Subduction-Induced Fractionated Highly Siderophile Element Patterns in Forearc Mantle
Abstract
:1. Introduction
2. Geological Setting and Sample Description
2.1. Geological Setting
2.2. Sample Description
3. Analytical Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Day, J.M.D.; Brandon, A.D.; Walker, R.J. Highly siderophile elements in Earth, Mars, the Moon, and asteroids. Rev. Mineral. Geochem. 2016, 81, 161–238. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.L. Fractionation of siderophile elements in the Earth’s upper mantle. Proc. Lunar Planet. Sci. 1978, 9, 219–230. [Google Scholar]
- Holzheid, A.; Sylvester, P.; O’Neill, H.S.C.; Rubie, D.C.; Palme, H. Evidence for a late chondritic veneer in the Earth’s mantle from high-pressure partitioning of palladium and platinum. Nature 2000, 406, 396. [Google Scholar] [CrossRef] [PubMed]
- Bottke, W.F.; Walker, R.J.; Day, J.M.D.; Nesvorny, D.; Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 2010, 330, 1527–1530. [Google Scholar] [CrossRef]
- Pattou, L.; Lorand, J.P.; Gros, M. Non-chondritic platinum-group element ratios in the Earth’s mantle. Nature 1996, 379, 712–715. [Google Scholar] [CrossRef]
- Rehkämper, M.; Halliday, A.N.; Alt, J.; Fitton, J.G.; Zipfel, J.; Takazawa, E. Non-chondritic platinum-group element ratios in oceanic mantle lithosphere: Petrogenetic signature of melt percolation? Earth Planet. Sci. Lett. 1999, 172, 65–81. [Google Scholar] [CrossRef]
- Snow, J.E.; Schmidt, G. Constraints on Earth accretion deduced from noble metals in the oceanic mantle. Nature 1998, 391, 166–169. [Google Scholar] [CrossRef]
- Becker, H.; Horan, M.F.; Walker, R.J.; Gao, S.; Lorand, J.P.; Rudnick, R.L. Highly siderophile element composition of the Earth’s primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths. Geochim. Cosmochim. Acta 2006, 70, 4528–4550. [Google Scholar] [CrossRef]
- Alard, O.; Griffin, W.L.; Lorand, J.P.; Jackson, S.E. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 2000, 407, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Lorand, J.P.; Luguet, A.; Alard, O. Platinum group elements: A new set of key tracers for the Earth’s interior. Elements 2009, 4, 247. [Google Scholar] [CrossRef]
- Harvey, J.; König, S.; Luguet, A. The effects of melt depletion and metasomatism on highly siderophile and strongly chalcophile elements: S–Se–Te–Re–PGE systematics of peridotite xenoliths from Kilbourne Hole, New Mexico. Geochim. Cosmochim. Acta 2015, 166, 210–233. [Google Scholar] [CrossRef]
- Kepezhinskas, P.; Defant, M.J. Nonchondritic Pt/Pd ratios in arc mantle xenoliths: Evidence for platinum enrichment in depleted island-arc mantle sources. Geology 2001, 29, 851–854. [Google Scholar] [CrossRef]
