Investigation of Possible Leaching Control Mechanisms for Chromium and Vanadium in Electric Arc Furnace (EAF) Slags Using Combined Experimental and Modeling Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Methods
2.2.1. Chemical Characterization
2.2.2. Mineralogical Characterization
2.2.3. Leaching Experiments
2.2.4. Hydrogeochemical Modeling
3. Results
3.1. Chemical and Mineralogical Composition
3.2. Qualitative and Quantitative Surface Investigations
3.3. Modeling Results
3.4. Leached Concentrations and Chemical Composition.
4. Discussion
4.1. Chromium
4.2. Vanadium
4.3. Influence of FeO/SiO2 and CaO/SiO2 on the Release of Cr and V
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schaffartzik, A.; Eisenmenger, N.; Krausmann, F.; Milota, E. Ressourcennutzung in Österreich; BMLFUW–Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft (Lebensministerium): Vienna, Austria, 2015. [Google Scholar]
- Bundesministerium für Nachhaltigkeit und Tourismus. Die Bestandsaufnahme der Abfallwirtschaft in Österreich, Statusbericht 2019; Bundesministerium für Nachhaltigkeit und Tourismus: Wien, Austria, 2019. [Google Scholar]
- Perz, K. Aufkommen, Verwertung und Behandlung von Abfällen in Österreich, Materialien zum Bundes-Abfallwirtschaftsplan 2001; Umweltbundesamt GmbH: Klagenfurt, Austria, 2001. [Google Scholar]
- Pasetto, M.; Baldo, N. Mix design and performance analysis of asphalt concretes with electric arc furnace slag. Constr. Build. Mater. 2011, 25, 3458–3468. [Google Scholar] [CrossRef]
- Faleschini, F.; Brunelli, K.; Zanini, M.A.; Dabalà, M.; Pellegrino, C. Electric Arc Furnace Slag as Coarse Recycled Aggregate for Concrete Production. J. Sustain. Metall. 2016, 2, 44–50. [Google Scholar] [CrossRef]
- Sas, W.; Głuchowski, A.; Radziemska, M.; Dziecioł, J.; Szymański, A. Environmental and geotechnical assessment of the steel slags as a material for road structure. Materials 2015, 8, 4857–4875. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Nikravan, M.; Nadoushan, M.J. Study of the Mechanical Properties and Environmental Characteristics of Concrete with Electric Arc Furnace (EAF) Slag as Aggregates. In Proceedings of the 9th International Congress on Advances in Civil Engineering, Trabzon, Turkey, 27–30 September 2010. [Google Scholar]
- Degner, M.; Fandrich, R.; Endemann, G.; Ghenda, J.T.; Letz, K.; Lüngen, H.B.; Steller, I.; Wieland, H.J.; Winkhold, A.; Bartos, R.; et al. Stahlfibel; Verlag Stahleisen: Düsseldorf, Germany, 2009. [Google Scholar]
- Alloway, B.J. Schwermetalle in Böden; Springer: Berlin/Heidelberg, Germany, 1995; ISBN 9783642635663. [Google Scholar]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Bencheikh-Latmani, R.; Obraztsova, A.; Mackey, M.R.; Ellisman, M.H.; Tebo, B.M. Toxicity of Cr(III) to Shewanella sp. Strain MR-4 during Cr(VI) Reduction. Environ. Sci. Technol. 2007, 41, 214–220. [Google Scholar] [CrossRef]
