The Olympic Cu-Au Province, Gawler Craton: A Review of the Lithospheric Architecture, Geodynamic Setting, Alteration Systems, Cover Successions and Prospectivity
Abstract
:1. Introduction
- the architecture of the lithosphere in the Gawler Craton and the eastern Gawler Craton in particular, in order to understand the broad structural architecture within which the IOCG mineral system developed;
- the geodynamic evolution of the major tectonic event during which the IOCG deposits formed that provided the energy drivers and structural control on the localization of the mineral system;
- the mineral and chemical footprints of the Olympic Dam mineral system in the upper crust, which are significant for exploration vectoring; and,
- the character of the cover successions overlying the prospective Proterozoic basement in the region, since understanding the cover geology is necessary for effective exploration and because they are themselves host to copper mineralisation.
2. Geological Setting
3. Lithospheric Architecture of the Olympic Cu-Au Province
4. Geodynamic Setting of the Olympic Cu-Au Province
- The pre-Mesoproterozoic crustal architecture of the Gawler Craton which was such that the region of the Olympic Cu-Au Province had largely escaped earlier high-temperature metamorphic and deformation events [64].
5. Mineral and Chemical Footprints of Fluid Flow in the Olympic Cu-Au Province
5.1. Alteration Mineralogy and Mineral Assemblages
5.2. Chemical Trends
6. Cover Geology Across the Olympic Cu-Au Province
7. Discussion: Potential for Future Discovery
- (i)
- sources of ore metals, hydrothermal fluids and ligands
- (ii)
- sources of energy to drive hydrothermal systems
- (iii)
- structural pathways for fluid flow, and
- (iv)
- physico-chemical boundaries or gradients along which ore metals are deposited (e.g., redox, pressure etc.)
8. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Einaudi, M.T.; Oreskes, N. Progress toward an occurrence model for Proterozoic iron oxide deposits—A comparison between the ore provinces of South Australia and southeast Missouri. Midcont. US—Permis. Terrane Olymp. Dam-Type Depos. 1990, 1932, 58–69. [Google Scholar]
- Hitzman, M.W.; Oreskes, N.; Einaudi, M.T. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-LREE) deposits. Precambrian Res. 1992, 58, 241–287. [Google Scholar] [CrossRef]
- Groves, D.I.; Bierlein, F.P.; Meinert, L.D.; Hitzman, M.W. Iron oxide copper-gold (IOCG) deposits through Earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ. Geol. 2010, 105, 641–654. [Google Scholar] [CrossRef]
- Williams, P.J.; Barton, M.D.; Fontboté, L.; De Haller, A.; Johnson, D.; Mark, G.; Marschick, R.; Oliver, N.H.S. Iron oxide-copper-gold deposits: geology, space-time distribution, and possible modes of origin. In Economic Geology 100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 371–405. [Google Scholar]
- Grainger, C.J.; Groves, D.I.; Tallarico, F.H.B.; Fletcher, I.R. Metallogenesis of the Carajás mineral province, southern amazon craton, Brazil: Varying styles of archean through paleoproterozoic to neoproterozoic base- and precious-metal mineralisation. Ore Geol. Rev. 2008, 33, 451–489. [Google Scholar] [CrossRef]
- Williams, P.J.; Skirrow, R. Overview of Iron Oxide-Copper-Gold Deposits in the Curnamona Province and Cloncurry District (Eastern Mount Isa Block), Australia. Hydrother. Iron Oxide Copper-Gold Related Dep. Glob. Perspect. 2000, 1, 105–122. [Google Scholar]
- Skirrow, R.G.; Walshe, J.L. Reduced and oxidized Au-Cu-Bi iron oxide deposits of the Tennant Creek Inlier, Australia: An integrated geologic and chemical model. Econ. Geol. 2002, 97, 1167–1202. [Google Scholar] [CrossRef]
- Oliver, N.H.S.; Cleverley, J.S.; Mark, G.; Pollard, P.J.; Fu, B.; Marshall, L.J.; Rubenach, M.J.; Williams, P.J.; Baker, T. Modeling the role of sodic alteration in the genesis of iron oxide-copper-gold deposits, Eastern Mount Isa Block, Australia. Econ. Geol. 2004, 99, 1145–1176. [Google Scholar] [CrossRef]
- Hunt, J.A.; Baker, T.; Thorkelson, D.J. A review of iron oxide copper-gold DEPOSITS, with focus on the Wernecke Breccias, Yukon, Canada, as an example of a non-magmatic end member and implications for IOCG genesis and classification. Explor. Min. Geol. 2007, 16, 209–232. [Google Scholar] [CrossRef]
- Ootes, L.; Snyder, D.; Davis, W.J.; Acosta-Góngora, P.; Corriveau, L.; Mumin, A.H.; Gleeson, S.A.; Samson, I.M.; Montreuil, J.F.; Potter, E.; et al. A paleoproterozoic andean-type iron oxide copper-gold environment, the Great Bear magmatic zone, Northwest Canada. Ore Geol. Rev. 2017, 81, 123–139. [Google Scholar] [CrossRef]
- Marschik, R.; Fontboté, L.S. The candelaria-punta del cobre iron oxide Cu-Au(-Zn-Ag) deposits, Chile. Econ. Geol. 2001, 96, 1799–1826. [Google Scholar]
- Sillitoe, R.H. Iron oxide-copper-gold deposits: An andean view. Min. Dep. 2003, 38, 787–812. [Google Scholar] [CrossRef]
