Petrogenesis of an Episyenite from Iwagi Islet, Southwest Japan: Unique Li–Na Metasomatism during the Turonian
Abstract
:1. Introduction
2. Geological Background
2.1. Regional Distribution and Mineralogy of Episyenite-like Rocks in the Setouchi Region
2.2. Occurrence of Granites and Albitites in Iwagi Islet
3. Samples and Analytical Procedure
3.1. Samples
3.1.1. Samples for Whole-Rock and Mineralogical and Petrological Analyses
3.1.2. Samples for Zircon U–Pb Dating
3.1.3. Sample for 40Ar/39Ar Dating
3.2. Analytical Procedure
3.2.1. Whole-Rock Na2O, K2O and Li Analyses
3.2.2. Surface Observation and Mineral Analyses
3.2.3. Zircon U–Pb Dating
3.2.4. Katayamalite 40Ar/39Ar Dating
4. Regional Variations of Whole-Rock Alkali Content
4.1. Iwagi Albitites and Their Protolith
No. | Rock Type | Na2O (wt.%) | K2O (wt.%) | Li (ppm) | Latitude (N) | Longitude (E) |
---|---|---|---|---|---|---|
IW-41 | Coarse-grained Bt granite | 3.76 | 3.85 | 42.9 | 34°15′27.4″ | 133°8′40.2″ |
IW-44 | Coarse-grained Bt granite | 2.97 | 4.10 | 13.5 | 34°16′09.4″ | 133°8′15.1″ |
IW-47 | Medium-grained Bt granite | 3.07 | 4.50 | 39.7 | 34°15′42.7″ | 133°8′48.9″ |
IW-48 | Medium-grained Bt granite | 3.44 | 4.67 | 46.0 | 34°15′37.2″ | 133°8′41.2″ |
IW-89 | Medium-grained Bt granite | 3.12 | 5.43 | 10.1 | 34°14′43.8″ | 133°7′54.5″ |
IW-300 | Medium-grained Bt granite | 3.44 | 4.70 | 99.0 | 34°15′41.4″ | 133°8′49.1″ |
IW-303 | Fine-grained Bt granite | 3.58 | 4.72 | 100 | 34°15′29.0″ | 133°8′43.6″ |
IW-42 | Fine-grained Bt granite | 3.45 | 4.41 | 43.2 | 34°15′33.6″ | 133°8′42.3″ |
IW-03 | Albitized granite | 6.96 | 0.82 | 49.3 | 34°15′42.0″ | 133°9′36.6″ |
IW-53 | Albitized granite | 3.92 | 5.18 | 110 | 34°15′46.1″ | 133°9′36.3″ |
T-17 | Albitized granite | 6.34 | 2.17 | 43.0 | 34°15′49.1″ | 133°9′39.4″ |
T-24 | Albitized granite | 5.44 | 7.38 | 26.3 | 34°15′41.7″ | 133°9′38.1″ |
T-204 | Albitized granite | 7.85 | 3.99 | 87.0 | 34°15′50.9″ | 133°9′37.6″ |
T-206B | Albitized granite | 4.68 | 5.55 | 26.0 | 34°15′51.3″ | 133°9′37.1″ |
IW-60 | Quartz albitite | 10.19 | 0.30 | 5.9 | 34°15′46.4″ | 133°9′35.9″ |
T-50 | Quartz albitite | 9.55 | 0.44 | 12.9 | 34°15′42.0″ | 133°9′38.5″ |
T-4 | Hedenbergite albitite | 10.58 | 0.93 | 17.0 | 34°15′40.7″ | 133°9′38.4″ |
IW-51 | Hedenbergite albitite | 10.75 | 0.43 | 7.4 | 34°15′41.2″ | 133°9′38.2″ |
W-14 | Aegirine albitite | 11.26 | 0.16 | 71.8 | 34°15′47.5″ | 133°9′47.2″ |
IW-23 | Aegirine albitite | 11.29 | 0.25 | 7.1 | 34°15′47.4″ | 133°9′39.2″ |
IW-24 | Aegirine albitite | 10.97 | 0.22 | 51.2 | 34°15′47.3″ | 133°9′39.1″ |