- Costa, M. Toxicity and Carcinogenicity of Cr(VI) in Animal Models and Humans. Crit. Rev. Toxicol. 1997, 27, 431–442. [Google Scholar] [CrossRef]
- Leuschner, J.; Haschke, H.; Sturm, G. New investigations on acute toxicities of vanadium oxides. Mon. Chem. Chem. Mon. 1994, 125, 623–646. [Google Scholar] [CrossRef]
- Domingo, J.L. Vanadium: A review of the reproductive and developmental toxicity. Reprod. Toxicol. 1996, 10, 175–182. [Google Scholar] [CrossRef]
- Mukherjee, B.; Patra, B.; Mahapatra, S.; Banerjee, P.; Tiwari, A.; Chatterjee, M. Vanadium—An element of atypical biological significance. Toxicol. Lett. 2004, 150, 135–143. [Google Scholar] [CrossRef]
- Chaurand, P.; Rose, J.; Domas, J.; Bottero, J.Y. Speciation of Cr and V within BOF steel slag reused in road constructions. J. Geochem. Explor. 2006, 88, 10–14. [Google Scholar] [CrossRef]
- Chaurand, P.; Rose, J.; Briois, V.; Olivi, L.; Hazemann, J.L.; Proux, O.; Domas, J.; Bottero, J.Y. Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach. J. Hazard. Mater. 2007, 139, 537–542. [Google Scholar] [CrossRef]
- Hobson, A.J.; Stewart, D.I.; Bray, A.W.; Mortimer, R.J.G.; Mayes, W.M.; Rogerson, M.; Burke, I.T. Mechanism of Vanadium Leaching during Surface Weathering of Basic Oxygen Furnace Steel Slag Blocks: A Microfocus X-ray Absorption Spectroscopy and Electron Microscopy Study. Environ. Sci. Technol. 2017, 51, 7823–7830. [Google Scholar] [CrossRef] [Green Version]
- Neuhold, S.; Höllen, D.; Pomberger, R.; Mudersbach, D.; Schüler, S.; van Zomeren, A. Influence of Leaching on the Surface of Steel Slags. In Proceedings of the Berliner Konferenz Mineralische Nebenprodukte und Abfälle, Berlin, Germany, 11–12 June 2018; TK Verlag: Berlin, Germany, 2018; pp. 250–264. [Google Scholar]
- Weber, J.B. Agrochemical Environmental Fate State of the Art, 1st ed.; Leng, M.L., Leovey, E.M.K., Zubkoff, P.L., Eds.; Lewis Publishers: Uckfield, UK, 1995; ISBN 1-56670-034-5. [Google Scholar]
- Dube, A.; Zbytniewski, R.; Kowalkowski, T.; Cukrowska, E.; Buszewski, B. Adsorption and Migration of Heavy Metals in Soil. Polish J. Environ. Stud. 2001, 10, 1–10. [Google Scholar]
- Mudersbach, D.; Kuehn, M.; Geiseler, J.; Koch, K. Chromium Immobilisation in EAF-Slags from High-alloy Steelmaking: Tests at FEhS-Institute and Development of an Operational Slag Treatment Process. In Proceedings of the First Slag Valorisation Symposium, Leuven, Belgium, 6–7 April 2009; KU Leuven: Leuven, Belgium, 2009; pp. 101–110. [Google Scholar]
- Aldrian, A.; Raith, J.G.; Höllen, D.; Pomberger, R. Influence of Chromium Containing Spinels in an Electric Arc Furnace Slag on the Leaching Behaviour. J. Solid Waste Technol. Manag. 2015, 41, 357–365. [Google Scholar] [CrossRef]
