Elemental Compositions of Smectites Reveal Detailed Sediment Provenance Changes during Glacial and Interglacial Periods: The Southern Drake Passage and Bellingshausen Sea, Antarctica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. X-ray Diffractometry
2.3. Electron Microscopy
3. Results
3.1. Semiquantification of Clay Minerals
3.2. TEM Analysis
3.2.1. TEM Analysis of Samples from Core GC05-DP02
3.2.2. TEM Analysis of Samples from Core GC360
4. Discussion
4.1. Glacial-Interglacial Changes in Clay Mineral Provenance of Core GC05-DP02 from Drake Passage
4.1.1. Clay Mineral Assemblages
4.1.2. Elemental Composition of Smectites
4.2. Glacial-Interglacial Changes in the Smectite Composition in Core GC360 from the Bellingshausen Sea Shelf
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Velde, B. Origin and Mineralogy of Clays: Clays and the Environment; Springer-Verlag: Berlin, Germany, 1995. [Google Scholar]
- Weaver, C.E.; Pollard, L.D. The Chemistry of Clay Minerals (Developments in Sedimentology); Elsevier: Amsterdam, The Netherlands, 1973; Volume 15. [Google Scholar]
- García-Romero, E.; Vegas, J.; Baldonedo, J.L.; Marfil, R. Clay minerals as alteration products in basaltic volcaniclastic deposits of La Palma (Canary Islands, Spain). Sediment. Geol. 2005, 174, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Petschick, R.; Kuhn, G.; Gingele, F. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Mar. Geol. 1996, 130, 203–229. [Google Scholar] [CrossRef] [Green Version]
- Pandarinath, K. Clay minerals in SW Indian continental shelf sediment cores as indicators of provenance and palaeomonsoonal conditions: a statistical approach. Int. Geol. Rev. 2009, 51, 145–165. [Google Scholar] [CrossRef]
- Jung, J.; Yoo, K.-C.; Lee, K.-H.; Park, Y.K.; Lee, J.I.; Kim, J. Clay Mineralogical Characteristics of Sediments Deposited during the Late Quaternary in the Larsen Ice Shelf B Embayment, Antarctica. Minerals 2019, 9, 153. [Google Scholar] [CrossRef]
- Biscaye, P.E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Am. Bull. 1965, 76, 803–832. [Google Scholar] [CrossRef]
- Liu, Z.; Colin, C.; Li, X.; Zhao, Y.; Tuo, S.; Chen, Z.; Siringan, F.P.; Liu, J.T.; Huang, C.-Y.; You, C.-F. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport. Mar. Geol. 2010, 277, 48–60. [Google Scholar] [CrossRef]
- Ehrmann, W.U.; Melles, M.; Kuhn, G.; Grobe, H. Significance of clay mineral assemblages in the Antarctic Ocean. Mar. Geol. 1992, 107, 249–273. [Google Scholar] [CrossRef] [Green Version]
- Hillenbrand, C.D.; Ehrmann, W.; Larter, R.D.; Benetti, S.; Dowdeswell, J.A.; Ó Cofaigh, C.; Graham, A.G.C.; Grobe, H. Clay mineral provenance of sediments in the southern Bellingshausen Sea reveals drainage changes of the West Antarctic Ice Sheet during the Late Quaternary. Mar. Geol. 2009, 265, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Trentesaux, A.; Clemens, S.C.; Colin, C.; Wang, P.; Huang, B.; Boulay, S. Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Mar. Geol. 2003, 201, 133–146. [Google Scholar] [CrossRef]
- Ehrmann, W.; Hillenbrand, C.-D.; Smith, J.A.; Graham, A.G.; Kuhn, G.; Larter, R.D. Provenance changes between recent and glacial-time sediments in the Amundsen Sea embayment, West Antarctica: clay mineral assemblage evidence. Antarct. Sci. 2011, 23, 471–486. [Google Scholar] [CrossRef] [Green Version]
- Hillenbrand, C.-D.; Grobe, H.; Diekmann, B.; Kuhn, G.; Fütterer, D.K. Distribution of clay minerals and proxies for productivity in surface sediments of the Bellingshausen and Amundsen seas (West Antarctica) —Relation to modern environmental conditions. Mar. Geol. 2003, 193, 253–271. [Google Scholar] [CrossRef]
- Hillenbrand, C.-D.; Ehrmann, W. Distribution of Clay Minerals in Drift Sediments on the Continental Rise West of the Antarctic Peninsula, ODP Leg 178, Sites 1095 and 1096. Available online: http://www-odp. tamu. edu/publications/178_SR/VOLUME/CHAPTERS/SR178_08. PDF. (accessed on 11 April 2018).