- McInnes, B.I.; McBride, J.S.; Evans, N.J.; Lambert, D.D.; Andrew, A.S. Osmium isotope constraints on ore metal recycling in subduction zones. Science 1999, 286, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Brandon, A.D.; Creaser, R.A.; Shirey, S.B.; Carlson, R.W. Osmium recycling in subduction zones. Science 1996, 272, 861–864. [Google Scholar] [CrossRef]
- Pirard, C.; Hermann, J.; O’Neill, H.S.C. Petrology and geochemistry of the crust-mantle boundary in a nascent arc, Massif du Sud Ophiolite, New Caledonia, SW Pacific. J. Petrol. 2013, 54, 1759–1792. [Google Scholar] [CrossRef]
- Marchesi, C.; Garrido, C.J.; Godard, M.; Belley, F.; Ferré, E. Migration and accumulation of ultra-depleted subduction-related melts in the Massif du Sud ophiolite (New Caledonia). J. Petrol. 2009, 266, 171–186. [Google Scholar] [CrossRef]
- Whattam, S.A. Arc-continent collisional orogenesis in the SW Pacific and the nature, source and correlation of emplaced ophiolitic nappe components. Lithos 2009, 113, 88–114. [Google Scholar] [CrossRef]
- Sdrolias, M.; Müller, R.D.; Gaina, C. Tectonic evolution of the southwest Pacific using constraints from backarc basins. In Evolution and Dynamics of the Australian Plate; Hillis, R.R., Müller, R.D., Eds.; Geological Society of America: Boulder, CO, USA, 2003; pp. 343–359. [Google Scholar]
- Cluzel, D.; Aitchison, J.C.; Picard, C. Tectonic accretion and underplating of mafic terranes in the Late Eocene intraoceanic fore-arc of New Caledonia (Southwest Pacific): Geodynamic implications. Tectonophysics 2001, 340, 23–59. [Google Scholar] [CrossRef]
- Collot, J.Y.; Malahoff, A.; Recy, J.; Latham, G.; Missegue, F. Overthrust Emplacement of New Caledonia Ophiolite: Geophysical Evidence. Tectonics 1987, 6, 215–232. [Google Scholar] [CrossRef]
- Patriat, M.; Collot, J.; Etienne, S.; Poli, S.; Clerc, C.; Mortimer, N.; Pattier, F.; Juan, C.; Roest, W.R. New Caledonia obducted Peridotite Nappe: offshore extent and implications for obduction and postobduction processes. Tectonics 2018, 37, 1077–1096. [Google Scholar] [CrossRef]
- Milsom, J. Forearc ophiolites: A view from the western Pacific. In Ophiolites in Earth History; Dilek, Y., Robinson, P.T., Eds.; Geological Society of London Special Publication: London, UK, 2003; Volume 218, pp. 507–515. [Google Scholar]
- Cluzel, D.; Jourdan, F.; Meffre, S.; Maurizot, P.; Lesimple, S. The metamorphic sole of New Caledonia ophiolite:40Ar/39Ar, U-Pb, and geochemical evidence for subduction inception at a spreading ridge. Tectonics 2012, 31. [Google Scholar] [CrossRef]
- Cluzel, D.; Meffre, S.; Maurizot, P.; Crawford, A.J. Earliest Eocene (53Ma) convergence in the Southwest Pacific: evidence from pre-obduction dikes in the ophiolite of New Caledonia. Terra Nova 2006, 18, 395–402. [Google Scholar] [CrossRef]
- Liu, C.Z.; Xu, Y.; Wu, F.Y. Limited recycling of crustal osmium in forearc mantle during slab dehydration. Geology 2018, 43, 239–242. [Google Scholar] [CrossRef]
