Ore Genesis at the Jinchang Gold–Copper Deposit in Heilongjiang Province, Northeastern China: Evidence from Geology, Fluid Inclusions, and H–O–S Isotopes
Abstract
:1. Introduction
2. Geological Background
2.1. Geological Setting
2.2. Ore Deposit Geology
2.3. Mineralization Characteristics
2.4. Timing of Metallogenesis
3. Sample Selection and Analytical Methods
3.1. Fluid Inclusions
3.2. H–O–S Isotopes
4. Results
4.1. Fluid Inclusion Petrography
4.2. Microthermometry
4.2.1. S1-, S2-, and V-Type FIs in Stage 1 Quartz
4.2.2. S2-, V-, and LV-Type FIs in Stage 2 Quartz
4.2.3. S2- and LV-Type FIs in Stage 3 Quartz
4.3. Oxygen and Hydrogen Isotope Analysis
4.4. Sulfur Isotope Analysis
5. Discussion
5.1. Fluid Boiling and Pressure Estimates
5.2. Source and Evolution of the Hydrothermal Fluid
5.3. Source of Ore-Forming Materials
5.4. Genesis and Metallogenic Model for the Jinchang Deposit
6. Conclusions
- (1)
- Fluid inclusions in Stage 1–3 quartz crystals record a gradual change from a magmatic–hydrothermal transitional fluid to a mixed magmatic–meteoric fluid.
- (2)
- Fluids derived from deep-seated magmas supplied abundant ore-forming materials to the deposit.
- (3)
- Fluid boiling and mixing were able to effectively trigger fluid saturation and deposition of ore minerals.
- (4)
- The Jinchang gold deposit is a typical gold-rich Au–Cu porphyry deposit.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spooner, E.T.C. Fluid inclusion studies of hydrothermal ore deposits. In Short Course in Fluid Inclusion; Hollister, L.S., Crawford, M.L., Eds.; Mineralogical Association of Canada: Ottawa, ON, Canada, 1981; Volume 6, pp. 209–240. [Google Scholar]
- Roedder, E. Fluid inclusions. In Reviews in Mineralogy; Ribbe, P.H., Ed.; Mineralogical Society of America: Chantilly, VA, USA, 1984; Volume 12, p. 644. [Google Scholar]
- Wilkinson, J.J. Fluid inclusions in hydrothermal ore deposits. Lithos 2001, 55, 229–272. [Google Scholar] [CrossRef]
- Li, X.F.; Wang, C.; Hua, R.; Wei, X. Fluid origin and structural enhancement during mineralization of the Jinshan orogenic gold deposit, south china. Miner. Depos. 2010, 45, 583–597. [Google Scholar] [CrossRef]
- Calagari, A.A. Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at sungun, east-azarbaidjan, Iran. J. Asian Earth Sci. 2004, 23, 179–189. [Google Scholar] [CrossRef]
- Izawa, E.; Urashima, Y.; Ibaraki, K.; Suzuki, R.; Yokoyama, T.; Kawasaki, K. The Hishikari gold deposit: High-grade epithermal veins in quaternary volcanics of southern Kyushu, Japan. J. Geochem. Explor. 1990, 36, 1–56. [Google Scholar] [CrossRef]
- Etoh, J.; Izawa, E.; Taguchi, S. A fluid inclusion study on columnar adularia from the Hishikari low-sulfidation epithermal gold deposit, Japan. Resour. Geol. 2010, 52, 73–78. [Google Scholar] [CrossRef]
- Kesler, S.E.; Appold, M.S.; Martini, A.M.; Walter, L.M.; Huston, T.J.; Kyle, J.R. Na-Cl-Br systematics of mineralizing brines in Mississippi Valley–Type deposits. Geology 1995, 23, 641–644. [Google Scholar] [CrossRef]