- Skirrow, R.G. ‘Hematite-Group’ IOCG ± U Ore Systems: Tectonic Settings, Hydrothermal Characteristics, and Cu-Au and U Mineralizing Processes. In Exploring for Iron Oxide Copper-Gold Deposits: Canada and Global Analogues; Corriveau, L., Mumin, H., Eds.; Shortcourse Notes, GAC-MAC-SEG-SGA 2008, Quebec City, 29–30th May 2008; Geological Association of Canada: St. John’s, NL, Canada, 2010; pp. 39–58. [Google Scholar]
- Williams, P.J. ‘Magnetite-Group’ IOCGs with Special Reference to Cloncurry (NW Queensland) and Northern Sweden: Settings, Alteration, Deposit Characteristics, Fluid Sources, and their Relationship to Apatite-rich Iron Ores. In Exploring for Iron Oxide Copper-Gold Deposits: Canada and Global Analogues; Corriveau, L., Mumin, A.H., Eds.; Shortcourse Notes, GAC-MAC-SEG-SGA 2008, Quebec City, 29–30th May 2008; Geological Association of Canada: St. John’s, NL, Canada, 2010; pp. 23–29. [Google Scholar]
- Davidson, G.J. The shallow to mid-crustal family of iron oxide copper-gold deposits: size, alteration and mechanisms of formation. In Giant Ore Deposits: Characteristics, Genesis and Exploration; Cooke, D.R., Pongratz, J., Eds.; Special Publication 4—Centre for Ore Deposit and Exploration Studies (CODES): Hobart, Australia, 2002; Volume 4, pp. 79–102. [Google Scholar]
- Gleeson, S.A.; Smith, M.P. The sources and evolution of mineralising fluids in iron oxide-copper-gold systems, Norrbotten, Sweden: Constraints from Br/Cl ratios and stable Cl isotopes of fluid inclusion leachates. Geochim. Cosmochim. Acta 2009, 73, 5658–5672. [Google Scholar] [CrossRef]
- Chen, H. External sulphur in IOCG mineralization: Implications on definition and classification of the IOCG clan. Ore Geol. Rev. 2013, 51, 74–78. [Google Scholar] [CrossRef]
- Xavier, R.P.; Wiedenbeck, M.; Trumbull, R.B.; Dreher, A.M.; Monteiro, L.V.S.; Rhede, D.; Araújo, C.E.G.; Torresi, I. Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajás Mineral Province (Brazil). Geology 2008, 36, 743–746. [Google Scholar] [CrossRef]
- Corriveau, L.; Montreuil, J.F.; Potter, E.G. Alteration facies linkages among iron oxide copper-gold, iron oxide-apatite, and affiliated deposits in the Great Bear Magmatic Zone, Northwest Territories, Canada. Econ. Geol. 2016, 111, 2045–2072. [Google Scholar] [CrossRef]
- Ehrig, K.; McPhie, J.; Kamenetsky, V. Geology and mineralogical zonation of the Olympic Dam iron oxide Cu-U-Au-Ag deposit, South Australia. In Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe; Hedenquist, J.W., Harris, M., Camus, F., Eds.; Society of Economic Geologists Special Publication 16: Littleton, CO, USA, 2012; pp. 237–267. [Google Scholar]
- Skirrow, R.G.; Bastrakov, E.N.; Barovich, K.; Fraser, G.L.; Creaser, R.A.; Fanning, C.M.; Raymond, O.L.; Davidson, G.J. Timing of iron oxide Cu-Au-(U) hydrothermal activity and Nd isotope constraints on metal sources in the Gawler Craton, South Australia. Econ. Geol. 2007, 102, 1441–1470. [Google Scholar] [CrossRef]
- Belperio, A.; Flint, R.; Freeman, H. Prominent Hill—A hematite-dominated, iron-oxide copper-gold system. Econ. Geol. 2007, 102, 1499–1510. [Google Scholar] [CrossRef]
- Ismail, R.; Ciobanu, C.L.; Cook, N.J.; Teale, G.S.; Giles, D.; Mumm, A.S.; Wade, B. Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide-copper-gold deposit, Yorke Peninsula, South Australia. Lithos 2014, 184, 456–477. [Google Scholar] [CrossRef]
- Porter, T.M. The Carrapateena iron oxide copper gold deposit, Gawler Craton, South Australia: A review. In Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, v. 3—Advances in the Understanding of IOCG Deposits; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2010; pp. 191–200. [Google Scholar]
- Schlegel, T.U.; Heinrich, C.A. Lithology and hydrothermal alteration control the distribution of copper grade in the prominent hill iron oxide-copper-gold deposit (Gawler Craton, South Australia). Econ. Geol. 2015, 110, 1953–1994. [Google Scholar] [CrossRef]
- Huang, Q.; Kamenetsky, V.S.; Ehrig, K.; McPhie, J.; Kamenetsky, M.; Cross, K.; Meffre, S.; Agangi, A.; Chambefort, I.; Direen, N.G.; et al. Olivine-phyric basalt in the Mesoproterozoic Gawler silicic large igneous province, South Australia: Examples at the Olympic Dam iron oxide Cu–U–Au–Ag deposit and other localities. Precambrian Res. 2016, 281, 185–199. [Google Scholar] [CrossRef]
- Mauger, A.J.; Ehrig, K.; Kontonikas-Charos, A.; Ciobanu, C.L.; Cook, N.J.; Kamenetsky, V.S. Alteration at the Olympic Dam IOCG–U deposit: Insights into distal to proximal feldspar and phyllosilicate chemistry from infrared reflectance spectroscopy. Aust. J. Earth Sci. 2016, 63, 959–972. [Google Scholar]
- Apukhtina, O.B.; Kamenetsky, V.S.; Ehrig, K.; Kamenetsky, M.B.; Maas, R.; Thompson, J.; McPhie, J.; Ciobanu, C.L.; Cook, N.J. Early, deep magnetite-fluorapatite mineralization at the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ. Geol. 2017, 112, 1531–1542. [Google Scholar] [CrossRef]