- Strandkvist, I.; Engström, F.; Pålsson, K.; Björkman, B. The Influence of Iron Oxide on the Chromium Leachability of EAF Slag—A Full-Scale Study At Ovako Hofors. In Proceedings of the Scanmet IV: 4th International Conference on Process Development in Iron and Steelmaking, Luleå, Sweden, 10–13 June 2012; pp. 329–338. [Google Scholar]
- Strandkvist, I.; Sandström, Å.; Engström, F. Effect of FeO/MgO Ratio on Dissolution and Leaching of Magnesiowüstite. Steel Res. Int. 2017, 88, 7. [Google Scholar] [CrossRef]
- Mombelli, D.; Mapelli, C.; Barella, S.; Gruttadauria, A.; Saout, G.; Le Garcia-diaz, E. The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability. J. Hazard. Mater. 2014, 279, 586–596. [Google Scholar] [CrossRef]
- Van Zomeren, A.; van der Laan, S.R.; Kobesen, H.B.A.; Huijgen, W.J.J.; Comans, R.N.J. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure. Waste Manag. 2011, 31, 2236–2244. [Google Scholar] [CrossRef]
- Drissen, P. Mineralische Bindung von Spurenelementen in Stahlwerksschlacken; FEhS-Institut für Baustoff-Forschung e.V.: Duisburg, Germany, 2006. [Google Scholar]
- Drissen, P. Binding of trace elements in steel slags. In Proceedings of the 5th European Slag Conference, Luxembourg, 19–21 September 2007; pp. 187–198. [Google Scholar]
- Cabrera-Real, H.; Romero-Serrano, A.; Zeifert, B.; Hernandez-Ramirez, A.; Hallen-Lopez, M.; Cruz-Ramirez, A. Effect of MgO and CaO/SiO2 on the immobilization of chromium in synthetic slags. J. Mater. Cycles Waste Manag. 2012, 14, 317–324. [Google Scholar] [CrossRef]
- Mombelli, D.; Mapelli, C.; Barella, S.; Di Cecca, C.; Le Saout, G.; Garcia-diaz, E. The effect of chemical composition on the leaching behaviour of electric arc furnace (EAF) carbon steel slag during a standard leaching test. J. Environ. Chem. Eng. 2016, 4, 1050–1060. [Google Scholar] [CrossRef] [Green Version]
- Loncnar, M.; van der Sloot, H.A.; Mladenovič, A.; Zupančič, M.; Kobal, L.; Bukovec, P. Study of the leaching behaviour of ladle slags by means of leaching tests combined with geochemical modelling and mineralogical investigations. J. Hazard. Mater. 2016, 317, 147–157. [Google Scholar] [CrossRef]
- Austrian Standards Institute. ÖNORM S 2127:2011 Grundlegende Charakterisierung von Abfallhaufen oder von festen Abfällen aus Behältnissen und Transportfahrzeugen; Austrian Standards Institute: Wien, Austria, 2011; p. 34. [Google Scholar]
- Austrian Standards Institute. ÖNORM EN 14346:2007 Charakterisierung von Abfällen—Berechnung der Trockenmasse durch Bestimmung des Trockenrückstandes oder des Wassergehaltes; Austrian Standards Institute: Wien, Austria, 2007; p. 24. [Google Scholar]
- Austrian Standards Institute. ÖNORM EN 13656:2002 Charakterisierung von Abfällen—Aufschluss mittels Mikrowellengerät mit einem Gemisch aus Fluorwasserstoffsäure (HF), Salpetersäure (HNO3) und Salzsäure (HCl) für die anschließende Bestimmung der Elemente im Abfall; ; Austrian Standards Institute: Wien, Austria, 2002; p. 26. [Google Scholar]