- Cluzel, D.; Maurizot, P.; Collot, J.; Sevin, B.J.E. An outline of the Geology of New Caledonia; from Permian-Mesozoic Southeast-Gondwanaland active margin to Tertiary obduction and supergene evolution. Epis. -Newsmag. Int. Geol. Sci. 2012, 35, 72–86. [Google Scholar]
- Chu, Z.Y.; Wu, F.Y.; Walker, R.J.; Rudnick, R.L.; Pitcher, L.; Puchtel, I.S.; Yang, Y.H.; Wilde, S.A. Temporal Evolution of the Lithospheric Mantle beneath the Eastern North China Craton. J. Petrol. 2009, 50, 1857–1898. [Google Scholar] [CrossRef] [Green Version]
- Birck, J.L.; Roy-Barman, M.; Capmas, F. Re-Os isotopic measurements at the femtomole level in natural samples. Geostand. Geoanal. Res. 1997, 21, 19–27. [Google Scholar] [CrossRef]
- Day, J.M.D.; Waters, C.L.; Schaefer, B.F.; Walker, R.J.; Turner, S. Use of Hydrofluoric Acid Desilicification in the Determination of Highly Siderophile Element Abundances and Re-Pt-Os Isotope Systematics in Mafic-Ultramafic Rocks. Geostand. Geoanal. Res. 2016, 40, 49–65. [Google Scholar] [CrossRef]
- Ishikawa, A.; Senda, R.; Suzuki, K.; Dale, C.W.; Meisel, T. Re-evaluating digestion methods for highly siderophile element and 187Os isotope analysis: Evidence from geological reference materials. Chem. Geol. 2014, 384, 27–46. [Google Scholar] [CrossRef]
- Li, J.; Zhao, P.P.; Liu, J.G.; Wang, X.C.; Yang, A.Y.; Wang, G.Q.; Xu, J.F. Reassessment of Hydrofluoric acid desilicification in the Carius tube digestion technique for Re–Os isotopic determination in geological samples. Geostand. Geoanal. Res. 2015, 39, 17–30. [Google Scholar] [CrossRef]
- Day, J.M.D.; Walker, R.J.; Warren, J.M. 186Os–187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochim. Cosmochim. Acta 2017, 200, 232–254. [Google Scholar] [CrossRef]
- Fischer-Gödde, M.; Becker, H.; Wombacher, F. Rhodium, gold and other highly siderophile element abundances in chondritic meteorites. Geochim. Cosmochim. Acta 2010, 74, 356–379. [Google Scholar] [CrossRef]
- Butt, C.W.; Cluzel, D. Nickel Laterite Ore Deposits: Weathered Serpentinites. Elements 2013, 9, 123–128. [Google Scholar] [CrossRef]
- Fischer-Gödde, M.; Becker, H.; Wombacher, F. Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chem. Geol. 2011, 280, 365–383. [Google Scholar] [CrossRef]
- Foustoukos, D.I.; Bizimis, M.; Frisby, C.; Shirey, S.B. Redox controls on Ni–Fe–PGE mineralization and Re/Os fractionation during serpentinization of abyssal peridotite. Geochim. Cosmochim. Acta 2015, 150, 11–25. [Google Scholar] [CrossRef]
- Luguet, A.; Lorand, J.P.; Seyler, M. Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: a coupled study of samples from the Kane Fracture Zone (45°W 23°20N, MARK area, Atlantic Ocean). Geochim. Cosmochim. Acta 2003, 67, 1553–1570. [Google Scholar] [CrossRef]
- Pearson, D.G.; Irvine, G.J.; Ionov, D.A.; Boyd, F.R.; Dreibus, G.E. Re–Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem. Geol. 2004, 208, 29–59. [Google Scholar] [CrossRef]