- Kontonikas-Charos, A.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.; Krneta, S.; Kamenetsky, V.S. Rare earth element geochemistry of feldspars: examples from Fe-oxide Cu-Au systems in the Olympic Cu-Au Province, South Australia. Mineral. Petrol. 2018, 112, 145–172. [Google Scholar] [CrossRef]
- Hand, M.; Reid, A.; Jagodzinski, E. Tectonic framework and evolution of the Gawler Craton, South Australia. Econ. Geol. 2007, 102, 1377–1395. [Google Scholar] [CrossRef]
- Hayward, N.; Skirrow, R. Geodynamic setting and controls on iron oxide Cu-Au (±U) ore in the Gawler Craton, South Australia. In Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, Volume 3, Advances in the Understanding of Iocg Deposits; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2010; pp. 105–131. [Google Scholar]
- Skirrow, R.G.; Wielen, S.E.; Champion, D.C.; Czarnota, K.; Thiel, S. Lithospheric architecture and mantle metasomatism linked to iron oxide Cu-Au ore formation: Multidisciplinary evidence from the Olympic Dam region, South Australia. Geochem. Geophys. Geosyst. 2018, 19, 2673–2705. [Google Scholar] [CrossRef]
- Skirrow, R.; Schofield, A.; Connelly, D.P. Uranium-rich iron oxide copper-gold. In An Assessment of the Uranium and Geothermal Prospectivity of East-Central South Australia; Huston, D.L., van der Wielen, S.E., Eds.; Geoscience Australia Record 2011/34: Canberra, Australia, 2011; pp. 37–68. [Google Scholar]
- Wyborn, L.A.I.; Heinrich, C.A.; Jaques, A. Australian Proterozoic mineral systems: Essential ingredients and mappable criteria. In Proceedings of the AusIMM Annual Conference, Darwin, Australia, 5–9 August 1994; Volume 5, pp. 109–115. [Google Scholar]
- Occhipinti, S.A.; Metelka, V.; Lindsay, M.D.; Hollis, J.A.; Aitken, A.R.A.; Tyler, I.M.; Miller, J.M.; McCuaig, T.C. Multicommodity mineral systems analysis highlighting mineral prospectivity in the Halls Creek Orogen. Ore Geol. Rev. 2016, 72, 86–113. [Google Scholar] [CrossRef]
- McCuaig, T.C.; Beresford, S.; Hronsky, J. Translating the mineral systems approach into an effective exploration targeting system. Ore Geol. Rev. 2010, 38, 128–138. [Google Scholar] [CrossRef]
- Myers, J.S.; Shaw, R.D.; Tyler, I.M. Tectonic evolution of Proterozoic Australia. Tectonics 1996, 15, 1431–1446. [Google Scholar] [CrossRef]
- Payne, J.L.; Hand, M.; Barovich, K.; Reid, A.J.; Evans, D.A.D. Correlations and reconstruction models for the 2500–1500 Ma evolution of the Mawson Continent. In Palaeoproterozoic Supercontinents and Global Evolution; Reddy, S.M., Mazumder, R., Evans, D.A.D., Collins, A.S., Eds.; Geological Society Special Publications 323: London, UK, 2009; pp. 319–355. [Google Scholar]
- Fitzsimons, I.C.W. Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica. Geol. Soc. Lond. Spec. Publ. 2003, 206, 93–130. [Google Scholar] [CrossRef]
- Pehrsson, S.J.; Eglington, B.M.; Evans, D.A.D.; Huston, D.; Reddy, S.M. Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. Geol. Soc. Lond. Spec. Publ. 2016, 424, 83–94. [Google Scholar] [CrossRef]
- Pehrsson, S.J.; Berman, R.G.; Eglington, B.; Rainbird, R. Two Neoarchean supercontinents revisited: The case for a Rae family of cratons. Precambrian Res. 2013, 232, 27–43. [Google Scholar] [CrossRef]
- Halpin, J.A.; Reid, A.J. Earliest Paleoproterozoic high-grade metamorphism and orogenesis in the Gawler Craton, South Australia: The southern cousin in the Rae family? Precambrian Res. 2016, 276, 123–144. [Google Scholar] [CrossRef]
- Fraser, G.; McAvaney, S.; Neumann, N.; Szpunar, M.; Reid, A. Discovery of early Mesoarchean crust in the eastern Gawler Craton, South Australia. Precambrian Res. 2010, 179, 1–21. [Google Scholar] [CrossRef]
- Swain, G.; Woodhouse, A.; Hand, M.; Barovich, K.; Schwarz, M.; Fanning, C.M. Provenance and tectonic development of the late Archaean Gawler Craton, Australia; U-Pb zircon, geochemical and Sm-Nd isotopic implications. Precambrian Res. 2005, 141, 106–136. [Google Scholar] [CrossRef]
- Reid, A.J.; Fricke, C.; Cowley, W.M. Extent of the low-grade Archaean Devils Playground Volcanics in the north-eastern Gawler Craton: Evidence from recent PACE drilling. MESA J 2009, 54, 9–19. [Google Scholar]
- Hoatson, D.M.; Sun, S.S.; Duggan, M.B.; Davies, M.B.; Daly, S.J.; Purvis, A.C. Late Archaean Lake Harris Komatiite, central Gawler Craton, South Australia: Geologic setting and geochemistry. Econ. Geol. 2005, 100, 349–374. [Google Scholar]
- Szpunar, M.; Hand, M.; Barovich, K.; Belousova, E.; Jagodzinski, E.A. Isotopic and geochemical constraints on the Paleoproterozoic Hutchison Group, southern Australia: Implications for Paleoproterozoic continental reconstructions. Precambrian Res. 2011, 187, 99–126. [Google Scholar] [CrossRef]
- Payne, J.L.; Ferris, G.; Barovich, K.M.; Hand, M. Pitfalls of classifying ancient magmatic suites with tectonic discrimination diagrams: An example from the Paleoproterozoic Tunkillia Suite, southern Australia. Precambrian Res. 2010, 177, 227–240. [Google Scholar] [CrossRef]