- Austrian Standards Institute. ÖNORM EN ISO 17294-2:2005 Wasserbeschaffenheit—Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS); Austrian Standards Institute: Wien, Austria, 2005; p. 24. [Google Scholar]
- Hafner, J. Erarbeitung Eines Geeigneten Verfahrens zur Bestimmung von Fluor in Schlacken; Montanuniveristaet Leoben: Leoben, Austria, 2017. [Google Scholar]
- Deutsches Institut für Normung. DIN 38405-24:1987 Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung—Anionen (Gruppe D)—Photometrische Bestimmung von Chrom(VI) mittels 1,5-Diphenylcarbazid (D24); Deutsches Institut für Normung: Berlin, German, 1987; p. 10. [Google Scholar]
- Austrian Standards Institute. ÖNORM EN 14429:2015 Charakterisierung von Abfällen—Untersuchung des Elutionsverhaltens—Einfluss des pH-Wertes auf die Elution unter vorheriger Säure/Base-Zugabe; Austrian Standards Institute: Wien, Austria, 2015; p. 50. [Google Scholar]
- Austrian Standards Institute. ÖNORM S 2116-4:2001 Untersuchung verfestigter Abfälle: Elutionstest über 24 Stunden, 64 Tage, 2 Tage; Austrian Standards Institute: Wien, Austria, 2001; p. 17. [Google Scholar]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry, 3rd ed.; John Wiley & Sons, Inc.: Mississauga, ON, Canada, 1996; ISBN 0-471-51184-6. [Google Scholar]
- Kostka, J.E.; Luther, G.W. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochim. Cosmochim. Acta 1994, 58, 1701–1710. [Google Scholar] [CrossRef]
- Blakemore, L.C.; Searle, P.L.; Daly, B.K. Methods for Chemical Analysis of Soils; Department of Scientific and Industrial Research: Lower Hutt, New Zealand, 1987. [Google Scholar]
- Dzombak, D.A.; Morel, F.M.M. Surface Complexation Modeling: Hydrous Ferric Oxides; John Wiley & Sons, Inc.: Mississauga, ON, Canada, 1990; ISBN 0-471-63731-9. [Google Scholar]
- Strunz, H.; Nickel, E. Strunz Mineralogical Tables, 9th ed.; Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2001; ISBN 3-510-65188-X. [Google Scholar]
- Rai, D.; Eary, L.E.; Zachara, J.M. Environmental chemistry of chromium. Sci. Total Environ. 1989, 86, 15–23. [Google Scholar] [CrossRef]
- Dimitrova, S.V.; Mihailova, I.K.; Nikolov, V.S.; Mehandjiev, D.R. Adsorption capacity of modified metallurgical slags. In Proceedings of the IIIrd National Crystallographic Symposium, Singapore, 25 November–3 December 2012; pp. 30–36. [Google Scholar]
- Blatt, H.; Tracey, R.J. Petrology: Igneous, Sedimentary, and Metamorphic, 2nd ed.; W. H. Freeman and Company: New York, NY, USA, 1996. [Google Scholar]
- Dumm, J.Q.; Brown, P.W. Dissolution of iron in silicate melts. J. Am. Ceram. Soc. 1999, 82, 987–993. [Google Scholar] [CrossRef]
- White, J. The Relationship of Phase Diagrams to Constitution and Microstructure in Ceramic and Ceramic-Metal System. In Refractory Materials A Series of Monographs; Margrave, J.L., Ed.; Academic Press: New York, NY, USA; London, UK, 1970; Volume 6, pp. 21–66. [Google Scholar]