- Bockrath, C.; Ballhaus, C.; Holzheid, A. Fractionation of the platinum-group elements during mantle melting. Science 2004, 305, 1951–1953. [Google Scholar] [CrossRef] [PubMed]
- Ballhaus, C.; Bockrath, C.; Wohlgemuth-Ueberwasser, C.; Laurenz, V.; Berndt, J. Fractionation of the noble metals by physical processes. Contrib. Mineral. Petrol. 2006, 152, 667–684. [Google Scholar] [CrossRef]
- Li, C.; Barnes, S.-J.; Makovicky, E.; Rose-Hansen, J.; Makovicky, M. Partitioning of nickel, copper, iridium, rhenium, platinum, and palladium between monosulfide solid solution and sulfide liquid: Effects of composition and temperature. Geochim. Cosmochim. Acta 1996, 60, 1231–1238. [Google Scholar] [CrossRef]
- Augé, T.Y.; Cabri, L.J.; Legendre, O.; McMahon, G.; Cocherie, A. PGE distribution in base-metal alloys and sulfides of the New Caledonia Ophiolite. Can. Mineral. 1999, 37, 1147–1161. [Google Scholar]
- Brandon, A.D.; Snow, J.E.; Walker, R.J.; Morgan, J.W.; Mock, T.D. 190Pt–186Os and 187Re–187Os systematics of abyssal peridotites. Earth Planet. Sci. Lett. 2000, 177, 319–335. [Google Scholar] [CrossRef]
- Liu, C.Z.; Snow, J.E.; Brügmann, G.; Hellebrand, E.; Hofmann, A.W. Non-chondritic HSE budget in Earth’s upper mantle evidenced by abyssal peridotites from Gakkel ridge (Arctic Ocean). Earth Planet. Sci. Lett. 2009, 283, 122–132. [Google Scholar] [CrossRef]
- Marchesi, C.; Garrido, C.J.; Harvey, J.; González-Jiménez, J.M.; Hidas, K.; Lorand, J.-P.; Gervilla, F. Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes. Contrib. Mineral. Petrol. 2013, 166, 1521–1538. [Google Scholar] [CrossRef] [Green Version]
- Handler, M.R.; Bennett, V.C.; Dreibus, G. Evidence from correlated Ir/Os and Cu/S for late-stage Os mobility in peridotite xenoliths: Implications for Re-Os systematics. Geology 1999, 27, 75–78. [Google Scholar] [CrossRef]
- Rubie, D.C.; Laurenz, V.; Jacobson, S.A.; Morbidelli, A.; Palme, H.; Vogel, A.K.; Frost, D.J. Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation. Science 2016, 353, 1141–1144. [Google Scholar] [CrossRef] [PubMed]
- Luguet, A.; Shirey, S.B.; Lorand, J.-P.; Horan, M.F.; Carlson, R.W. Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle. Geochim. Cosmochim. Acta 2007, 71, 3082–3097. [Google Scholar] [CrossRef]
- O’Driscoll, B.; Garwood, R.; Day, J.M.D.; Wogelius, R. Platinum-group element remobilization and concentration in the Cliff chromitites of the Shetland Ophiolite Complex, Scotland. Mineral. Mag. 2018, 82, 471–490. [Google Scholar] [CrossRef] [Green Version]
- Lorand, J.P.; Luguet, A. Chalcophile and Siderophile Elements in Mantle Rocks: Trace Elements Controlled By Trace Minerals. Rev. Mineral. Geochem. 2016, 81, 441–488. [Google Scholar] [CrossRef]
- Fiorentini, M.L.; Beresford, S.W.; Barley, M.E. Ruthenium-chromium variation: A new ltihogeochemical tool in the exploration for komatiite-hosted Ni-Cu-(PGE) deposit. Econ. Geol. 2008, 103, 431–437. [Google Scholar] [CrossRef]