IW-90A | Aegirine albitite | 11.15 | 0.24 | 23.1 | 34°15′47.1″ | 133°9′40.1″ |
IW-167 | Aegirine albitite | 11.06 | 0.23 | 18.9 | 34°15′46.9″ | 133°9′40.3″ |
IW-71 | Sugilite albitite | 10.62 | 0.27 | 292 | 34°15′47.2″ | 133°9′33.7″ |
IW-90B | Sugilite albitite | 10.92 | 0.26 | 255 | 34°15′46.6″ | 133°9′40.4″ |
IW-2-3 | Katayamalite albitite | 6.08 | 4.88 | 656 | 34°15′47.3″ | 133°9′39.5″ |
IW-12 | Katayamalite albitite | 10.39 | 0.21 | 356 | 34°15′47.0″ | 133°9′40.5″ |
IW-168 | Katayamalite albitite | 10.55 | 0.35 | 441 | 34°15′47.4″ | 133°9′39.4″ |
IW-28 | Katayamalite albitite | 10.68 | 0.33 | 651 | 34°15′46.9″ | 133°9′40.3″ |
IW-27 | Katayamalite albitite | 10.38 | 0.35 | 960 | 34°15′47.0″ | 133°9′39.9″ |
IW-75 | Katayamalite albitite | 10.16 | 0.30 | 465 | 34°15′47.3″ | 133°9′40.2″ |
IW-122 | Katayamalite albitite | 11.09 | 0.27 | 393 | 34°15′47.3″ | 133°9′39.8″ |
IW-131 | Katayamalite albitite | 10.71 | 0.36 | 977 | 34°15′47.2″ | 133°9′39.7″ |
4.2. Comparison of Different Episyenite-like Rocks in the Setouchi Region
No. | Rock Type | Na2O (wt.%) | K2O (wt.%) | Li (ppm) | Locality (Numbers Correspond to Those in Figure 1) | |
---|---|---|---|---|---|---|
TS-1 | Cpx–Pl–Kfs–Qz albitite | 10.05 | 0.92 | 14.5 | 1 | Yamada, Taishi-cho, Osaka Prefecture |
TS-2 | Cpx–Pl–Kfs–Qz episyenite-like rock | 7.84 | 2.50 | 11.1 | 1 | Yamada, Taishi-cho, Osaka Prefecture |
SD-1 | Cpx–Pl–Kfs–Qz episyenite-like rock | 7.60 | 3.79 | 3.4 | 2 | Shodoshima Island, Kagawa Prefecture |
SD-2 | Cpx–Pl–Kfs–Qz episyenite-like rock | 8.08 | 3.42 | 3.0 | 2 | Shodoshima Island, Kagawa Prefecture |
SD-3 | Cpx–Pl–Kfs–Qz episyenite-like rock | 7.18 | 2.48 | 9.9 | 2 | Shodoshima Island, Kagawa Prefecture |
SD-4 | Grt–Pl–Kfs–Qz albitite | 11.19 | 0.29 | 104 | 2 | Shodoshima Island, Kagawa Prefecture |
SD-5 | Cpx–Grt–Pl–Kfs episyenite-like rock | 8.83 | 1.95 | 10.8 | 2 | Shodoshima Island, Kagawa Prefecture |
SD-6 | Hbl–Ep–Pl–Qz episyenite-like rock | 7.82 | 2.26 | 13.0 | 2 | Shodoshima Island, Kagawa Prefecture |
IN-10 | Cpx–Hbl–Pl–Kfs episyenite-like rock | 5.45 | 3.69 | 5.2 | 3 | Innoshima Island, Hiroshima Prefecture |
IN-11 | Cpx–Hbl–Pl–Kfs episyenite-like rock | 2.45 | 2.43 | 57.2 | 3 | Innoshima Island, Hiroshima Prefecture |
IN-12 | Cpx–Hbl–Pl–Kfs episyenite-like rock | 5.84 | 4.30 | 12.1 | 3 | Innoshima Island, Hiroshima Prefecture |
NK-1 | Hbl–Cpx–Pl episyenite-like rock | 6.79 | 0.20 | 11.7 | 6 | Namikata, Ehime Prefecture |
NK-2 | Hbl–Cpx–Pl episyenite-like rock | 5.81 | 2.80 | 18.9 | 6 | Namikata, Ehime Prefecture |