- Howard, K.; Hand, M.; Barovich, K.; Belousova, E. Provenance of late Palaeoproterozoic cover sequences in the central Gawler Craton: Exploring stratigraphic correlations in eastern Proterozoic Australia using detrital zircon ages, Hf and Nd isotopic data. Aust. J. Earth Sci. 2011, 58, 475–500. [Google Scholar] [CrossRef]
- Swain, G.; Barovich, K.; Hand, M.; Ferris, G.; Schwarz, M. Petrogenesis of the St Peter Suite, southern Australia: Arc magmatism and Proterozoic crustal growth of the South Australian Craton. Precambrian Res. 2008, 166, 283–296. [Google Scholar] [CrossRef]
- Flint, R.B.; Rankin, L.R.; Fanning, C.M. Definition; the Palaeoproterozoic St. Peter Suite of the western Gawler Craton. Q. Geol. Notes—Geol. Surv. S. Aust. 1990, 114, 2–8. [Google Scholar]
- Flint, R.B.; Blissett, A.H.; Conor, C.H.H.; Cowley, W.M.; Cross, K.C.; Creaser, R.A.; Daly, S.J.; Krieg, G.W.; Major, R.B.; Teale, G.S.; et al. Mesoproterozoic. In The geology of South Australia; Volume 1, The Precambrian; Drexel, J.F., Preiss, W.V., Parker, A.J., Eds.; Geological Survey of South Australia, Bulletin 54: Adelaide, Australia, 1993; pp. 106–169. [Google Scholar]
- Allen, S.R.; McPhie, J.; Ferris, G.; Cadd, A.G. Evolution and architecture of a large felsic igneous province in western Laurentia: The 1.6 Ga Gawler Range Volcanics, South Australia. J Volcanol. Geotherm. Res. 2008, 172, 132–147. [Google Scholar] [CrossRef]
- Daly, S.J.; Fanning, C.M.; Fairclough, M.C. Tectonic evolution and exploration potential of the Gawler Craton, South Australia. AGSO J. Aust. Geol. Geophys. 1998, 17, 145–168. [Google Scholar]
- Cutts, K.; Hand, M.; Kelsey, D.E. Evidence for early Mesoproterozoic (ca. 1590 Ma) ultrahigh-temperature metamorphism in southern Australia. Lithos 2011, 124, 1–16. [Google Scholar] [CrossRef]
- Brotodewo, A.; Tiddy, C.J.; Reid, A.; Wade, C.; Conor, C. Relationships between magmatism and deformation in northern Yorke Peninsula and southeastern Proterozoic Australia. Aust. J. Earth Sci. 2018, 65, 619–641. [Google Scholar] [CrossRef]
- Budd, A.R.; Fraser, G.L. Geological relationships and 40Ar/39Ar age constraints on gold mineralisation at Tarcoola, central Gawler gold province, South Australia. Aust. J. Earth Sci. 2004, 51, 685–700. [Google Scholar] [CrossRef]
- Budd, A.R.; Skirrow, R.G. The nature and origin of gold deposits of the Tarcoola goldfield and implications for the central Gawler gold province, South Australia. Econ. Geol. 2007, 102, 1541–1563. [Google Scholar] [CrossRef]
- Reid, A.J.; Jagodzinski, E.A.; Armit, R.J.; Dutch, R.A.; Kirkland, C.L.; Betts, P.G.; Schaefer, B.F. U-Pb and Hf isotopic evidence for Neoarchean and Paleoproterozoic basement in the buried northern Gawler Craton, South Australia. Precambrian Res. 2014, 250, 127–142. [Google Scholar] [CrossRef]
- Morrissey, L.J.; Barovich, K.M.; Hand, M.; Howard, K.E.; Payne, J.L. Magmatism and metamorphism at ca. 1.45 Ga in the northern Gawler Craton: The Australian record of rifting within Nuna (Columbia). Geosci. Front. 2019, 10, 175–194. [Google Scholar] [CrossRef]
- Fraser, G.; Lyons, P. Timing of Mesoproterozoic tectonic activity in the northwestern Gawler Craton constrained by 40Ar/39Ar geochronology. Precambrian Res. 2006, 151, 160–184. [Google Scholar] [CrossRef]
- Fraser, G.; Reid, A.; Stern, R. Timing of deformation and exhumation across the Karari Shear Zone, north-western Gawler Craton, South Australia. Aust. J. Earth Sci. 2012, 59, 547–570. [Google Scholar] [CrossRef]
- Fanning, C.M.; Flint, R.B.; Preiss, W.V. Geochronology of the pandurra formation. Q. Geol. Notes—Geol. Surv. S. Aust. 1983, 88, 11–16. [Google Scholar]
- Reid, A.J.; Fabris, A. Influence of pre-existing low metamorphic grade sedimentary successions on the distribution of iron oxide-copper-gold mineralization in the Olympic Cu-Au province, Gawler craton. Econ. Geol. 2015, 110, 2147–2157. [Google Scholar] [CrossRef]
- Conor, C.C.H.; Preiss, W.V. Understanding the 1720–1640 Ma Palaeoproterozoic Willyama Supergroup, Curnamona Province, southeastern Australia: Implications for tectonics, basin evolution and ore genesis. Precambrian Res. 2008, 166, 297–317. [Google Scholar] [CrossRef]
- Haydon, R.C.; McConachy, G.W. The stratigraphic setting of Pb-Zn-Ag mineralization at Broken Hill. Econ. Geol. 1987, 82, 826–856. [Google Scholar] [CrossRef]
- Groves, I.M.; Groves, D.I.; Bierlein, F.P.; Broome, J.; Penhall, J. Recognition of the hydrothermal feeder to the structurally inverted, giant Broken Hill deposit, New South Wales, Australia. Econ. Geol. 2008, 103, 1389–1394. [Google Scholar] [CrossRef]
- Wade, C.E. Definition of the mesoproterozoic ninnerie supersuite, Curnamona Province, South Australia. MESA J. 2011, 62, 25–42. [Google Scholar]