- Locmelis, M.; Pearson, N.L.; Barnes, S.J.; Fiorentini, M.L. Ruthenium in komatiitic chromite. Geochim. Cosmochim. Acta 2011, 75, 3645–3661. [Google Scholar] [CrossRef]
- O’Driscoll, B.; Walker, R.J.; Day, J.M.D.; Ash, R.D.; Daly, J.S. Generations of melt extraction, melt–rock interaction and high-temperature metasomatism preserved in peridotites of the∼ 497 Ma Leka Ophiolite Complex, Norway. J. Petrol. 2015, 56, 1797–1828. [Google Scholar] [CrossRef]
- Pagé, P.; Barnes, S.J.; Bédard, J.H.; Zientek, M.L. In situ determination of Os, Ir, and Ru in chromites formed from komatiite, tholeiite and boninite magmas: Implications for chromite control of Os, Ir and Ru during partial melting and crystal fractionation. Chem. Geol. 2012, 302–303, 3–15. [Google Scholar] [CrossRef]
- Capobianco, C.J.; Drake, M.J. Partitoning of ruthenium, rhodium, and palladium between spinel and silicate melt and implications for platinum group element fractionation trends. Geochim. Cosmochim. Acta 1990, 54, 869–874. [Google Scholar] [CrossRef]
- Brounce, M.; Kelley, K.A.; Cottrell, E.; Reagan, M.K. Temporal evolution of mantle wedge oxygen fugacity during subduction initiation. Geology 2015, 43, 775–778. [Google Scholar] [CrossRef]
- Fortin, M.A.; Riddle, J.; Desjardins-Langlais, Y.; Baker, D.R. The effect of water on the sulfur concentration at sulfide saturation (SCSS) in natural melts. Geochim. Cosmochim. Acta 2015, 160, 100–116. [Google Scholar] [CrossRef]
- Hanghøj, K.; Kelemen, P.B.; Hassler, D.; Godard, M. Composition and Genesis of Depleted Mantle Peridotites from the Wadi Tayin Massif, Oman Ophiolite; Major and Trace Element Geochemistry, and Os Isotope and PGE Systematics. J. Petrol. 2010, 51, 201–227. [Google Scholar] [CrossRef]
- Macleod, C.J.; Lissenberg, C.J.; Bibby, L.E. “Moist MORB” axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin. Geology 2013, 41, 459–462. [Google Scholar] [CrossRef]
- O’Driscoll, B.; Day, J.M.D.; Walker, R.J.; Daly, J.S.; Mcdonough, W.F.; Piccoli, P.M. Chemical heterogeneity in the upper mantle recorded by peridotites and chromitites from the Shetland Ophiolite Complex, Scotland. Earth Planet. Sci. Lett. 2012, 333–334, 226–237. [Google Scholar] [CrossRef]
- O’Driscoll, B.; Walker, R.J.; Clay, P.L.; Day, J.M.D.; Ash, R.D.; Daly, J.S. Length-scales of chemical and isotopic heterogeneity in the mantle section of the Shetland Ophiolite Complex, Scotland. Earth Planet. Sci. Lett. 2018, 488, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Aldanmaz, E.; Koprubasi, N. Platinum-Group-Element Systematics of Peridotites from Ophiolite Complexes of Northwest Anatolia, Turkey: Implications for Mantle Metasomatism by Melt Percolation in a Supra-subduction Zone Environment. Int. Geol. Rev. 2006, 48, 420–442. [Google Scholar] [CrossRef]