NK-3 | Cpx–Grn–Hbl–Pl episyenite-like rock | 6.41 | 1.62 | 7.5 | 6 | Namikata, Ehime Prefecture |
NK-4 | Grt–Pl–Kfs–Qz episyenite-like rock | 5.68 | 4.15 | 10.6 | 6 | Namikata, Ehime Prefecture |
NK-5 | Cpx–Grn–Pl–Kfs episyenite-like rock | 5.63 | 5.38 | 7.6 | 6 | Namikata, Ehime Prefecture |
KR-1 | Hbl–Cpx–Pl–Kfs episyenite-like rock | 7.81 | 1.90 | 5.8 | 7 | Kure, Hiroshima Prefecture |
NM-1 | Hbl–Cpx–Pl–Kfs episyenite-like rock | 7.58 | 3.16 | 16.6 | 8 | Nomijima Island, Hiroshima Prefecture |
NM-2 | Grn–Cpx–Pl–Kfs episyenite-like rock | 6.58 | 3.19 | 10.6 | 8 | Nomijima Island, Hiroshima Prefecture |
MM-3 | Hbl–Ep–Kfs–Pl episyenite-like rock | 4.50 | 6.04 | 9.2 | 8 | Nomijima Island, Hiroshima Prefecture |
NM-4 | Hbl–Cpx–Pl–Kfs episyenite-like rock | 8.56 | 2.80 | 16.5 | 8 | Nomijima Island, Hiroshima Prefecture |
AI-1 | Cpx–Pl–Kfs–Qz episyenite-like rock | 6.01 | 3.50 | 13.7 | 10 | Chudo, Aio, Yamaguchi Prefecture |
AI-2 | Cpx–Pl–Kfs–Qz episyenite-like rock | 5.82 | 3.88 | 7.0 | 10 | Chudo, Aio, Yamaguchi Prefecture |
AI-3 | Grt–Cpx–Hbl–Pl episyenite-like rock | 5.12 | 3.03 | 11.0 | 10 | Hazekura, Aio, Yamaguchi Prefecture |
AI-4 | Cpx–Hbl–Pl–Kfs–Qz albitite | 11.26 | 0.16 | 11.9 | 10 | Hazekura, Aio, Yamaguchi Prefecture |
UO-1 | Hbl–Cpx–Pl–Kfs episyenite-like rock | 7.82 | 2.21 | 14.7 | 11 | Utsugiono, Ube, Yamaguchi Prefecture |
UO-2 | Hbl–Ep–Pl–Kfs–Qz episyenite-like rock | 5.38 | 4.14 | 20.5 | 11 | Utsugiono, Ube, Yamaguchi Prefecture |
UO-3 | Ep–Hbl–Pl–Qz–Kfs episyenite-like rock | 5.70 | 2.91 | 13.0 | 11 | Utsugiono, Ube, Yamaguchi Prefecture |
UO-4 | Cpx–Pl episyenite-like rock | 8.54 | 0.60 | 16.8 | 11 | Utsugiono, Ube, Yamaguchi Prefecture |
UO-5 | Hbl–Pl–Qz episyenite-like rock | 8.82 | 0.58 | 12.7 | 11 | Utsugiono, Ube, Yamaguchi Prefecture |
UO-6 | Grt–Pl–Qz episyenite-like rock | 9.72 | 0.17 | 21.9 | 11 | Utsugiono, Ube, Yamaguchi Prefecture |
UO-7 | Cpx–Hbl–Pl–Qz episyenite-like rock | 8.59 | 0.59 | 23.9 | 11 | Utsugiono, Ube, Yamaguchi Prefecture |
UO-8 | Grt–Ep–Pl–Kfs–Qz episyenite-like rock | 5.74 | 5.85 | 16.3 | 11 | Utsugiono, Ube, Yamaguchi Prefecture |
5. Petrographic and Mineralogical Descriptions
5.1. Overview of Protolith Granite and Albitite
5.2. Description of Individual Rocks
5.2.1. Biotite Granite Protolith
5.2.2. Albitized Granite
5.2.3. Quartz Albitite
5.2.4. Hedenbergite Albitite
5.2.5. Aegirine Albitite
5.2.6. Sugilite Albitite
5.2.7. Katayamalite Albitite
6. Mineral Chemistry
6.1. Silicate Minerals
6.1.1. Alkali Feldspar