- Jia, G.Z.; Chen, J.R.; Yang, Z.G.; Bian, H.Y.; Wang, Y.Z.; Liang, H.J.; Jin, T.H.; Li, Z.H. Geology and genesis of the superlarge Jinchang gold deposit. Acta Geol. Sin. 2005, 79, 661–670, (In Chinese with English Abstract). [Google Scholar]
- Zhang, D.H.; Wang, Y.; Wang, D.; Xu, W.X.; Wang, Y.Z.; Zhang, W.Z. Geochemistry of ore forming fluids and genesis of gold ore bodies in the dome-shaped magmatic body-hosted Jinchang gold deposit, Heilongjiang province. Miner. Depos. 2006, 25, 155–158, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Xi, B.B.; Zhang, D.H.; Zhang, W.H. Geochemical characteristics of fluid inclusions in Jinchang gold deposit, Heilongjiang Province. Miner. Depos. 2007, 26, 184–194, (In Chinese with English Abstract). [Google Scholar]
- Zhao, Y.S.; Yang, L.Q.; Chen, Y.F.; Qing, M.; Yan, J.P.; Ge, L.S. Geochemisry and zircon U-Pb geochronology of the diorite porphyry associated with the Jinchang Cu-Au deposit, Heilongjiang Province. Acta Petrol. Sin. 2012, 28, 451–467, (In Chinese with English Abstract). [Google Scholar]
- Liu, L.D.; Li, Y.; Lan, X. A discussion on breccia/stockwork-porphyry type gold deposits. Miner. Depos. 1999, 18, 29–36, (In Chinese with English Abstract). [Google Scholar]
- Mu, T.; Liu, G.G.; Xu, K.C. The geological-geochemical characteristics and ore genesis of Jinchang gold deposit in Heilongjiang. Gold Geol. 2000, 6, 57–64, (In Chinese with English Abstract). [Google Scholar]
- Zhu, C.W.; Chen, J.R.; Li, T.G.; Cui, B.; Jin, B.Y.; Wang, K.Q. Geology and ore genesis of the Jinchang gold deposit, Heilongjiang province. Miner. Depos. 2003, 22, 56–64, (In Chinese with English Abstract). [Google Scholar]
- Zhang, D.H.; Wang, Y.; Wang, D.; Xu, W.X.; Wang, Y.Z.; Zhang, W.H. Geochemical characters of fluid inclusions of the orebody in the magma domal structure and the argument on the genesis of the deposit in Jinchang gold deposit, Heilongjiang. Miner. Depos. 2006, S1, 155–158, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.; Lai, Y.; Qing, M.; Wang, Y.Z.; Xu, J.J. Ore fluid geochemistry of J0 orebody, Jinchang gold deposit, Heilongjiang province China. Acta Petrol. Sin. 2008, 24, 1131–1144, (In Chinese with English Abstract). [Google Scholar]
- Li, S.D.; Wang, Z.G.; Wang, K.Y.; Cai, W.Y.; Peng, D.W.; Xiao, L.; Li, J. Re–Os Pyrite Geochronological Evidence of Three Mineralization Styles within the Jinchang Gold Deposit, Yanji–Dongning Metallogenic Belt, Northeast China. Minerals 2018, 8, 448. [Google Scholar] [CrossRef]
- Zhang, H.F.; Li, S.R.; Santosh, M.; Liu, J.J.; Diwu, C.R.; Zhang, H. Magmatism and metallogeny associated with mantle upwelling: zircon U–Pb and Lu–Hf constraints from the gold-mineralized Jinchang granite, NE China. Ore Geol. Rev. 2013, 54, 138–156. [Google Scholar] [CrossRef]