- Batanova, V.G.; Brügmann, G.E.; Bazylev, B.A.; Sobolev, A.V.; Kamenetsky, V.S.; Hofmann, A.W. Platinum-group element abundances and Os isotope composition of mantle peridotites from the Mamonia complex, Cyprus. Chem. Geol. 2008, 248, 195–212. [Google Scholar] [CrossRef]
- Büchl, A.; Brügmann, G.; Batanova, V.G.; Münker, C.; Hofmann, A.W. Melt percolation monitored by Os isotopes and HSE abundances: A case study from the mantle section of the Troodos Ophiolite. Earth Planet. Sci. Lett. 2002, 204, 385–402. [Google Scholar] [CrossRef]
- Liu, C.Z.; Wu, F.Y.; Wilde, S.A.; Yu, L.J.; Li, J.L. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos 2010, 114, 413–422. [Google Scholar] [CrossRef]
- Liu, T.; Wu, F.Y.; Liu, C.Z.; Zhang, C.; Ji, W.B.; Xu, Y. Reconsideration of Neo-Tethys evolution constrained from the nature of the Dazhuqu ophiolitic mantle, southern Tibet. Contrib. Mineral. Petrol. 2019, 174. [Google Scholar] [CrossRef]
- Snow, J.E.; Schmidt, G.; Rampone, E. Os isotopes and highly siderophile elements (HSE) in the Ligurian ophiolites, Italy. Earth Planet. Sci. Lett. 2000, 175, 119–132. [Google Scholar] [CrossRef]
- Uysal, I.; Ersoy, E.Y.; Karslı, O.; Dilek, Y.; Sadıklar, M.B.; Ottley, C.J.; Tiepolo, M.; Meisel, T. Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan Ophiolite in SW Turkey: Constraints from mineral composition, whole-rock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics. Lithos 2012, 132–133, 50–69. [Google Scholar] [CrossRef]
- Zhou, M.; Robinson, P.T.; Malpas, J.; Edwards, S.J.; Qi, L. REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet. J. Petrol. 2005, 46, 615–639. [Google Scholar] [CrossRef]
- Schulte, R.F.; Schilling, M.; Anma, R.; Farquhar, J.; Horan, M.F.; Komiya, T.; Piccoli, P.M.; Pitcher, L.; Walker, R.J. Chemical and chronologic complexity in the convecting upper mantle: Evidence from the Taitao ophiolite, southern Chile. Geochim. Cosmochim. Acta 2009, 73, 5793–5819. [Google Scholar] [CrossRef]
Al2O3 | MgO | CaO | LOI | Ol Fo | Sp Cr# | Os | Ir | Ru | Pt | Pd | Re | (Os/Ir)N | (Ru/Ir)N | (Ru/Os)N | (Pt/Pd)N | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Standards | ||||||||||||||||
WPR-1 | 16.9 | 16.7 | 23.7 | 308 | 240 | 11.2 | ||||||||||
UB-N | 3.54 | 3.20 | 6.33 | 6.95 | 5.83 | 0.22 | ||||||||||
BHVO-2 | 0.08 | 0.07 | 0.11 | 5.52 | 2.73 | 0.57 | ||||||||||
Group-I harzburgites | ||||||||||||||||
15NC11 | 0.39 | 43.41 | 0.36 | 6.17 | 0.92 | 0.55 | 1.76 | 0.62 | 1.09 | 7.46 | 0.60 | 0.011 | 2.59 | 1.18 | 0.46 | 8.10 |
15NC12 | 0.32 | 42.37 | 0.40 | 8.15 | 0.91 | 0.55 | 1.09 | 0.75 | 0.46 | 3.01 | 0.60 | 0.029 | 1.32 | 0.41 | 0.31 | 3.27 |
15NC17 | 0.19 | 45.53 | 0.45 | 0.64 | 0.91 | 0.68 | 3.45 | 2.32 | 4.33 | 4.07 | 0.05 | 0.013 | 1.36 | 1.25 | 0.92 | 53.03 |
15NC21 | 0.43 | 45.68 | 0.48 | 0.74 | 0.92 | 0.56 | 0.39 | 0.32 | 1.33 | 0.56 | 0.06 | 0.012 | 1.11 | 2.79 | 2.51 | 6.08 |
15NC23 | 0.32 | 46.53 | 0.40 | 0.30 | 0.92 | 0.56 | 0.30 | 0.49 | 0.76 | 1.47 | 0.27 | 0.019 | 0.56 | 1.04 | 1.86 | 3.55 |