6.1.2. Plagioclase
6.1.3. Biotite
6.1.4. Clinopyroxene
6.1.5. Sugilite
6.1.6. Katayamalite
6.1.7. Pectolite–Murakamiite
6.1.8. Ferro-Ferri-Holmquistite
6.1.9. Zircon
6.1.10. Thorite/Huttonite
6.1.11. Titanite
6.1.12. Andradite
6.1.13. Tainiolite
6.1.14. Zektzerite
6.1.15. Gittinsite
6.1.16. Turkestanite
6.1.17. Arapovite
6.1.18. Wollastonite
6.1.19. Kristiansenite
6.1.20. Truscottite
6.1.21. Miserite
6.1.22. Dalyite
6.2. PhosphateMineral
6.2.1. Fluorapatite
6.2.2. Monazite-(Ce), and -(Nd)
6.2.3. Xenotime-(Y)
6.2.4. Fluorbritholite-(Ce) and Fluorcalciobritholite
6.3. Oxide Minerals
6.3.1. Baddeleyite
6.3.2. Fergusonite
6.3.3. Ilmenite
7. U–Pb and 40Ar/39Ar Age
7.1. Zircon U–Pb Ages
7.2. Katayamalite 40Ar/39Ar Age
8. Discussion
8.1. Li–Na Metasomatism
8.2. Structural Controls on Li–Na Metasomatism: Implication for Fluid Pathways
8.3. Mineral and Elemental Behavior
8.3.1. Albitization
8.3.2. Zirconium Minerals: Zircon Replacement Reactions
zircon zektzerite
zircon dalyite
8.3.3. Thorium-Bearing Minerals
8.3.4. Calcium Minerals
wollastonite pectolite
Wollastonite pectolite–murakamiite
8.3.5. Lithium-Bearing Minerals
8.3.6. Phosphorus-Bearing Minerals
8.3.7. Titanium-Bearing Minerals
8.3.8. Sulfide and Other Non-Silicate Minerals
8.4. Vug Diversity and Formation
8.5. Origin of Hedenbergite Albitites and Possible Involvement of Skarnization
8.6. Implications of the Zircon U–Pb and Katayamalite 40Ar/39Ar Ages
8.7. Albitite Formation Model
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Putnis, A. Mineral replacement reactions: From macroscopic observations to microscopic mechanisms. Mineral. Mag. 2002, 66, 689–708. [Google Scholar] [CrossRef]
- Putnis, A.; Hinrichs, R.; Putnis, C.V.; Golla-Schindler, U.; Collins, L. Hematite in porous red-clouded feldspars: Evidence of large-scale crustal fluid–rock interaction. Lithos 2007, 95, 10–18. [Google Scholar] [CrossRef]
- Niedermeier, D.R.D.; Putnis, A.; Geisler, T.; Golla-Schindler, U.; Putnis, C.V. The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions. Contrib. Mineral. Petrol. 2009, 157, 65–76. [Google Scholar] [CrossRef]
- Cathelineau, M. The hydrothermal alkali metasomatism effects on granitic rocks: Quartz dissolution and related subsolidus changes. J. Petrol. 1986, 27, 945–965. [Google Scholar] [CrossRef]
- Petersson, J.; Eliasson, T. Mineral evolution and element mobility during episyenitization (dequartzification) and albitization in the postkinematic Bohus granite, south Sweden. Lithos 1997, 42, 123–146. [Google Scholar] [CrossRef]