- Wade, C.E.; Reid, A.J.; Wingate, M.T.D.; Jagodzinski, E.A.; Barovich, K. Geochemistry and geochronology of the c. 1585 Ma Benagerie Volcanic Suite, southern Australia: Relationship to the Gawler Range Volcanics and implications for the petrogenesis of a Mesoproterozoic silicic large igneous province. Precambrian Res. 2012, 206, 17–35. [Google Scholar] [CrossRef]
- Page, R.W.; Stevens, B.P.J.; Gibson, G.M. Geochronology of the Sequence Hosting the Broken Hill Pb-Zn-Ag Orebody, Australia. Econ. Geol. 2005, 100, 633–661. [Google Scholar]
- Forbes, C.J.; Giles, D.; Betts, P.G.; Weinberg, R.; Kinny, P.D. Dating prograde amphibolite and granulite facies metamorphism using in situ monazite U-Pb SHRIMP analysis. J. Geol. 2007, 115, 691–705. [Google Scholar] [CrossRef]
- Skirrow, R.G.; Ashley, P.M.; Suzuki, K.; McNaughton, N.J. Time-Space framework of Cu-Au(-Mo) and regional alteration systems in the curnamona province. Aust. Geol. Surv. Organ. Record 2000, 10, 83–86. [Google Scholar]
- Armistead, S.E.; Betts, P.G.; Ailleres, L.; Armit, R.J.; Williams, H.A. Cu-Au mineralisation in the Curnamona Province, South Australia: A hybrid stratiform genetic model for Mesoproterozoic IOCG systems in Australia. Ore Geol. Rev. 2018, 94, 104–117. [Google Scholar] [CrossRef]
- Preiss, W.V. The Adelaide Geosyncline: Late Proterozoic Stratigraphy, Sedimentation, Palaeontology and Tectonics; Geological Survey of South Australia–Bulletin 53: Adelaide, Australia, 1987; p. 428. [Google Scholar]
- Preiss, W.V. The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstruction. Precambrian Res. 2000, 100, 21–63. [Google Scholar] [CrossRef]
- Lambert, I.B.; Knutson, J.; Donnelly, T.H.; Etminan, H. Stuart Shelf-Adelaide Geosyncline copper province, South Australia. Econ. Geol. 1987, 82, 108–123. [Google Scholar] [CrossRef]
- Szpunar, M.; Wade, B.; Hand, M.; Barovich, K. Timing of Proterozoic high-grade metamorphism in the Barossa Complex, southern South Australia: Exploring the extent of the 1590 Ma event. MESA J. 2007, 47, 21–27. [Google Scholar]
- Meaney, K.J. Proterozoic Crustal Growth in the Southeastern Gawler Craton: The Development of the Barossa Complex, and an Assessment of the Detrital Zircon Method. Ph.D. Thesis, School of Physical Sciences, University of Adelaide, Adelaide, Australia, December 2017. [Google Scholar]
- Morrissey, L.J.; Hand, M.; Wade, B.P.; Szpunar, M. Early Mesoproterozoic metamorphism in the Barossa Complex, South Australia: links with the eastern margin of Proterozoic Australia. Aust. J. Earth Sci. 2013, 1–27. [Google Scholar] [CrossRef]
- Reid, A.J.; Hand, M. Mesoarchean to Mesoproterozoic evolution of the southern Gawler Craton, South Australia. Episodes 2012, 35, 216–225. [Google Scholar] [Green Version]
- Powell, C.M.; Preiss, W.V.; Gatehouse, C.G.; Krapez, B.; Li, Z.X. South Australian record of a Rodinian epicontinental basin and its mid-Neoproterozoic breakup (∼700 Ma) to form the Palaeo-Pacific Ocean. Tectonophysics 1994, 237, 113–140. [Google Scholar] [CrossRef]
- Flottmann, T.; Haines, P.; Jago, J.; James, P.; Belperio, A.P.; Gum, J. Formation and reactivation of the Cambrian Kanmantoo Trough, SE Australia: implications for early Palaeozoic tectonics at eastern Gondwana’s plate margin. J. Geol. Soc. 1998, 155, 525–539. [Google Scholar] [CrossRef]
- Foden, J.; Elburg, M.A.; Dougherty-Page, J.; Burtt, A. The timing and duration of the delamerian orogeny: correlation with the ross orogen and implications for gondwana assembly. J. Geol. 2006, 114, 189–210. [Google Scholar] [CrossRef]
- Preiss, W.V. Delamerian Orogeny. In The geology of South Australia; Volume 2, The Phanerozoic; Drexel, J.F., Preiss, W.V., Parker, A.J., Eds.; Geological Survey of South Australia–Bulletin 54: Adelaide, Australia, 1995; pp. 45–59. [Google Scholar]
- Alexander, E.M.; Hibburt, J. (Eds.) Petroleum Geology of South Australia. Volume 2: Eromanga Basin; Report Book 96/020; South Australia, Department of Mines and Energy: Adelaide, Australia, 1996. [Google Scholar]
- Hou, B.; Frakes, L.; Sandiford, M.; Worrall, L.; Keeling, J.; Alley, N.F. Cenozoic Eucla Basin and associated palaeovalleys, southern Australia-climatic and tectonic influences on landscape evolution, sedimentation and heavy mineral accumulation. Sediment. Geol. 2008, 203, 112–130. [Google Scholar] [CrossRef]
- Kennett, B.L.; Fichtner, A.; Fishwick, S.; Yoshizawa, K. Australian seismological reference model (AuSREM): Mantle component. Geophys. J. Int. 2013, 192, 871–887. [Google Scholar] [CrossRef]
- Korsch, R.J.; Blewett, R.S.; Giles, D.; Reid, A.J.; Neumann, N.; Fraser, G.L.; Holzshuh, J.; Costelloe, R.D.; Roy, I.G.; Kennett, B.L.N.; et al. Geological Interpretation of the Deep Seismic Reflection and Magnetotelluric Line 08GA-OM1: Gawler Craton-Officer Basin-Musgrave Province-Amadeus Basin (GOMA), South Australia and Northern Territory; Korsch, R.J., Kositcin, N., Eds.; GOMA (Gawler Craton-Officer Basin-Musgrave Province-Amadeus Basin) Seismic and MT Workshop 2010; Geoscience Australia, Record 2010/39: Canberra, Australia; pp. 63–86.