15NC25 | 0.74 | 45.09 | 0.51 | 0.24 | 0.93 | 0.57 | 1.62 | 1.23 | 2.78 | 3.19 | 0.09 | 0.197 | 1.20 | 1.52 | 1.26 | 23.09 |
15NC27 | 0.47 | 43.40 | 0.56 | 3.58 | 0.91 | 0.55 | 1.07 | 0.92 | 2.40 | 3.23 | 0.16 | 0.006 | 1.06 | 1.75 | 1.65 | 13.15 |
15NC28 | 0.28 | 45.09 | 0.42 | 1.36 | 0.91 | 0.66 | 1.73 | 0.79 | 1.87 | 4.90 | 0.13 | 0.016 | 2.00 | 1.59 | 0.80 | 24.56 |
15NC29 | 0.36 | 45.29 | 0.56 | 0.28 | 0.91 | 0.59 | 0.84 | 0.58 | 0.72 | 3.29 | 0.12 | 0.001 | 1.32 | 0.83 | 0.63 | 17.86 |
15NC30 | 0.78 | 44.45 | 0.50 | 0.10 | 0.92 | 0.59 | 0.24 | 0.43 | 1.86 | 3.26 | 0.04 | 0.002 | 0.51 | 2.90 | 5.70 | 53.10 |
15NC31 | 0.10 | 45.24 | 0.22 | 2.46 | 0.91 | 0.72 | 0.70 | 0.52 | 2.06 | 1.33 | 0.04 | 0.010 | 1.23 | 2.66 | 2.17 | 21.66 |
15NC31-R | 0.46 | 0.66 | 2.68 | 1.20 | 0.15 | 0.020 | 0.64 | 2.72 | 4.29 | 5.21 | ||||||
15NC33 | 0.50 | 44.84 | 0.42 | 0.82 | 0.92 | 0.56 | 0.53 | 0.74 | 3.40 | 0.28 | 0.04 | 0.026 | 0.65 | 3.08 | 4.72 | 4.56 |
15NC34 | 0.37 | 45.42 | 0.49 | −0.02 | 0.91 | 0.57 | 0.79 | 0.67 | 3.64 | 4.55 | 0.23 | 0.008 | 1.07 | 3.64 | 3.39 | 12.89 |
Group-II harzburgites | ||||||||||||||||
15NC13 | 0.41 | 43.33 | 0.42 | 5.96 | 0.92 | 0.59 | 0.02 | 0.10 | 1.43 | 0.12 | 0.10 | 0.005 | 0.18 | 9.59 | 52.63 | 0.78 |
15NC15 | 0.24 | 43.72 | 0.36 | 6.18 | 0.92 | 0.58 | 0.05 | 0.06 | 1.21 | 0.18 | 0.03 | 0.002 | 0.76 | 13.53 | 17.81 | 3.91 |
15NC20 | 0.42 | 45.99 | 0.40 | 0.04 | 0.92 | 0.60 | 0.02 | 0.20 | 0.72 | 0.08 | 0.06 | 0.001 | 0.09 | 2.42 | 26.50 | 0.87 |
15NC22 | 0.41 | 45.50 | 0.37 | −0.06 | 0.92 | 0.63 | 0.03 | 0.28 | 0.54 | 0.03 | 0.04 | 0.002 | 0.10 | 1.29 | 13.25 | 0.49 |
15NC24 | 0.29 | 45.75 | 0.36 | 0.06 | 0.92 | 0.64 | 0.03 | 0.11 | 0.54 | 0.04 | 0.01 | 0.001 | 0.25 | 3.29 | 13.25 | 2.61 |
15NC24-R | 0.01 | 0.10 | 0.60 | 0.04 | 0.04 | 0.002 | 0.09 | 4.03 | 44.17 | 0.65 | ||||||
15NC26 | 0.31 | 45.46 | 0.32 | 1.88 | 0.92 | 0.59 | 0.06 | 0.07 | 1.01 | 0.06 | 0.06 | 0.001 | 0.78 | 9.68 | 12.39 | 0.65 |
15NC26-R | 0.02 | 0.04 | 1.07 | 0.05 | 0.06 | 0.002 | 0.46 | 17.95 | 39.38 | 0.54 | ||||||
15NC32 | 0.33 | 45.87 | 0.34 | 0.02 | 0.92 | 0.62 | 0.02 | 0.04 | 0.92 | 0.07 | 0.03 | 0.003 | 0.46 | 15.43 | 33.86 | 1.52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Liu, C.-Z. Subduction-Induced Fractionated Highly Siderophile Element Patterns in Forearc Mantle. Minerals 2019, 9, 339. https://doi.org/10.3390/min9060339
Xu Y, Liu C-Z. Subduction-Induced Fractionated Highly Siderophile Element Patterns in Forearc Mantle. Minerals. 2019; 9(6):339. https://doi.org/10.3390/min9060339
Chicago/Turabian StyleXu, Yang, and Chuan-Zhou Liu. 2019. "Subduction-Induced Fractionated Highly Siderophile Element Patterns in Forearc Mantle" Minerals 9, no. 6: 339. https://doi.org/10.3390/min9060339
APA StyleXu, Y., & Liu, C. -Z. (2019). Subduction-Induced Fractionated Highly Siderophile Element Patterns in Forearc Mantle. Minerals, 9(6), 339. https://doi.org/10.3390/min9060339