- Lee, J.I.; Yoon, H.I.; Yoo, K.-C.; Lim, H.S.; Lee, Y.I.; Kim, D.; Bak, Y.-S.; Itaki, T. Late Quaternary glacial–interglacial variations in sediment supply in the southern Drake Passage. Quat. Res. 2012, 78, 119–129. [Google Scholar] [CrossRef]
- Simões Pereira, P.; van de Flierdt, T.; Hemming, S.R.; Hammond, S.J.; Kuhn, G.; Brachfeld, S.; Doherty, C.; Hillenbrand, C.-D. Geochemical fingerprints of glacially eroded bedrock from West Antarctica: Detrital thermochronology, radiogenic isotope systematics and trace element geochemistry in Late Holocene glacial-marine sediments. Earth-Sci. Rev. 2018, 182, 204–232. [Google Scholar] [CrossRef] [Green Version]
- Roy, M.; van de Flierdt, T.; Hemming, S.R.; Goldstein, S.L. 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: Implications for sediment provenance in the southern ocean. Chem. Geol. 2007, 244, 507–519. [Google Scholar] [CrossRef]
- Hemming, S.; Van de Flierdt, T.; Goldstein, S.; Franzese, A.; Roy, M.; Gastineau, G.; Landrot, G. Strontium isotope tracing of terrigenous sediment dispersal in the Antarctic Circumpolar Current: Implications for constraining frontal positions. Geochem. Geophys. Geosyst. 2007, 8, 6. [Google Scholar] [CrossRef]
- Hernández-Molina, F.; Larter, R.; Rebesco, M.; Maldonado, A. Miocene reversal of bottom water flow along the Pacific Margin of the Antarctic Peninsula: Stratigraphic evidence from a contourite sedimentary tail. Mar. Geol. 2006, 228, 93–116. [Google Scholar] [CrossRef]
- Hillenbrand, C.-D.; Larter, R.D.; Dowdeswell, J.; Ehrmann, W.; Cofaigh, C.Ó.; Benetti, S.; Graham, A.G.; Grobe, H. The sedimentary legacy of a palaeo-ice stream on the shelf of the southern Bellingshausen Sea: Clues to West Antarctic glacial history during the Late Quaternary. Quat. Sci. Rev. 2010, 29, 2741–2763. [Google Scholar] [CrossRef] [Green Version]
- Larter, R.D.; Anderson, J.B.; Graham, A.G.; Gohl, K.; Hillenbrand, C.-D.; Jakobsson, M.; Johnson, J.S.; Kuhn, G.; Nitsche, F.O.; Smith, J.A. Reconstruction of changes in the Amundsen Sea and Bellingshausen sea sector of the West Antarctic ice sheet since the last glacial maximum. Quat. Sci. Rev. 2014, 100, 55–86. [Google Scholar] [CrossRef]
- Cofaigh, C.Ó.; Davies, B.J.; Livingstone, S.J.; Smith, J.A.; Johnson, J.S.; Hocking, E.P.; Hodgson, D.A.; Anderson, J.B.; Bentley, M.J.; Canals, M. Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. Quat. Sci. Rev. 2014, 100, 87–110. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; van den Broeke, M.; van Wessem, M.J.; Morlighem, M. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 2019, 116, 1095–1103. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis: Advanced Course; UW-Madison Libraries Parallel Press: Madison, WI, USA, 1979. [Google Scholar]
- Yang, K.; Kim, J.-W.; Kogure, T.; Dong, H.; Baik, H.; Hoppie, B.; Harris, R. Smectite, illite, and early diagenesis in South Pacific Gyre subseafloor sediment. Appl. Clay Sci. 2016, 134, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Biscaye, P.E. Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction. Am. Miner. J. Earth Planet. Mater. 1964, 49, 1281–1289. [Google Scholar]
