trace elements as indicators of the extent of melting in the mid-ocean-ridge peridotites. Nature 2001, 410, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Ishiwatari, A.; Sokolov, S.D.; Vysotskiy, S.V. Petrological diversity and origin of ophiolites in Japan and Far East Russia with emphasis on depleted harzburgite. Geol. Soc. Lond. Spec. Publ. 2003, 218, 597–617.s. [Google Scholar] [CrossRef]
- Suhr, G.; Kelemen, P.; Paulick, H. Microstructures in Hole 1274A peridotites, ODP Leg 209, Mid-Atlantic Ridge: Tracking the fate of melts percolating in peridotite as the lithosphere is intercepted. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Seyler, M.; Toplis, M.J.; Lorand, J.P.; Luguet, A.; Cannat, M. Clinopyroxene microtextures reveal incompletely extracted melts in abyssal peridotites. Geology 2001, 29, 155–158. [Google Scholar] [CrossRef]
- Hellebrand, E.; Snow, J.E.; Hoppe, P.; Hofmann, A.W. Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J. Petrol. 2002, 43, 2305–2338. [Google Scholar] [CrossRef]
- Brunelli, D.; Seyler, M.; Cipriano, A.; Ottolini, L.; Bonatti, E. Discontinuous melt extraction and weak refertilization of mantle Peridotites at the Vema Lithospheric Section (Mid-Antlantic Ridge). J. Petrol. 2006, 47, 745–771. [Google Scholar] [CrossRef]
- Spiegelman, M.; Kelemen, P.B.; Aharonov, E. Causes and consequences of flow organization during melt transport: The Reaction infiltration instability. J. Geophys. Res. 2001, 106, 2061–2078. [Google Scholar] [CrossRef]
- Matsumoto, I.; Arai, S. Morphological and chemical variations of chromian spinel in dunite-harzburgite complexes from the Sangun Zone (SW Japan): Implications for mantle/melt reaction and chromitite formation processes. Mineral. Petrol. 2001, 73, 305–323. [Google Scholar] [CrossRef]
- Cannat, M.; Lagabrielle, Y.; Bougault, H.; Casev, J.; de Coutures, N.; Dmitriev, L.; Fouquet, Y. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15°N region. Tectonophysics 1997, 279, 193–213. [Google Scholar] [CrossRef]
- Hellebrand, E.; Snow, J.; Dick, H.J.B.; Devey, C.W.; Hofmann, A.W. Reactive crack flow in the oceanic mantle: an ion probe study on cpx from vein-bearing abyssal peridotites. Ofioliti 1999, 24, 106–107. [Google Scholar]
- Kaczmarek, M.A.; Müntener, O. Juxtaposition of melt impregnation and high-temperature shear zone in the mantle; Field and petrological constraints form the Lanzo peridotite (Northern Italy). J. Petrol. 2008, 49, 2187–2220. [Google Scholar] [CrossRef]
- Zhang, P.; Uysal, I.; Zhou, M.; Su, B.; Avci, E. Subduction initiation for the formation of high-Cr chromitites in the kop ophiolite, NE Turkey. Lithos 2016, 260, 345–355. [Google Scholar] [CrossRef]
- Batanova, V.G.; Sobolev, A.V. Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geology 2000, 28, 55–58. [Google Scholar] [CrossRef]
- Parkinson, I.J.; Pearce, J.A.; Thirwall, M.F.; Johnson, K.T.M.; Ingram, G. Trace Element Geochemistry of Peridotites from the Izu-Bonin-Mariana forearc, Leg 125. Available online: http://www-odp.tamu.edu/publications/125_SR/VOLUME/CHAPTERS/sr125_28.pdf (accessed on 3 March 2017).