Total Content | Non-Conditioned Samples | Conditioned Samples | |||
---|---|---|---|---|---|
(Mass-%) | EAFS1 | EAFS2_1 | EAFS2_2 | EAFS2_A | EAFS2_B |
n = 10 | n =2 | n = 2 | n = 1 | n = 2 | |
Ca | 15.1 ± 1.6 | 27.5 ± 0.4 | 28.1 ± 0.4 | 16.6 | 16.9 ± 0.6 |
Si | 4.9 ± 0.3 | 7.8 ± 0.2 | 6.7 ± 0.9 | 8.9 | 11.7 ± 0.3 |
Fe | 29.6 ± 1.4 | 20.6 ± 0.5 | 21.8 ± 1.3 | 22.8 | 20.3 ± 2.5 |
Al | 3.9 ± 0.4 | 3.0 ± 0.3 | 3.1 ± 0.2 | 2.2 | 4.8 ± 0.03 |
Mn | 3.6 ± 0.2 | 5.0 ± 0.3 | 5.9 ± 0.1 | 3.1 | 4.2 ± 0.06 |
Mg | 3.7 ± 1.4 | 3.3 ± 0.3 | 3.0 ± 0.3 | 2.3 | 2.4 ± 0.04 |
Crtot | 1.2 ± 0.1 | 0.98 ± 0.05 | 0.91 ± 0.3 | 1.2 | 1.5 ± 0.06 |
V | 0.07 ± 0.01 | 0.09 ± 0.01 | 0.10 ± 0.002 | 0.09 | 0.11 ± 0.02 |
Cr(VI) | < 2.0 × 10−4 | 2.4 × 10−5 ± 0.00 | 2.4 × 10−5 ± 1.1 × 10−5 | 1.6 × 10−5 | 1.8 × 10−5 ± 8.5 × 10−6 |
Sample | XRD | EMPA | Abbreviation | |
---|---|---|---|---|
Mineral Phases | Calculated Stoichiometry | Analyses | ||
EAFS1 | Spinel | (Mg0.5Fe0.6Mn0.1)(Cr1.0Al0.9)O4 | 5 | Spl |
Wuestite | (Fe0.8Mn0.1Mg0.1)O | 10 | Wus | |
Gehlenite | Ca2(Mg0.2Fe0.2Al1.3)Si1.3O7 | 5 | Mll | |
Monticellite | (Ca1.2Mg0.2Fe0.5Mn0.2)SiO4 | 5 | Ol1 | |
EAFS2_1 | Spinel | (Mg0.6Fe0.4Mn0.2)(Cr1.6Al0.3)O4 | 5 | Spl |
Wuestite | (Fe0.6Mn0.2Mg0.2)O | 10 | Wus | |
Bredigite | (Ca1.9Mg0.1)SiO4 | 10 | Ol2 | |
EAFS2_2 | Wuestite | (Fe0.7Mn0.2Mg0.1)O | 10 | Wus |
Åkermanite | Ca2(Mg0.1Fe0.1Al1.6)Si1.2O7 | 6 | Mll | |
Bredigite | (Ca1.7Mg0.2Fe0.1)SiO4 | 6 | Ol2 | |
- | Ca–Si–Ti–Fe (by EDS) | 3 | T | |
EAFS2_A | Spinel | (Mg0.3Fe0.7Mn0.1)(Cr1.5Al0.5)O4 | 13 | Spl |
Wuestite | (Fe0.7Mg0.1Mn0.1)O | 10 | Wus | |
Gehlenite | Ca1.9(Mg0.2Fe0.2Al1.2)Si1.4O7 | 10 | Mll | |
Kirschsteinite | (CaMg0.3Fe0.5Mn0.1)SiO4 | 13 | Ol1 | |
Bredigite | (Ca1.8Mg0.1Fe0.1)SiO4 | 3 | Ol2 | |
EAFS2_B | Spinel | (Mg0.4Fe0.5Mn0.2)(Cr1.2Al0.8)O4 | 14 | Spl |
Wuestite | grains < 10 µm | - | Wus | |
Gehlenite | Ca1.9(Mg0.3Fe0.2Al1.1)Si1.5O7 | 10 | Mll | |
Kirschsteinite | (Ca0.9Mg0.2Mn0.3Fe0.6)Si1.0O4 | 10 | Ol1 |
EAFS1 | EAFS2_1 | EAFS2_2 | EAFS2_A | EAFS2_B | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Phase | BL | AL | BL | AL | BL | AL | BL | AL | BL | AL |
Chromium (mass-%) | ||||||||||
Spl | 26.3 ± 2.0 | 24.2 ± 3.6 | 40.8 ± 2.0 | 40.5 ± 2.1 | - | 38.7 ± 2.3 | 34.7 ± 4.3 | 36.6 ± 6.0 | 28.5 ± 3.9 | 28.2 ± 4.1 |
Wus | 0.67 ± 0.20 | 0.74 ± 0.20 | 1.54 ± 0.32 | 1.44 ± 0.44 | 0.96 ± 0.14 | 0.96 ± 0.27 | 2.59 ± 2.2 | 3.50 ± 2.0 | <10 µm | <10 µm |
Mll | b.d. | 0.07 ± 0.03 | - | - | b.d. | 0.05 ± 0.01 | b.d. | b.d. | b.d. | b.d. |
Ol1 | b.d. | 0.05 ± 0.03 | - | - | - | - | b.d. | 0.08 ± 0.08 | b.d. | b.d. |
Ol2 | - | - | b.d. | d | b.d. | d | 0.04 ± 0.02 | d | - | - |
Vanadium (mass-%) | ||||||||||
Spl | 0.12 ± 0.05 | 0.14 ± 0.03 | 0.10 ± 0.04 | 0.07 ± 0.02 | - | 0.08 ± 0.03 | 0.07 ± 0.03 | 0.19 ± 0.10 | 0.12 ± 0.04 | 0.19 ± 0.10 |