- Kuhn, G.; Hillenbrand, C.-D.; Kasten, S.; Smith, J.A.; Nitsche, F.O.; Frederichs, T.; Wiers, S.; Ehrmann, W.; Klages, J.P.; Mogollón, J.M. Evidence for a palaeo-subglacial lake on the Antarctic continental shelf. Nat. Commun. 2017, 8, 15591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-W.; Peacor, D.R.; Tessier, D.; Elsass, F. A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays Clay Miner. 1995, 43, 51–57. [Google Scholar] [CrossRef]
- Ross, C.S.; Hendricks, S.B. Minerals of the montmorillonite group, their origin and relation to soils and clays. USGS Numbered Ser. 1945, 205, 23–79. [Google Scholar]
- Setti, M.; Marinoni, L.; López-Galindo, A.; Aboud, A.B. TEM observations and trace element analysis on the clay minerals of the CRP-1 Core (Ross Sea, Antarctica). Terra Antartica 1998, 5, 621–626. [Google Scholar]
- Setti, M.; Marinoni, L.; López-Galindo, A.; Delgado-Hubertas, A. Compositional and morphological features of the smectites of the sediments of CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antart. 2000, 7, 581–587. [Google Scholar]
- Setti, M.; Marinoni, L.; Lopez-Galindo, A. Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica. Clay Miner. 2004, 39, 405–421. [Google Scholar] [CrossRef]
- Jeong, G.; Yoon, H. The origin of clay minerals in soils of King George Island, South Shetland Islands, West Antarctica, and its implications for the clay-mineral compositions of marine sediments. J. Sediment. Res. 2001, 71, 833–842. [Google Scholar] [CrossRef]
- Kim, J.; Dong, H.; Seabaugh, J.; Newell, S.W.; Eberl, D.D. Role of microbes in the smectite-to-illite reaction. Science 2004, 303, 830–832. [Google Scholar] [CrossRef]
- Koo, T.-h.; Lee, G.; Kim, J.-w. Biogeochemical dissolution of nontronite by Shewanella oneidensis MR-1: Evidence of biotic illite formation. Appl. Clay Sci. 2016, 134, 13–18. [Google Scholar] [CrossRef]
- Marinoni, L.; Setti, M.; Salvi, C.; Lopez-Galindo, A. Clay minerals in late Quaternary sediments from the south Chilean margin as indicators of provenance and palaeoclimate. Clay Miner. 2008, 43, 235–253. [Google Scholar] [CrossRef]
- Hillenbrand, C.-D.; Ehrmann, W. Late Neogene to Quaternary environmental changes in the Antarctic Peninsula region: evidence from drift sediments. Glob. Planet. Chang. 2005, 45, 165–191. [Google Scholar] [CrossRef]
- Diekmann, B.; Kuhn, G.; Rachold, V.; Abelmann, A.; Brathauer, U.; Fütterer, D.K.; Gersonde, R.; Grobe, H. Terrigenous sediment supply in the Scotia Sea (Southern Ocean): Response to Late Quaternary ice dynamics in Patagonia and on the Antarctic Peninsula. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 162, 357–387. [Google Scholar] [CrossRef]
- Lucchi, R.; Rebesco, M.; Camerlenghi, A.; Busetti, M.; Tomadin, L.; Villa, G.; Persico, D.; Morigi, C.; Bonci, M.; Giorgetti, G. Mid-late Pleistocene glacimarine sedimentary processes of a high-latitude, deep-sea sediment drift (Antarctic Peninsula Pacific margin). Mar. Geol. 2002, 189, 343–370. [Google Scholar] [CrossRef]