- Chen, J.R.; Li, H.G.; Jin, B.Y.; Wu, Y.H.; Wang, Y.Z.; Yu, W.Q. Geological features and the deep metallogenic forecast of the No. J-1 gold body in the Jinchang gold deposit, Heilongjiang. Gold Geol. 2002, 8, 8–12, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.B.; Wu, F.Y.; Wilde, S.A.; Zhai, M.G.; Lu, X.P. Zircon U–Pb ages and tectonic implications of Early Paleozoic granitoids at Yanbian, Jilin Province, northeast China. Isl. Arc. 2004, 13, 484–505. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Zhao, Y.S. Porphyry Gold System of the Jinchang Camp in the Yanbian-Dongning Metallogenic Belt, NE China. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2013. [Google Scholar]
- Lu, Y.H.; Zhang, Y.; Lai, Y.; Wang, Y.Z. LA–ICP-MS zircon U–Pb dating of magmatism and mineralization in the Jinchang gold ore-field, Heilongjiang province. Acta Petrol. Sin. 2009, 25, 2902–2912, (In Chinese with English Abstract). [Google Scholar]
- Zhang, H.F. Wall-Rock Alteration, Mineralization Time and Deposit Type of the Jinchang Gold Deposit from Dongning, Heilongjiang Province, China; Post-Doctor Research Report; China University of Geosciences: Beijing, China, 2007. [Google Scholar]
- Xu, W.X. Geological Characters, Metallogeic Regularity and Model of the Gold (Copper) Ore Fields in Jinchang, Heilongjiang Province. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2009. [Google Scholar]
- Han, S.J. Metallogenic Epoch and Its Geodynamic Significance of the Jinchang Gold Deposit, Heilongjiang Province. M.Sc. Thesis, Jilin University, Changchun, China, 2010. [Google Scholar]
- Wang, Z.G. Mineralization and Metallogenic Prediction of Jinchang Cu-Au Deposit in Dongning, Heilongjiang Province. Ph.D. Thesis, Jilin University, Changchun, China, 2018. [Google Scholar]
- Lowell, J.D.; Guilbert, J.M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ. Geol. 1970, 65, 373–408. [Google Scholar] [CrossRef]
- Qing, M.; Tang, M.G.; Xiao, L.; Zhao, Y.S.; Han, X.J. Automatic Laser Probe 40Ar/39Ar isochron ages of the quatrz and sphalerite from the Jinchang gold deposit, Dongning County, Heilongjiang Province, and their prospecting implications. Geol. Prospect 2012, 48, 991–999. (In Chinese) [Google Scholar]
- Zhang, P.; Huang, X.W.; Cui, B.; Wang, B.C.; Yin, Y.F.; Wang, J.R. Re-Os isotopic and trace element compositions of pyrite and origin of the Cretaceous Jinchang porphyry Cu-Au deposit, Heilongjiang Province, NE China. J. Asian Earth Sci. 2016, 129, 67–80. [Google Scholar] [CrossRef]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals; SEPM: Tulsa, OK, USA, 1994; Volume 31, p. 199. [Google Scholar]
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Bodnar, R.J.; Vityk, M.O. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In Fluid Inclusions in Minerals: Methods and Applications; Virginia Tech: Blackberg, VA, USA, 1994; Volume 9, pp. 117–130. [Google Scholar]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Robinson, B.W.; Kusakabe, M. Quantitative preparation of sulfur dioxide, for 34S/32S analyses, from sulfides by combustion with cuprous oxide. Anal. Chem. 1975, 47, 1179–1181. [Google Scholar] [CrossRef]