- Smith, A.G. Tectonic significance of the Hellenic-Dinaric ophiolites. Geol. Soc. Lond. Spec. Publ. 1993, 76, 213–243. [Google Scholar] [CrossRef]
- Bizimis, M.; Salters, V.J.M.; Bonatti, E. Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem. Geol. 2000, 165, 67–85. [Google Scholar] [CrossRef]
- Parkinson, I.J.; Pearce, J.A.; Thirwall, M.F.; Johnson, K.T.M.; Ingram, G. Trace element geochemistry of peridotites from the Izu-Bonin-Mariana forearc, Leg 125. Proceedings of the ODP science results, 125. Ocean Drilling Program, College Station. Fryer, P., Pearce, J.A., Stokking, L.B., Eds.; 1992, pp. 487–506. Available online: https://pdfs.semanticscholar.org/23cb/d23207c20eb9e2c1664d4a01a9b036da9bfa.pdf (accessed on 17 February 2019).
- Yang, J.S.; Robinson, P.T.; Dilek, Y. Diamonds in ophiolites. Elements 2014, 10, 127–130. [Google Scholar] [CrossRef]
- Shervais, J.W. Birth, death, and resurrection: the life cycle of subduction zone ophiolites. Geochem. Geophys. 2001, 2, 1010. [Google Scholar] [CrossRef]
Rock-Type | Lherzolite | Harzburgite | ||||||||||||||||
Sample | ED.88 | ED.89 | BE.117 | |||||||||||||||
Anal.NO. | 14 | 16 | 28 | 38 | 54 | 79 | 92 | 28 | 30 | 34 | 36 | 66 | 90 | 1 | 3 | 4 | 5 | 6 |
wt. % | Al-sp | Al-sp | Al-sp | Al-sp | Al-sp | Cr-sp | Cr-sp | Al-sp | Al-sp | Al-sp | Al-sp | Al-sp | Al-sp | Cr-sp | Cr-sp | Cr-sp | Cr-sp | Cr-sp |
TiO2 | - | 0.15 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Al2O3 | 59.03 | 50.70 | 42.31 | 56.25 | 56.29 | 31.78 | 40.39 | 52.39 | 44.74 | 56.71 | 54.82 | 58.79 | 57.81 | 41.17 | 39.65 | 40.93 | 39.88 | 41.47 |
FeO | 12.15 | 14.17 | 17.57 | 12.48 | 12.68 | 22.58 | 19.35 | 15.15 | 16.05 | 13.48 | 13.48 | 11.35 | 13.46 | 13.70 | 14.54 | 13.95 | 13.86 | 14.51 |
MnO | - | 0.14 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.20 | 0.34 | - |
MgO | 20.01 | 18.74 | 14.86 | 19.36 | 20.18 | 11.50 | 14.34 | 18.60 | 16.22 | 19.87 | 19.15 | 20.55 | 20.34 | 16.64 | 16.42 | 16.77 | 15.61 | 16.53 |
Cr2O3 | 7.11 | 16.15 | 25.30 | 8.58 | 10.87 | 34.01 | 27.41 | 14.51 | 21.47 | 9.64 | 10.72 | 7.44 | 10.34 | 27.44 | 28.55 | 27.17 | 28.24 | 27.59 |
NiO | 0.44 | 0.27 | - | 0.59 | 0.24 | - | - | - | - | 0.52 | 0.38 | 0.53 | - | 0.25 | 0.18 | 0.20 | 0.34 | 0.44 |
Sum | 98.74 | 100.2 | 100.04 | 97.26 | 100.26 | 99.87 | 101.49 | 100.65 | 98.48 | 100.22 | 98.55 | 98.66 | 101.95 | 99.20 | 99.34 | 99.26 | 98.27 | 100.54 |
Formula units based on 3 cations | ||||||||||||||||||