- Setti, M.; Marinoni, L.; López-Galindo, A. Crystal-chemistry of smectites in sediments of CRP-3 drillcore (Victoria Land Basin, Antarctica): preliminary results. Terra Antart. 2001, 8, 543–550. [Google Scholar]
- Yoon, H.I.; Yoo, K.-C.; Bak, Y.-S.; Lee, Y.I.; Lee, J.I. Core-based reconstruction of paleoenvironmental conditions in the southern Drake Passage (West Antarctica) over the last 150 ka. Geo-Mar. Lett. 2009, 29, 309–320. [Google Scholar] [CrossRef]
- Souza, K.K.D.; Schaefer, C.E.G.; Simas, F.N.B.; Spinola, D.N.; de Paula, M.D. Soil formation in Seymour Island, Weddell Sea, Antarctica. Geomorphology 2014, 225, 87–99. [Google Scholar] [CrossRef]
- Jacobs, M.B. Clay mineral changes in Antarctic deep-sea sediments and Cenozoic climatic events. J. Sediment. Res. 1974, 44, 1079–1086. [Google Scholar]
- Hillenbrand, C.-D.; Ehrmann, W. Palaeoenvironmental implications of Tertiary sediments from Kainan Maru Seamount and northern Gunnerus Ridge. Antarct. Sci. 2003, 15, 522–536. [Google Scholar] [CrossRef]
- Hole, M.; Smellie, J.L.; Marriner, G. Geochemistry and tectonic setting of Cenozoic alkaline alkaline basalts from Alexander Island, Antarctic Peninsula. In Geological evolution of Antarctica. Proceedings of the Fifth International Symposium on Antarctic Earth Sciences, Cambridge, UK, 23–28 August 1987; Cambridge University Press: Cambridge, UK, 1987; pp. 521–526. [Google Scholar]
- Smellie, J. Lithostratigraphy of Miocene–Recent, alkaline volcanic fields in the Antarctic Peninsula and eastern Ellsworth Land. Antarct. Sci. 1999, 11, 362–378. [Google Scholar] [CrossRef]
- McCarron, J.J. A unifying lithostratigraphy of late Cretaceous–early Tertiary fore-arc volcanic sequences on Alexander Island, Antarctica. Antarct. Sci. 1997, 9, 209–220. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.K.; Lee, J.I.; Jung, J.; Hillenbrand, C.-D.; Yoo, K.-C.; Kim, J. Elemental Compositions of Smectites Reveal Detailed Sediment Provenance Changes during Glacial and Interglacial Periods: The Southern Drake Passage and Bellingshausen Sea, Antarctica. Minerals 2019, 9, 322. https://doi.org/10.3390/min9050322
Park YK, Lee JI, Jung J, Hillenbrand C-D, Yoo K-C, Kim J. Elemental Compositions of Smectites Reveal Detailed Sediment Provenance Changes during Glacial and Interglacial Periods: The Southern Drake Passage and Bellingshausen Sea, Antarctica. Minerals. 2019; 9(5):322. https://doi.org/10.3390/min9050322
Chicago/Turabian StylePark, Young Kyu, Jae Il Lee, Jaewoo Jung, Claus-Dieter Hillenbrand, Kyu-Cheul Yoo, and Jinwook Kim. 2019. "Elemental Compositions of Smectites Reveal Detailed Sediment Provenance Changes during Glacial and Interglacial Periods: The Southern Drake Passage and Bellingshausen Sea, Antarctica" Minerals 9, no. 5: 322. https://doi.org/10.3390/min9050322
APA StylePark, Y. K., Lee, J. I., Jung, J., Hillenbrand, C.-D., Yoo, K.-C., & Kim, J. (2019). Elemental Compositions of Smectites Reveal Detailed Sediment Provenance Changes during Glacial and Interglacial Periods: The Southern Drake Passage and Bellingshausen Sea, Antarctica. Minerals, 9(5), 322. https://doi.org/10.3390/min9050322