- Hollister, L.S.; Burruss, R.C. Phase equilibria in fluid inclusions from the Khtada Lake metamorphic complex. Geochim. Cosmochim. Acta 1976, 40, 163–175. [Google Scholar] [CrossRef]
- Goldstein, R.H. Petrographic analysis of fluid inclusions. In Fluid Inclusions: Analysis and Interpretation; Mineralogical Association of Canada: Ottawa, ON, Canada, 2003; Volume 32, pp. 9–53. [Google Scholar]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Li, Z.Z.; Li, S.R.; Zhang, H.F. Wall rock alteration and metallogenic chronology of Jinchang gold deposit in Dongning County, Heilongjiang Province. Miner. Depos. 2009, 1, 83–92, (In Chinese with English Abstract). [Google Scholar]
- Ohmoto, H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Ramboz, C.; Pichavant, M.; Weisbrod, A. Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility. Chem. Geol. 1982, 37, 29–48. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Arribas, A.; Reynolds, T.J. Evolution of an intrusion-centered hydrothermal system; Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ. Geol. 1998, 93, 373–404. [Google Scholar] [CrossRef]
- Redmond, P.B.; Einaudi, M.T.; Inan, E.E.; Landtwing, M.R.; Heinrich, C.A. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposits, Utah. Geology 2004, 32, 217–220. [Google Scholar] [CrossRef]
- Audétat, A.; Günther, D. Mobility and H2O loss from fluid inclusions in natural quartz crystals. Contrib. Mineral. Petr. 1999, 137, 1–14. [Google Scholar] [CrossRef]
- Becker, S.P.; Fall, A.; Bodnar, R.J. Synthetic fluid inclusions. XVII PVTX properties of high salinity H2O-NaCl soluitons (>30 wt% NaCl): Application to fluid inclusion that homogenize by disappearance from porphyry copper and other hydrothermal ore deposits. Econ. Geol. 2008, 103, 539–544. [Google Scholar] [CrossRef]
- Zhu, J.J.; Hu, R.Z.; Richards, J.P.; Bi, X.W.; Zhong, H. Genesis and magmatic-hydrothermal evolution of the Yangla skarn Cu deposit, Southwest China. Econ. Geol. 2015, 110, 631–652. [Google Scholar] [CrossRef]
- Siahcheshm, K.; Calagari, A.A.; Abedini, A. Hydrothermal evolution in the Maher–Abad porphyry Cu–Au deposit, SW Birjand, Eastern Iran: Evidence from fluid inclusions. Ore Geol. Rev. 2014, 58, 1–13. [Google Scholar] [CrossRef]
- Clayton, R.N.; Friedman, I.; Graf, D.L.; Mayeda, T.K.; Meents, W.F.; Shimp, N.F. The origin of saline formation waters: 1. Isotopic composition. J. Geophys. Res. Atmos. 1966, 71, 3869–3882. [Google Scholar] [CrossRef]
- Hitchon, B.; Friedman, I. Geochemistry and origin of formation waters in the western Canada sedimentary basin-I. Stable isotopes of hydrogen and oxygen. Geochim. Cosmochim. Acta 1969, 33, 1321–1349. [Google Scholar] [CrossRef]