- Drummond, B.; Lyons, P.; Goleby, B.; Jones, L. Constraining models of the tectonic setting of the giant Olympic Dam iron oxide-copper-gold deposit, South Australia, using deep seismic reflection data. Tectonophysics 2006, 420, 91–103. [Google Scholar] [CrossRef]
- Wise, T.; Reid, A.J.; Jakica, S.; Fabris, A.J.; van der Wielen, S.E.; Ziramov, S.; Pridmore, D. Olympic Dam seismic revisited: Reprocessing of deep crustal seismic using partially preserved amplitude processing. MESA J. 2015, 78, 17–28. [Google Scholar] [CrossRef]
- Thiel, S.; Heinson, G. Crustal imaging of a mobile belt using magnetotellurics: An example of the Fowler Domain in South Australia. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Thiel, S.; Heinson, G. Electrical conductors in Archean mantle—Result of plume interaction? Geophys. Res. Lett. 2013, 40, 2947–2952. [Google Scholar] [CrossRef]
- Heinson, G.; Didana, Y.; Soeffky, P.; Thiel, S.; Wise, T. The crustal geophysical signature of a world-class magmatic mineral system. Sci. Rep. 2018, 8, 10608. [Google Scholar] [CrossRef] [PubMed]
- Curtis, S.; Thiel, S. Identifying lithospheric boundaries using magnetotellurics and Nd isotope geochemistry: An example from the Gawler Craton, Australia. Precambrian Res. 2019, 320, 403–423. [Google Scholar] [CrossRef]
- Motta, J.G.; Betts, P.G.; Souza-Filho, C.R.; Thiel, S.; Curtis, S.; Armit, R.J. Proxies for basement structure and its implications for mesoproterozoic metallogenic Provinces in the Gawler Craton. J. Geophys. Res. Solid Earth 2019, 124. [Google Scholar] [CrossRef]
- Wade, C.E.; Payne, J.L.; Barovich, K.M.; Reid, A.J. Heterogeneity of the sub-continental lithospheric mantle and ‘non-juvenile’ mantle additions to a Proterozoic silicic large igneous province. Lithos 2019. [Google Scholar] [CrossRef]
- Champion, D.C.; Huston, D.L. Radiogenic isotopes, ore deposits and metallogenic terranes: Novel approaches based on regional isotopic maps and the mineral systems concept. Ore Geol. Rev. 2015, 76, 229–256. [Google Scholar] [CrossRef]
- Hronsky, J.M.A.; Groves, D.I.; Loucks, R.R.; Begg, G.C. A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Miner. Depos. 2012, 47, 339–358. [Google Scholar] [CrossRef]
- Griffin, W.L.; Begg, G.C.; O’Reilly, S.Y. Continental-root control on the genesis of magmatic ore deposits. Nat. Geosci. 2013, 6, 905–910. [Google Scholar] [CrossRef]
- Heinson, G.; Direen, N.G.; Gill, R.M. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia. Geology 2006, 34, 573–576. [Google Scholar] [CrossRef]
- Thiel, S.; Reid, A.; Heinson, G.; Robertson, K. Insights into lithospheric architecture, fertilisation and fluid pathways from AusLAMP MT. Aust. Soc. Explor. Geophys. Ext. Abstr. 2016, 2016, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Giles, C.W. Petrogenesis of the Proterozoic Gawler Range volcanics, South Australia. Precambrian Res. 1988, 40, 407–427. [Google Scholar] [CrossRef]
- Wade, B.; Barovich, K.; Hand, M.; Scrimgeour, I.R.; Close, D.F. Evidence for early Mesoproterozoic arc-related magmatism in the Musgrave Block, central Australia: Implications for Proterozoic crustal growth and tectonic reconstructions of Australia. J. Geol. 2006, 114, 43–63. [Google Scholar] [CrossRef]
- Betts, P.G.; Giles, D.; Foden, J.; Schaefer, B.F.; Mark, G.; Pankhurst, M.J.; Forbes, C.J.; Williams, H.A.; Chalmers, N.C.; Hills, Q. Mesoproterozoic plume-modified orogenesis in eastern Precambrian Australia. Tectonics 2009, 28. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.X.; Evans, D.A.D.; Wu, H.; Li, H.; Dong, J. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth Planet. Sci. Lett. 2012, 353, 145–155. [Google Scholar] [CrossRef]
- Pisarevsky, S.A.; Elming, S.Å.; Pesonen, L.J.; Li, Z.X. Mesoproterozoic paleogeography: Supercontinent and beyond. Precambrian Res. 2014, 244, 207–225. [Google Scholar] [CrossRef]
- Allen, S.R.; Simpson, C.J.; McPhie, J.; Daly, S.J. Stratigraphy, distribution and geochemistry of widespread felsic volcanic units in the Mesoproterozoic Gawler Range Volcanics, South Australia. Aust. J. Earth Sci. 2003, 50, 97–112. [Google Scholar] [CrossRef]
- Budd, A.R.; Wyborn, L.A.I.; Bastrakova, I.V. The Metallogenic Potential of Australian Proterozoic Granites; Geoscience Australia Record 2001/12: Canberra, Australia, 2001; p. 152. [Google Scholar]
- Forbes, C.J.; Giles, D.; Hand, M.; Betts, P.G.; Suzuki, K.; Chalmers, N.C.; Dutch, R. Using P–T paths to interpret the tectonothermal setting of prograde metamorphism: An example from the northeastern Gawler Craton, South Australia. Precambrian Res. 2011, 185, 65–85. [Google Scholar] [CrossRef]
- Stevens, B.P.J. Post-depositional history of the Willyama Supergroup in the Broken Hill Block, NSW. Aust. J. Earth Sci. 1986, 33, 73–98. [Google Scholar] [CrossRef]
- McPhie, J.; Kamenetsky, V.S.; Chambefort, I.; Ehrig, K.; Green, N. Origin of the supergiant Olympic Dam Cu-U-Au-Ag deposit, South Australia: Was a sedimentary basin involved? Geology 2011, 39, 795–798. [Google Scholar] [CrossRef] [Green Version]
- Curtis, S.; Wade, C.; Reid, A. Sedimentary basin formation associated with a silicic large igneous province: Stratigraphy and provenance of the Mesoproterozoic Roopena Basin, Gawler Range Volcanics. Aust. J. Earth Sci. 2018, 65, 447–463. [Google Scholar] [CrossRef]