Al | 1.806 | 1.590 | 1.402 | 1.762 | 1.718 | 1.119 | 1.337 | 1.630 | 1.474 | 1.732 | 1.712 | 1.796 | 1.734 | 1.364 | 1.321 | 1.355 | 1.346 | 1.360 |
Ti | - | 0.003 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.001 | - | - |
Cr | 0.146 | 0.340 | 0.562 | 0.180 | 0.223 | 0.804 | 0.609 | 0.303 | 0.475 | 0.198 | 0.225 | 0.152 | 0.208 | 0.610 | 0.638 | 0.604 | 0.639 | 0.607 |
Fe3+ | 0.048 | 0.064 | 0.036 | 0.057 | 0.059 | 0.077 | 0.055 | 0.067 | 0.051 | 0.071 | 0.063 | 0.051 | 0.058 | 0.025 | 0.040 | 0.038 | 0.014 | 0.033 |
Mg | 0.775 | 0.743 | 0.623 | 0.767 | 0.779 | 0.512 | 0.600 | 0.732 | 0.676 | 0.768 | 0.756 | 0.794 | 0.772 | 0.698 | 0.692 | 0.702 | 0.666 | 0.686 |
Ni | 0.009 | 0.006 | - | 0.013 | 0.005 | - | - | - | - | 0.011 | 0.008 | 0.011 | - | 0.006 | 0.004 | 0.005 | 0.008 | 0.010 |
Fe2+ | 0.216 | 0.251 | 0.377 | 0.220 | 0.216 | 0.488 | 0.400 | 0.268 | 0.324 | 0.222 | 0.235 | 0.195 | 0.228 | 0.297 | 0.304 | 0.290 | 0.317 | 0.305 |
Mn | - | 0.003 | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.005 | 0.008 | - |
Cr# | 7.5 | 17.6 | 28.6 | 9.3 | 11.5 | 41.8 | 31.3 | 15.7 | 24.4 | 10.2 | 11.6 | 7.8 | 10.7 | 30.9 | 32.6 | 30.8 | 32.2 | 30.9 |
Mg# | 78.2 | 74.7 | 62.3 | 77.7 | 78.3 | 51.2 | 60.0 | 73.2 | 67.6 | 77.6 | 76.3 | 80.3 | 77.2 | 70.2 | 69.5 | 70.4 | 67.7 | 69.2 |
F | 1 | 7 | 12 | 1 | 2 | * | * | 5 | 10 | 1 | 2 | 1 | 2 | 12 | 13 | 12 | 13 | 12 |
Rock-Type | Harzburgite | |||||||||||||||||
Sample | ED.28.2 | ED.33 | ED.115 | |||||||||||||||
Anal. No. | 6 | 51 | 101 | 124 | 145 | 12 | 58 | 60 | 1 | 3 | 16 | 20 | 1 | 3 | 4 | 16 | 17 | |
wt. % | Cr-sp | Cr-sp | Cr-sp | Cr-sp | Cr-sp | Fe-chr | Fe-chr | Fe-chr | Cr-sp | Cr-sp | Cr-sp | Fe-chr | Chr | Chr | Chr | Chr | Chr | |
Al2O3 | 31.24 | 33.67 | 27.56 | 24.35 | 25.90 | 8.56 | 3.36 | 2.30 | 23.37 | 23.59 | 24.62 | 1.68 | 15.88 | 14.83 | 16.30 | 15.95 | 15.33 | |
FeO | 19.05 | 18.56 | 19.46 | 18.51 | 17.95 | 43.54 | 59.64 | 58.33 | 15.22 | 15.45 | 16.42 | 38.12 | 18.73 | 18.43 | 19.31 | 19.94 | 19.57 | |
MnO | - | - | - | - | - | 9.51 | 5.35 | 6.39 | - | - | - | 12.12 | - | - | - | - | - | |
MgO | 13.32 | 13.76 | 13.75 | 14.18 | 13.09 | 1.71 | 1.68 | 1.65 | 14.09 | 14.03 | 13.83 | 2.15 | 10.79 | 11.19 | 10.53 | 9.63 | 10.79 | |
Cr2O3 | 37.40 | 35.91 | 40.51 | 42.89 | 44.04 | 36.24 | 29.42 | 31.26 | 49.19 | 47.28 | 45.79 | 41.60 | 54.99 | 55.12 | 53.19 | 54.68 | 54.30 | |
NiO | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