- Kharaka, Y.K.; Berry, F.A.F.; Friedman, I. Isotopic composition of oil-field brines from Kettleman North Dome, California, and their geologic implications. Geochim. Cosmochim. Acta 1973, 37, 1899–1908. [Google Scholar] [CrossRef]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.N. Geochemistry; Science Press: Beijing, China, 2004. (In Chinese) [Google Scholar]
- Wang, K.Y.; Qing, M.; Zhang, X.N.; Wan, D.; Xiao, L. Study on the characteristics of fluid inclusions and metallogenic evolution of Jinchang gold deposit, Heilongjiang Province. Acta Petrol. Sin. 2011, 27, 1275–1286, (In Chinese with English Abstract). [Google Scholar]
- Bureau, H.; Métrich, N.; Pineau, F.; Semet, M.P. Magma–conduit interaction at Piton de la fournaise volcano (Réunion island): A melt and fluid inclusion study. J. Volcanol. Geoth. Res. 1998, 84, 39–60. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Wang, Y.; Mao, Q. Fluid-melt inclusions in fluorite of the Huanggangliang skarn iron-tin deposit and their significance to mineralization. Acta Geol. Sin. 2010, 75, 204–211. [Google Scholar]
- Xie, Y.L.; Hou, Z.; Yin, S.; Dominy, S.C.; Xu, J.; Tian, S. Continuous carbonatitic melt—fluid evolution of a ree mineralization system: Evidence from inclusions in the Maoniuping ree deposit, western Sichuan, China. Ore Geol. Rev. 2009, 36, 90–105. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Cline, J.S.; Bodnar, R.J. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? JGR Solid Earth 1991, 96, 8113–8126. [Google Scholar] [CrossRef]
- Yu, B.; Zeng, Q.; Wang, Y.; He, H.; Su, F. The Sources of Ore-forming Fluids from the Jinchang Gold Deposit, Heilongjiang Province, NE China: Constraints from the He–Ar Isotopic Evidence. Resour. Geol 2017, 67, 330–340. [Google Scholar] [CrossRef]
- Doe, B.; Stacey, J. The application of lead isotopes to the problems of ore genesis and ore prospect evaluation: A review. Econ. Geol. 1974, 9, 757–776. [Google Scholar] [CrossRef]
- Rye, R.O.; Ohmoto, H. Sulfur and carbon isotopes and ore genesis: A review. Econ. Geol. 1974, 69, 826–842. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Berlin, Germany, 2009. [Google Scholar]
- Bastrakov, E.N.; Skirrow, R.G.; Davidson, G.J. Fluid evolution and origins of iron oxide Cu-Au prospects in the Olympic Dam district, Gawler craton, South Australia. Econ. Geol. 2007, 102, 1415–1440. [Google Scholar] [CrossRef]
- Ohmoto, H.; Goldhaber, M. Sulphur and carbon isotopes. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1997; pp. 517–611. [Google Scholar]
- Ohmoto, H.; Rye, R.O. Isotopes of Sulfur and Carbon; John Wiley and Sons: New York, NY, USA, 1979. [Google Scholar]
- Zartman, R.E.; Doe, B.R. Plumbotectonics-The model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Sun, J.G.; Zhang, Y.; Xing, S.W.; Zhao, K.Q.; Zhang, Z.J.; Bai, L.A.; Ma, Y.B.; Liu, Y.S. Genetic types, ore-forming age and geodynamic setting of endogenic molybdenum deposits in the eastern edge of Xing-Meng orogenic belt. Acta Petrol. Sin. 2012, 28, 1317–1332, (In Chinese with English Abstract). [Google Scholar]