Wus | 0.05 ± 0.02 | 0.09 ± 0.05 | b.d. | b.d. | 0.09 ± 0.03 | 0.06 ± 0.02 | 0.07 ± 0.03 | 0.16 ± 0.06 | <10 µm | <10 µm |
Mll | b.d. | b.d. | - | - | b.d. | b.d. | b.d. | b.d. | b.d. | b.d. |
Ol1 | b.d. | b.d. | - | - | - | - | b.d. | b.d. | b.d. | b.d. |
Ol2 | - | - | 0.06 ± 0.03 | d | b.d. | d | b.d. | d | - | - |
Parameter | EAFS1 | EAFS2_1 | EAFS2_2 | EAFS2_A | EAFS2_B |
---|---|---|---|---|---|
Chromium | |||||
Total content (mg/kg) | 11,850 | 9775 | 9080 | 11,700 | 14,550 |
Leached amount at natural pH (mg/kg DM) | 0.13 | 0.0065 | 0.0098 | 0.0084 | 0.0035 |
Leached amount at natural pH (% of tc) | 1.10 × 10−3 | 6.65 × 10−5 | 1.08 × 10−4 | 7.18 × 10−5 | 2.41 × 10−5 |
Vanadium | |||||
Total content (mg/kg) | 730 | 885 | 955 | 880 | 1085 |
Leached amount at natural pH (mg/kg DM) | 2.5 | 1.5 | 2.4 | 1.3 | 0.37 |
Leached amount at natural pH (% of tc) | 0.34 | 0.17 | 0.25 | 0.15 | 0.034 |
Ratio of total content/total content | |||||
CaO/SiO2 | 2.03 | 2.31 | 2.74 | 1.21 | 0.94 |
FeO/SiO2 | 3.66 | 1.59 | 1.95 | 1.53 | 1.04 |
Al2O3 (mass-%) | 7.3 | 5.6 | 5.8 | 4.2 | 9.1 |
MgO (mass-%) | 6.2 | 5.4 | 5.0 | 3.8 | 3.9 |
Leachate with distilled water (L/S = 10) | |||||
Natural pH | 11.2 | 11.1 | 11.2 | 11.2 | 10.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neuhold, S.; van Zomeren, A.; Dijkstra, J.J.; van der Sloot, H.A.; Drissen, P.; Algermissen, D.; Mudersbach, D.; Schüler, S.; Griessacher, T.; Raith, J.G.; et al. Investigation of Possible Leaching Control Mechanisms for Chromium and Vanadium in Electric Arc Furnace (EAF) Slags Using Combined Experimental and Modeling Approaches. Minerals 2019, 9, 525. https://doi.org/10.3390/min9090525
Neuhold S, van Zomeren A, Dijkstra JJ, van der Sloot HA, Drissen P, Algermissen D, Mudersbach D, Schüler S, Griessacher T, Raith JG, et al. Investigation of Possible Leaching Control Mechanisms for Chromium and Vanadium in Electric Arc Furnace (EAF) Slags Using Combined Experimental and Modeling Approaches. Minerals. 2019; 9(9):525. https://doi.org/10.3390/min9090525
Chicago/Turabian StyleNeuhold, Simone, André van Zomeren, Joris J. Dijkstra, Hans A. van der Sloot, Peter Drissen, David Algermissen, Dirk Mudersbach, Susanne Schüler, Thomas Griessacher, Johann G. Raith, and et al. 2019. "Investigation of Possible Leaching Control Mechanisms for Chromium and Vanadium in Electric Arc Furnace (EAF) Slags Using Combined Experimental and Modeling Approaches" Minerals 9, no. 9: 525. https://doi.org/10.3390/min9090525
APA StyleNeuhold, S., van Zomeren, A., Dijkstra, J. J., van der Sloot, H. A., Drissen, P., Algermissen, D., Mudersbach, D., Schüler, S., Griessacher, T., Raith, J. G., Pomberger, R., & Vollprecht, D. (2019). Investigation of Possible Leaching Control Mechanisms for Chromium and Vanadium in Electric Arc Furnace (EAF) Slags Using Combined Experimental and Modeling Approaches. Minerals, 9(9), 525. https://doi.org/10.3390/min9090525