- Tassara, S.; González-Jiménez, J.M.; Reich, M.; Schilling, M.E.; Morata, D.; Begg, G.; Saunders, E.; Griffin, W.L.; O’Reilly, S.Y.; Grégoire, M.; et al. Plume-subduction interaction forms large auriferous provinces. Nat. Commun. 2017, 8, 843. [Google Scholar] [CrossRef] [PubMed]
- Pankhurst, M.J.; Schaefer, B.F.; Betts, P.G.; Phillips, N.; Hand, M. A Mesoproterozoic continental flood rhyolite province, the Gawler Ranges, Australia: the end member example of the Large Igneous Province clan. Solid Earth 2011, 2, 25–33. [Google Scholar] [CrossRef] [Green Version]
- McPhie, J.; Kamenetsky, V.; Allen, S.R.; Ehrig, K.; Agangi, A.; Bath, A. The fluorine link between a supergiant ore deposit and a silicic large igneous province. Geology 2011, 39, 1003–1006. [Google Scholar] [CrossRef]
- Bastrakov, E.N.; Skirrow, R.G.; Davidson, G.J. Fluid evolution and origins of iron oxide Cu-Au prospects in the Olympic Dam district, Gawler Craton, South Australia. Econ. Geol. 2007, 102, 1415–1440. [Google Scholar] [CrossRef]
- Gow, P.A.; Wall, V.J.; Oliver, N.H.S.; Valenta, R.K. Proterozoic iron oxide (Cu-U-Au-REE) deposits: Further evidence of hydrothermal origin. Geology 1994, 22, 633–636. [Google Scholar] [CrossRef]
- Cowley, W.M.; Conor, C.H.H.; Zang, W. New and revised Proterozoic stratigraphic units on northern Yorke Peninsula. MESA J. 2003, 29, 46–58. [Google Scholar]
- Conor, C.C.H.; Raymond, O.; Baker, T.; Teale, G.S.; Say, P.; Lowe, G. Alteration and mineralisation in the Moonta-Wallaroo copper-gold mining field region, Olympic Domain, South Australia. In Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, v. 3—Advances in the Understanding of IOCG Deposits; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2010; pp. 1–24. [Google Scholar]
- Cherry, A.R.; Ehrig, K.; Kamenetsky, V.S.; McPhie, J.; Crowley, J.L.; Kamenetsky, M.B. Precise geochronological constraints on the origin, setting and incorporation of ca. 1.59 Ga surficial facies into the Olympic Dam Breccia Complex, South Australia. Precambrian Res. 2018, 315, 162–178. [Google Scholar] [CrossRef]
- Montreuil, J.F.; Corriveau, L.; Grunsky, E.C. Compositional data analysis of hydrothermal alteration in IOCG systems, Great Bear magmatic zone, Canada: to each alteration type its own geochemical signature. Geochem. Explor. Environ. Anal. 2013, 13, 229–247. [Google Scholar] [CrossRef]
- Van der Wielen, S.; Fabris, A.; Halley, S.W.; Keeling, J.L.; Mauger, A.J.; Gordon, G.A.; Keeping, T.; Giles, D.; Hill, S.M. An exploration strategy for IOCG mineral systems under deep cover. MESA J. 2013, 71, 18–30. [Google Scholar]
- Fabris, A.; Katona, L.; Gordon, G.A.; Reed, G.; Keeping, T.; Gouthas, G.; Swain, G. Characterisation and mapping of Cu-Au skarn systems in the Punt Hill region, Olympic Cu-Au Province. MESA J. 2018, 87, 15–27. [Google Scholar]
- Skirrow, R.G.; Bastrakov, E.; Davidson, G.; Raymond, O.L.; Heithersay, P. The geological framework, distribution and controls of Fe-oxide and related alteration, and Cu-Au mineralisation in the Gawler Craton, South Australia. Part II: Alteration and mineralisation. In Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective; Porter, T.M., Ed.; PGC Publishing: Adelaide, Australia, 2002; Volume 2, pp. 33–47. [Google Scholar]
- Reid, A.J.; Swain, G.S.; Mason, D.; Maas, R. Nature and timing of Cu-Au-Zn-Pb mineralisation at Punt Hill, eastern Gawler Craton. MESA J. 2011, 60, 7–17. [Google Scholar]
- Jagodzinski, E.A.; Reid, A.J. PACE Geochronology: Results of Collaborative Geochronology Projects, 2013–2015; Report Book 2015/00003; Department of the Premier and Cabinet: Adelaide, Australia, 2015. [Google Scholar]
- Davidson, G.J.; Paterson, H.L.; Meffre, S.; Berry, R.F. Characteristics and origin of the Oak Dam East breccia-hosted, iron oxide Cu-U-(Au) deposit: Olympic Dam region, Gawler Craton, South Australia. Econ. Geol. 2007, 102, 1471–1498. [Google Scholar] [CrossRef]
- Krneta, S.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.; Kontonikas-Charos, A. Apatite at Olympic Dam, South Australia: A petrogenetic tool. Lithos 2016, 262, 470–485. [Google Scholar] [CrossRef]
- Krneta, S.; Cook, N.J.; Ciobanu, C.L.; Ehrig, K.; Kontonikas-Charos, A. The Wirrda Well and Acropolis prospects, Gawler Craton, South Australia: Insights into evolving fluid conditions through apatite chemistry. J. Geochem. Explor. 2017, 181, 276–291. [Google Scholar] [CrossRef]
- Reid, A.J.; Smith, R.N.; Baker, T.; Jagodzinski, E.A.; Selby, D.; Gregory, C.J.; Skirrow, R.G. Re-Os dating of molybdenite within hematite-breccias from the Vulcan Cu-Au prospect, Olympic Cu-Au Province, South Australia. Econ. Geol. 2013, 108, 883–894. [Google Scholar] [CrossRef]
- Kontonikas-Charos, A.; Ciobanu, C.L.; Cook, N.J. Albitization and redistribution of REE and Y in IOCG systems: Insights from Moonta-Wallaroo, Yorke Peninsula, South Australia. Lithos 2014, 208–209, 178–201. [Google Scholar] [CrossRef]
- Clark, J.; Cook, N.; Reid, A.J.; Fabris, A.; Ciobanu, C.; Hill, P. The Cairn Hill magnetite-sulfide deposit, Mount Woods inlier, South Australia: Ore genesis and spatial-temporal relationships with iron oxide copper-gold systems in the Gawler craton. In Proceedings of the Society of Ecomonic Geologists 2015, Hobart, Tasmania, Australia, 27–30 September 2015; p. 1. [Google Scholar]
- Uvarova, Y.A.; Pearce, M.A.; Liu, W.; Cleverley, J.S.; Hough, R.M. Geochemical signatures of copper redistribution in IOCG-type mineralisation, Gawler Craton, South Australia. Miner. Depos. 2018, 53, 477–492. [Google Scholar] [CrossRef]