- Fournier, R.O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 1999, 94, 1193–1211. [Google Scholar] [CrossRef]
- Weis, P.; Driesner, T.; Heinrich, C.A. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes. Science 2012, 338, 1613–1616. [Google Scholar] [CrossRef]
- Williams, A.E.; Bowell, R.J. Gold in solution. Elements 2009, 5, 281–287. [Google Scholar] [CrossRef]
- Drummond, S.E.; Ohmoto, H. Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ. Geol. 1985, 80, 126–147. [Google Scholar] [CrossRef]
- Burnham, C.W. Energy release in subvolcanic environments; implications for breccia formation. Econ. Geol. 1985, 80, 1515–1522. [Google Scholar] [CrossRef]
Sample | Sample Location | Host Mineral | FIAs | Inclusion Type | No. | V–L Ratio | Tm (Ice) (°C) | Tm (NaCl) (°C) | Salinity (NaCl wt%) | Th (°C) |
---|---|---|---|---|---|---|---|---|---|---|
JC-01 | ZKE01, 80 m level | Quartz–pyrite–arsenopyrite veins (Stage 1) | V | V | 7 | 70–80 | −5.4 to −3.8 | 6.2–8.4 | 421–453 | |
JC-02 | ZKE01, 60 m level | V and S2 | V | 6 | 80–90 | 5.7–7.8 | 428–462 | |||
S2 | 9 | 15–25 | 425–459 | 50.3–54.4 | 431–459 | |||||
JC-04 | ZKE01, 65 m level | S1 | S1 | 10 | 20–30 | 447–466 | ||||
JC-06 | ZKE01, 70 m level | S1 | S1 | 7 | 25–30 | 457–479 | ||||
JC-07 | ZK1001, 120 m level | V and S2 | V | 5 | 75–85 | −5.6 to −4.1 | 6.6–8.7 | 432–463 | ||
S2 | 10 | 10–20 | 421–456 | 49.8–54.0 | 435–469 | |||||
JC-10 | ZK1001, 122 m level | V | V | 9 | ~95 | 425–455 | ||||
JC-12 | ZK1001, 100 m level | S1 | S1 | 8 | 20–30 | 453–469 | ||||
JC-15 | ZK1001, 110 m level | S1 | S1 | 9 | 20–30 | >600 | ||||
JC-16 | ZK1523, –60 m level | Quartz–pyrite–chalcopyrite veins (Stage 2) | V and S2 | V | 9 | 75–85 | −3.3 to −1.4 | 2.4–5.4 | 369–407 | |
S2 | 8 | 15–20 | 363–395 | 43.6–46.9 | 375–402 | |||||
JC-17 | ZK14, 120 m level | V and LV | V | 7 | ~70 | −3.1 to −0.7 | 1.2–5.1 | 372–395 | ||
LV | 5 | 20–25 | −12.0 to −9.9 | 13.8–16.0 | 376–389 | |||||
JC-20 | ZK14, –40 m level | V and S2 | V | 6 | 70–80 | −2.7 to −1.4 | 2.4–4.5 | 364–399 | ||
S2 | 7 | 15–20 | 365–408 | 43.5–48.3 | 372–408 | |||||
JC-22 | ZK0303, 120 m level | LV | LV | 7 | 15–25 | −8.9 to −6.2 | 9.5–12.7 | 363–394 | ||
JC-24 | ZK0303, 20 m level | S2 | S2 | 6 | 20–25 | 359–383 | 43.3–45.6 | 365–392 | ||
JC-25 | ZK04, 100 m level | S2 | S2 | 9 | 15–25 | 381–392 | 45.4–46.6 | 381–400 | ||
JC-31 | ZK2303, 162 m level | Quartz–pyrite–galena–sphalerite veins (Stage 3) | LV | LV | 8 | 20–25 | −8.6 to −7.2 | 10.7–12.4 | 305–347 | |
JC-32 | ZK2303, 160 m level | S2 | S2 | 9 | 20–25 | 302–343 | 38.3–41.8 | 315–343 | ||
JC-35 | ZK0902, 70 m level | LV | LV | 11 | 75–85 | −8.8 to −7.1 | 10.6–12.6 | 302–342 | ||
JC-38 | ZK0902, 72 m level | S2 | S2 | 8 | 20–25 | 310–346 | 38.9–42.0 | 312–346 | ||
JC-42 | ZK1315, 20 m level | LV | LV | 9 | 15–20 | −7.3 to −5.8 | 8.9–10.9 | 296–323 | ||
JC-43 | ZK1315, –20 m level | LV | LV | 6 | 10–25 | –6.5 to −5.0 | 7.9–9.9 | 297–338 |