ZnO | - | - | - | - | - | - | - | - | - | - | - | 3.02 | - | - | - | - | - | |
Sum | 101.01 | 101.90 | 101.28 | 99.93 | 100.98 | 99.56 | 99.45 | 99.93 | 101.87 | 100.35 | 100.66 | 98.69 | 100.39 | 99.57 | 99.33 | 100.20 | 99.99 | |
Formula units based on 3 cations | ||||||||||||||||||
Al | 1.081 | 1.143 | 0.962 | 0.868 | 0.917 | 0.353 | 0.141 | 0.097 | 0.825 | 0.842 | 0.874 | 0.072 | 0.598 | 0.563 | 0.619 | 0.606 | 0.580 | |
Cr | 0.868 | 0.818 | 0.949 | 1.025 | 1.046 | 1.002 | 0.829 | 0.882 | 1.165 | 1.133 | 1.091 | 1.197 | 1.388 | 1.403 | 1.355 | 1.394 | 1.378 | |
Fe3+ | 0.051 | 0.038 | 0.089 | 0.107 | 0.037 | 0.645 | 1.029 | 1.021 | 0.010 | 0.025 | 0.035 | 0.731 | 0.014 | 0.034 | 0.026 | - | 0.042 | |
Mg | 0.583 | 0.591 | 0.607 | 0.639 | 0.586 | 0.089 | 0.089 | 0.088 | 0.629 | 0.634 | 0.621 | 0.117 | 0.514 | 0.537 | 0.506 | 0.463 | 0.516 | |
Ni | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
Fe2+ | 0.417 | 0.409 | 0.393 | 0.361 | 0.414 | 0.629 | 0.749 | 0.719 | 0.371 | 0.366 | 0.379 | 0.429 | 0.486 | 0.463 | 0.494 | 0.537 | 0.484 | |
Mn | - | - | - | - | - | 0.282 | 0.162 | 0.193 | - | - | - | 0.374 | - | - | - | - | - | |
Zn | - | - | - | - | - | - | - | - | - | - | - | 0.081 | - | - | - | - | - | |
Cr# | 44.5 | 41.7 | 49.6 | 54.2 | 53.3 | 74.0 | 85.5 | 90.1 | 58.5 | 57.4 | 55.5 | 94.3 | 69.9 | 71.4 | 68.6 | 69.7 | 70.4 | |
Mg# | 58.3 | 59.1 | 60.7 | 63.9 | 58.6 | 12.4 | 10.7 | 10.9 | 62.9 | 63.4 | 62.1 | 21.4 | 51.4 | 53.7 | 50.6 | 46.3 | 51.6 | |
F | 16 | 15 | 17 | 18 | 18 | * | * | * | 19 | 18 | 18 | * | * | * | * | * | * |
Rock-Type | Lherzolite | Harzburgite | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | ED.88 | ED.89 | BE.117 | |||||||||||
Anal. No | 75 | 76 | 107 | 83 | 95 | 102 | 52 | 53 | 60 | 18 | 19 | 21 | 39 | 43 |
wt. % | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Neobl. | Neobl. | Neobl. | Porph. | Porph. | Porph. | Porph. | Porph. |
SiO2 | 54.13 | 53.59 | 52.78 | 54.71 | 53.38 | 52.04 | 54.66 | 53.59 | 55.44 | 52.18 | 52.76 | 52.56 | 55.44 | 52.81 |
TiO2 | 0.71 | 0.64 | 1.14 | 0.67 | 0.49 | 0.29 | 0.15 | 0.95 | 0.25 | - | - | - | - | - |
Al2O3 | 6.05 | 6.60 | 5.25 | 1.74 | 4.71 | 6.21 | 2.30 | 2.60 | 1.46 | 4.58 | 3.47 | 3.65 | 2.38 | 3.23 |
FeO | 3.06 | 2.70 | 2.61 | 2.53 | 2.69 | 2.92 | 2.28 | 2.33 | 2.21 | 2.06 | 2.07 | 2.23 | 2.12 | 1.66 |
MgO | 15.30 | 13.80 | 14.81 | 16.49 | 15.01 | 13.46 | 16.29 | 15.88 | 16.81 | 16.16 | 15.99 | 16.62 | 16.42 | 16.07 |