- Oreskes, N.; Einaudi, M.T. Origin of hydrothermal fluids at Olympic Dam: Preliminary results from fluid inclusions and stable isotopes. Econ. Geol. 1992, 87, 64–90. [Google Scholar] [CrossRef]
- Haynes, D.W.; Cross, K.C.; Bills, R.T.; Reed, M.H. Olympic Dam ore genesis; a fluid-mixing model. Econ. Geol. 1995, 90, 281–307. [Google Scholar] [CrossRef]
- Montreuil, J.-F.; Corriveau, L.; Potter, E.G.; De Toni, A.F. On the Relationship Between Alteration Facies and Metal Endowment of Iron Oxide-Alkali-Altered Systems, Southern Great Bear Magmatic Zone (Canada). Econ. Geol. 2016, 111, 2139–2168. [Google Scholar] [CrossRef]
- Betts, P.G.; Valenta, R.K.; Finlay, J. Evolution of the Mount Woods Inlier, northern Gawler Craton, southern Australia; an integrated structural and aeromagnetic analysis. Tectonophysics 2003, 366, 83–111. [Google Scholar] [CrossRef]
- Forbes, C.J.; Giles, D.; Jourdan, F.; Sato, K.; Omori, S.; Bunch, M. Cooling and exhumation history of the northeastern Gawler Craton, South Australia. Precambrian Res. 2012, 200–203, 209–238. [Google Scholar] [CrossRef]
- Fabris, A.J.; Halley, S.; van der Wielen, S.; Keeping, T.; Gordon, G. IOCG-style Mineralisation in the Central Eastern Gawler Craton, SA; Characterisation of Alteration, Geochemical Associations and Exploration Vectors; Report Book 2013/00014; Department of Innovation, Manufacturing, Trade, Resources and Energy: Adelaide, Australia, 2013. [Google Scholar]
- Benavides, J.; Kyser, T.K.; Clark, A.H.; Stanley, C.; Oates, C. Exploration guidelines for copper-rich iron oxide–copper–gold deposits in the Mantoverde area, northern Chile: The integration of host-rock molar element ratios and oxygen isotope compositions. Geochem. Explor. Environ. Anal. 2008, 8, 343. [Google Scholar] [CrossRef]
- Dmitrijeva, M.; Ehrig, K.J.; Ciobanu, C.L.; Cook, N.J.; Verdugo-Ihl, M.R.; Metcalfe, A.V. Defining IOCG signatures through compositional data analysis: A case study of lithogeochemical zoning from the Olympic Dam deposit, South Australia. Ore Geol. Rev. 2019, 105, 86–101. [Google Scholar] [CrossRef]
- Huang, Q.; Kamenetsky, V.S.; McPhie, J.; Ehrig, K.; Meffre, S.; Maas, R.; Thompson, J.; Kamenetsky, M.; Chambefort, I.; Apukhtina, O.l.; et al. Neoproterozoic (ca. 820–830 Ma) mafic dykes at Olympic Dam, South Australia: Links with the Gairdner Large Igneous Province. Precambrian Res. 2015, 271, 160–172. [Google Scholar] [CrossRef]
- Baudet, E.; Giles, D.; Tiddy, C.; Hill, S. Evaluation of cover sequence geochemical exploration sample media through assessment of element migration processes. Ore Geol. Rev. 2018, 102, 449–473. [Google Scholar] [CrossRef]
- Knutson, J.; Donnelly, T.H.; Tonkin, D.G. Geochemical constraints on the genesis of copper mineralization in the Mount Gunson area, South Australia. Econ. Geol. 1983, 78, 250–274. [Google Scholar] [CrossRef]
- Cowan, D.; Dentith, M. Unconformity-related copper mineralisation on the Stuart Shelf, South Australia: Geophysical responses of mineralisation and the mineralised environment. ASEG Ext. Abstr. 2003, 2003, 197–212. [Google Scholar] [CrossRef]
- Williams, P.J.; Kendrick, M.A.; Xavier, R.P. Sources of ore fluid components in IOCG deposits. In Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, v. 3—Advances in the Understanding of IOCG Deposits; Porter, T.M., Ed.; PGC Publishing: Adelaide, Austrilia, 2010; pp. 107–116. [Google Scholar]
- Hand, M.; Reid, A.; Szpunar, M.; Direen, N.G.; Wade, B.; Payne, J.; Barovich, K. Crustal architecture during the early Mesoproterozoic Hiltaba-related mineralisation event: Are the Gawler Range Volcanics a foreland basin fill? MESA J. 2008, 51, 19–24. [Google Scholar]
- Teale, G.S. Iron oxide copper-gold mineralisation styles from the Curnamona Province. In 2003 Broken Hill Exploration Initiative Abstracts from the July 2003 Conference; Peljo, M., Ed.; Geoscience Australia Record: Canberra, Australia, 2003; pp. 180–183. [Google Scholar]
- Wise, T.; Katona, L. Gravity anomalies as trap sites in prospectivity modelling of the eastern Gawler copper-gold belt. Aust. Soc. Explor. Geophys. Ext. Abstr. 2015, 1, 1–4. [Google Scholar] [CrossRef]
- Katona, L.F.; Wise, T.; Reid, A.J. Vectorisation of Residual Gravity and TMI Data in the Northern Gawler Craton: Implications for Exploration Targeting and GIS Analysis; Report Book 2015/00003; Department for Energy and Mining: Adelaide, Australia, 2018. [Google Scholar]
- Soe, S.; Lagat, C.; Evans, B.; Mostofi, M.; Fox, S. The coiled tubing drilling rig for mineral exploration. In Proceedings of the SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition, The Woodlands, TX, USA, 27 March 2018; p. 10. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reid, A. The Olympic Cu-Au Province, Gawler Craton: A Review of the Lithospheric Architecture, Geodynamic Setting, Alteration Systems, Cover Successions and Prospectivity. Minerals 2019, 9, 371. https://doi.org/10.3390/min9060371
Reid A. The Olympic Cu-Au Province, Gawler Craton: A Review of the Lithospheric Architecture, Geodynamic Setting, Alteration Systems, Cover Successions and Prospectivity. Minerals. 2019; 9(6):371. https://doi.org/10.3390/min9060371
Chicago/Turabian StyleReid, Anthony. 2019. "The Olympic Cu-Au Province, Gawler Craton: A Review of the Lithospheric Architecture, Geodynamic Setting, Alteration Systems, Cover Successions and Prospectivity" Minerals 9, no. 6: 371. https://doi.org/10.3390/min9060371