Stages | Sample | Sample Description | δ18OV-SMOW (‰) | δDV-SMOW (‰) | Th (°C) | δ18OH2O–SMOW (‰) | Sample Location |
---|---|---|---|---|---|---|---|
Stage 1 | J1-1 | Quartz from quartz–pyrite–arsenopyrite veins | 11.4 | −74.3 | 460 | 8.5 | ZKE01 at 84 m level |
J1-2 | 11.3 | −72.1 | 440 | 8.1 | ZKE01 at 64 m level | ||
J1-3 | 10.8 | −79.0 | 460 | 7.9 | 30 m level middle section | ||
J1-4 | 10.7 | −75.9 | 440 | 7.5 | 30 m level middle section | ||
Stage 2 | J18-1-1 | Quartz from quartz–pyrite–chalcopyrite veins | 10.5 | −78.9 | 400 | 6.4 | ZK1523 at –60 m level |
J18-3-1 | 9.4 | −83.1 | 380 | 4.9 | ZK14 at 120 m level | ||
J18-1-2 | 9.8 | −85.8 | 400 | 5.7 | ZK0303 at 20 m level | ||
J18-3-2 | 9.1 | −77.2 | 380 | 4.6 | ZK04 at 100 m level | ||
Stage 3 | Jh-4-1 | Quartz from quartz–pyrite–galena–sphalerite veins | 9.1 | −87.1 | 340 | 3.5 | ZK0902 at 72 m level |
Jh-5-1 | 9.5 | −90.9 | 320 | 3.3 | ZK1315 at –20 m level | ||
Jh-4-2 | 8.6 | −91.8 | 340 | 3.0 | ZK2303 at 162 m level | ||
Jh-5-2 | 8.7 | –92.2 | 320 | 2.5 | ZK4702 at 287 m level |
Stages | Sample | Mineral | δ34SVCDT (‰) | T (°C) | δ34SH2S (‰) | Sample Location |
---|---|---|---|---|---|---|
Stage 1 | J1-1 | Pyrite | 1.8 | 428 | 1.0 | ZKE01 at 84 m level |
J1-2 | Pyrite | 2.4 | 428 | 1.6 | ZKE01 at 64 m level | |
J1-3 | Pyrite | 2.9 | 428 | 2.1 | 30 m level middle section | |
J1-4 | Pyrite | 2.8 | 428 | 1.0 | 30 m level middle section | |
Stage 2 | J18-1-1 | Pyrite | 3.0 | 364 | 2.0 | ZK1523 at –62 m level |
J18-3-1 | Pyrite | 3.2 | 364 | 2.0 | ZK14 at 119 m level | |
J18-1-2 | Chalcopyrite | 2.1 | 364 | 2.2 | ZK0303 at 19 m level | |
J18-3-2 | Chalcopyrite | 2.2 | 364 | 2.3 | ZK04 at 100 m level | |
Stage 3 | Jh-4-1 | Pyrite | 3.3 | 330 | 2.2 | ZK0902 at 70 m level |
Jh-5-1 | Pyrite | 3.5 | 330 | 2.4 | ZK1315 at –21 m level | |
Jh-4-2 | Galena | 0.2 | 330 | 1.9 | ZK2303 at 160 m level | |
Jh-5-2 | Galena | 0.8 | 330 | 2.5 | ZK4702 at 287 m level |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhang, X.; Gao, L. Ore Genesis at the Jinchang Gold–Copper Deposit in Heilongjiang Province, Northeastern China: Evidence from Geology, Fluid Inclusions, and H–O–S Isotopes. Minerals 2019, 9, 99. https://doi.org/10.3390/min9020099
Li S, Zhang X, Gao L. Ore Genesis at the Jinchang Gold–Copper Deposit in Heilongjiang Province, Northeastern China: Evidence from Geology, Fluid Inclusions, and H–O–S Isotopes. Minerals. 2019; 9(2):99. https://doi.org/10.3390/min9020099
Chicago/Turabian StyleLi, Shunda, Xuebing Zhang, and Lingling Gao. 2019. "Ore Genesis at the Jinchang Gold–Copper Deposit in Heilongjiang Province, Northeastern China: Evidence from Geology, Fluid Inclusions, and H–O–S Isotopes" Minerals 9, no. 2: 99. https://doi.org/10.3390/min9020099
APA StyleLi, S., Zhang, X., & Gao, L. (2019). Ore Genesis at the Jinchang Gold–Copper Deposit in Heilongjiang Province, Northeastern China: Evidence from Geology, Fluid Inclusions, and H–O–S Isotopes. Minerals, 9(2), 99. https://doi.org/10.3390/min9020099