CaO | 21.14 | 21.42 | 23.51 | 23.10 | 22.03 | 20.61 | 23.36 | 22.65 | 23.04 | 22.96 | 24.34 | 23.14 | 23.17 | 23.47 |
Na2O | 0.81 | 0.93 | 0.82 | - | 0.78 | 0.97 | - | - | - | - | - | - | - | - |
Cr2O3 | 0.58 | 0.45 | 0.59 | 0.61 | 0.93 | 1.06 | 0.50 | 0.62 | 0.41 | 1.39 | 0.83 | 1.35 | 0.57 | 0.78 |
Sum | 101.78 | 100.13 | 101.51 | 99.85 | 100.02 | 97.56 | 99.54 | 98.62 | 99.62 | 99.33 | 99.46 | 99.55 | 100.10 | 98.02 |
Formula units based on 6 oxygens | ||||||||||||||
Si | 1.916 | 1.925 | 1.891 | 1.981 | 1.930 | 1.924 | 1.983 | 1.963 | 2.000 | 1.903 | 1.927 | 1.916 | 1.994 | 1.947 |
Aliv | 0.084 | 0.075 | 0.109 | 0.019 | 0.070 | 0.076 | 0.017 | 0.037 | - | 0.097 | 0.073 | 0.084 | 0.006 | 0.053 |
Alvi | 0.168 | 0.205 | 0.112 | 0.056 | 0.131 | 0.195 | 0.081 | 0.075 | 0.062 | 0.100 | 0.076 | 0.073 | 0.095 | 0.087 |
Fe3+ | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Ti | 0.019 | 0.017 | 0.031 | 0.018 | 0.013 | 0.008 | 0.004 | 0.026 | 0.007 | - | - | - | - | - |
Cr | 0.016 | 0.013 | 0.017 | 0.017 | 0.027 | 0.031 | 0.014 | 0.018 | 0.012 | 0.040 | 0.024 | 0.039 | 0.016 | 0.023 |
Mg | 0.807 | 0.739 | 0.791 | 0.890 | 0.809 | 0.742 | 0.881 | 0.867 | 0.906 | 0.879 | 0.871 | 0.903 | 0.880 | 0.883 |
Fe2+ | 0.091 | 0.081 | 0.078 | 0.077 | 0.081 | 0.090 | 0.069 | 0.071 | 0.067 | 0.063 | 0.063 | 0.068 | 0.064 | 0.051 |
Ca | 0.802 | 0.824 | 0.902 | 0.896 | 0.854 | 0.816 | 0.908 | 0.889 | 0.893 | 0.897 | 0.952 | 0.904 | 0.893 | 0.927 |
Na | 0.056 | 0.065 | 0.057 | - | 0.055 | 0.070 | - | - | - | - | - | - | - | - |
En | 47.5 | 44.9 | 44.7 | 47.8 | 46.4 | 45.0 | 47.4 | 47.5 | 48.6 | 47.8 | 46.2 | 48.2 | 47.9 | 47.4 |
Fs | 5.3 | 4.9 | 4.4 | 4.1 | 4.7 | 5.5 | 3.7 | 3.9 | 3.6 | 3.4 | 3.4 | 3.6 | 3.5 | 2.7 |
Wo | 47.2 | 50.1 | 50.9 | 48.1 | 48.9 | 49.5 | 48.9 | 48.6 | 47.9 | 48.8 | 50.5 | 48.2 | 48.6 | 49.8 |
Mg# | 89.9 | 90.1 | 91.0 | 92.1 | 90.9 | 89.2 | 92.7 | 92.4 | 93.1 | 93.3 | 93.2 | 93.0 | 93.2 | 94.5 |
Rock-Type | Lherzolite | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | ED.88 | ED.89 | |||||||||||
Anal. No | 16 | 17 | 19 | 101 | 102 | 104 | 111 | 14 | 24 | 46 | 68 | 69 | 70 |
wt. % | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. | Porph. |
SiO2 | 57.91 | 57.57 | 58.34 | 56.62 | 55.45 | 57.60 | 56.35 | 56.27 | 57.15 | 56.41 | 57.17 | 56.35 | 56.06 |
TiO2 | - | 0.16 | 0.23 | - | 0.52 | - | - | - | - | 0.29 | - | - | - |
Al2O3 | 4.48 | 4.04 | 3.09 | 4.84 | 4.03 | 4.01 | 4.63 | 5.07 | 4.46 | 2.94 | 3.35 | 3.86 | 4.24 |
FeO | 6.18 | 6.55 | 6.63 | 6.58 | 5.95 | 5.98 | 6.06 | 6.48 | 6.32 | 6.35 | 6.36 | 6.46 | 6.19 |
MnO | - | 0.30 | 0.33 | 0.27 | - | - | - | - | - | - | - | - | - |
MgO | 31.93 | 31.97 | 32.55 | 31.67 | 31.29 | 32.57 | 31.15 | 32.28 | 32.65 | 32.18 | 32.54 | 33.11 | 31.66 |
CaO | 0.53 | 0.45 | - | 0.52 | 0.27 | 0.43 | 0.72 | 1.10 | 0.45 | 0.42 | 0.60 | 0.29 | 0.32 |
Na2O | - | - | - | - | - | - | - | - | - | - | - | - | - |
Cr2O3 | 0.33 | - | 0.49 | - | 0.32 | - | 0.42 | - | 0.57 | 0.33 | 0.56 | 0.11 | 0.37 |
NiO | - | - | - | - | - | - | - | - | - | - | - | - | - |
Sum | 101.46 | 101.04 | 101.66 | 100.50 | 97.83 | 100.59 | 99.33 | 101.20 | 101.60 | 98.92 | 100.58 | 100.18 | 98.84 |
Formula units based on 6 oxygens | |||||||||||||
Si | 1.957 | 1.958 | 1.973 | 1.938 | 1.945 | 1.960 | 1.947 | 1.916 | 1.934 | 1.961 | 1.956 | 1.935 | 1.947 |
Aliv | 0.043 | 0.042 | 0.027 | 0.062 | 0.055 | 0.040 | 0.053 | 0.084 | 0.066 | 0.039 | 0.044 | 0.065 | 0.053 |
Alvi | 0.136 | 0.120 | 0.096 | 0.133 | 0.111 | 0.121 | 0.135 | 0.119 | 0.112 | 0.082 | 0.091 | 0.091 | 0.120 |
Fe3+ | - | - | - | - | - | - | - | - | - | - | - | - | - |
Ti | - | 0.004 | 0.006 | - | 0.014 | - | - | - | - | 0.008 | - | - | - |
Cr | 0.009 | - | 0.013 | - | 0.009 | - | 0.011 | - | 0.015 | 0.009 | 0.015 | 0.003 | 0.010 |
Ni | - | - | - | - | - | - | - | - | - | - | - | - | - |
Mg | 1.609 | 1.621 | 1.641 | 1.616 | 1.636 | 1.652 | 1.604 | 1.638 | 1.647 | 1.668 | 1.659 | 1.695 | 1.639 |
Fe2+ | 0.175 | 0.186 | 0.188 | 0.188 | 0.174 | 0.170 | 0.175 | 0.185 | 0.179 | 0.185 | 0.182 | 0.186 | 0.180 |
Mn | - | 0.009 | 0.009 | 0.008 | - | - | - | - | - | - | - | - | - |
Ca | 0.019 | 0.016 | - | 0.019 | 0.010 | 0.016 | 0.027 | 0.040 | 0.016 | 0.016 | 0.022 | 0.011 | 0.012 |
Na | - | - | - | - | - | - | - | - | - | - | - | - | - |
En | 89.3 | 88.5 | 89.3 | 88.3 | 89.9 | 89.9 | 88.8 | 87.9 | 89.4 | 89.3 | 89.1 | 89.6 | 89.5 |
Fs | 9.7 | 10.6 | 10.7 | 10.7 | 9.6 | 9.3 | 9.7 | 9.9 | 9.7 | 9.9 | 9.8 | 9.8 | 9.8 |
Wo | 1.1 | 0.9 | 0.00 | 1.0 | 0.6 | 0.9 | 1.5 | 2.2 | 0.9 | 0.8 | 1.2 | 0.6 | 0.6 |
Mg# | 90.2 | 89.3 | 89.3 | 89.2 | 90.4 | 90.7 | 90.2 | 89.9 | 90.2 | 90.0 | 90.1 | 90.1 | 90.1 |
Sample | ED.88 | ED.89 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anal. No | 6 | 65 | 68 | 32 | 34 | 98 | 109 | 5 | 6 | 7 | 62 | 63 | 64 | 65 |
wt. % | Porph. | Porph. | Porph. | Neobl. | Neobl. | Neobl. | Neobl. | Porph. | Porph. | Porph. | Neobl. | Neobl. | Neobl. | Neobl. |
SiO2 | 43.23 | 42.10 | 42.29 | 41.82 | 43.16 | 43.40 | 42.79 | 42.57 | 41.66 | 42.03 | 41.38 | 41.32 | 45.90 | 42.04 |
FeO | 9.74 | 9.14 | 9.78 | 9.48 | 9.61 | 10.13 | 10.25 | 8.86 | 9.26 | 10.24 | 9.60 | 9.48 | 8.87 | 9.24 |
MnO | - | - | - | - | - | - | - | - | - | - | - | - | 0.28 | - |
MgO | 47.09 | 46.94 | 45.53 | 47.01 | 48.18 | 47.20 | 45.98 | 46.62 | 48.62 | 46.27 | 46.55 | 47.76 | 44.54 | 46.63 |
NiO | 0.37 | 0.51 | 0.85 | 0.29 | - | - | - | 0.76 | 0.41 | 0.38 | 0.61 | 0.48 | - | 0.48 |
Sum | 100.43 | 98.69 | 98.45 | 98.60 | 100.95 | 100.73 | 99.02 | 98.81 | 99.95 | 99.31 | 98.14 | 99.04 | 99.59 | 98.39 |
Formula units based on 4 oxygens | ||||||||||||||
Si | 1.047 | 1.038 | 1.049 | 1.033 | 1.039 | 1.048 | 1.052 | 1.047 | 1.017 | 1.034 | 1.030 | 1.019 | 1.107 | 1.040 |
Mg | 1.701 | 1.725 | 1.683 | 1.732 | 1.729 | 1.699 | 1.685 | 1.709 | 1.769 | 1.697 | 1.728 | 1.756 | 1.601 | 1.720 |
Fe2+ | 0.197 | 0.188 | 0.203 | 0.196 | 0.193 | 0.205 | 0.211 | 0.182 | 0.189 | 0.211 | 0.200 | 0.196 | 0.179 | 0.191 |
Mn | - | - | - | - | - | - | - | - | - | - | - | - | 0.006 | - |
Ni | 0.007 | 0.010 | 0.017 | 0.006 | - | - | - | 0.015 | 0.008 | 0.008 | 0.012 | 0.010 | - | 0.010 |
Total | 2.953 | 2.962 | 2.951 | 2.967 | 2.961 | 2.952 | 2.948 | 2.953 | 2.983 | 2.960 | 2.970 | 2.981 | 2.893 | 2.960 |
Fo | 89.6 | 90.1 | 89.2 | 89.8 | 89.9 | 89.2 | 88.9 | 90.4 | 90.4 | 89.0 | 89.6 | 90.0 | 90.0 | 90.0 |
Fa | 10.4 | 9.9 | 10.8 | 10.2 | 10.1 | 10.8 | 11.1 | 9.6 | 9.6 | 11.0 | 10.4 | 10.0 | 10.0 | 10.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogkala, A.; Petrounias, P.; Tsikouras, B.; Giannakopoulou, P.P.; Hatzipanagiotou, K. Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece). Minerals 2019, 9, 120. https://doi.org/10.3390/min9020120
Rogkala A, Petrounias P, Tsikouras B, Giannakopoulou PP, Hatzipanagiotou K. Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece). Minerals. 2019; 9(2):120. https://doi.org/10.3390/min9020120
Chicago/Turabian StyleRogkala, Aikaterini, Petros Petrounias, Basilios Tsikouras, Panagiota P. Giannakopoulou, and Konstantin Hatzipanagiotou. 2019. "Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece)" Minerals 9, no. 2: 120. https://doi.org/10.3390/min9020120
APA StyleRogkala, A., Petrounias, P., Tsikouras, B., Giannakopoulou, P. P., & Hatzipanagiotou, K. (2019). Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece). Minerals, 9(2), 120. https://doi.org/10.3390/min9020120