- Boulvais, P.; Ruffet, G.; Cornichet, J.; Mermet, M. Cretaceous albitization and dequartzification of Hercynian peraluminous granites in the Salvezines Massif (French Pyrénées). Lithos 2007, 93, 89–106. [Google Scholar] [CrossRef]
- Nishimoto, S.; Yoshida, H.; Asahara, Y.; Tsuruta, T.; Ishibashi, M.; Katsuta, N. Episyenite formation in the Toki granite, central Japan. Contrib. Mineral. Petrol. 2014, 167, 960–971. [Google Scholar] [CrossRef]
- Charoy, B.; Pollard, P.J. Albite-rich, silica-depleted metasomatic rocks at Emuford, northeast Queensland: Mineralogical, geochemical, fluid inclusion constraints on hydrothermal evolution and tin mineralization. Econ. Geol. 1989, 84, 1850–1874. [Google Scholar] [CrossRef]
- Porto da Silveira, C.L.; Schorscher, H.D.; Miekeley, N. The geochemistry of albitization and related uranium mineralization, Espinhares, Paraiba (PB), Brazil. J. Geochem. Explor. 1991, 40, 329–347. [Google Scholar] [CrossRef]
- Williams, P.J.; Barton, M.D.; Johnson, D.A.; Fontbote, L.; de Haller, A.; Mark, G.; Oliver, N.H.S.; Marschik, R. Iron oxide copper–gold deposits: Geology, space–time distribution, and possible modes of origin. Econ. Geol. 2005, 100, 371–405. [Google Scholar]
- Petersson, J.; Stephens, M.B.; Mattsson, H.; Möller, C. Albitization and quartz dissolution in Paleoproterozoic metagranite, central Sweden—Implications for the disposal of spent nuclear fuel in a deep geological repository. Lithos 2012, 148, 10–26. [Google Scholar] [CrossRef]
- Jaguin, J.; Boulvais, P.; Poujol, M.; Bosse, V.; Paquette, J.-L.; Vilbert, D. Albitization in the Antimony, Murchinson Greenstone Belt (Kaapvaal Craton): A geochemical and geochronological investigation. Lithos 2013, 168–169, 124–143. [Google Scholar] [CrossRef]
- Engvik, A.K.; Putnis, A.; Fitz Gerald, J.D.; Austrheim, H. Albitization of granitic rocks: The mechanism of replacement of oligoclase by albite. Can. Mineral. 2008, 46, 1401–1415. [Google Scholar] [CrossRef]
- Engvik, A.K.; Ihlen, P.M.; Austrheim, H. Characterisation of Na-metasomatism in the Sveconorwegian Bamble Sector of South Norway. Geosci. Front. 2014, 5, 659–672. [Google Scholar] [CrossRef]
- Minakawa, T.; Momoi, H.; Noto, S. Rare element minerals from pegmatites in the Ryoke Belt, western Shikoku, Japan. Mem. Ehime Univ. Sci. 1978, 8, 15–25. [Google Scholar]
- Murakami, N. Paragenetic relations of main constituent minerals in metasomatic syenitic rocks in Japan. J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 1976, 1, 261–281. [Google Scholar]
- Murakami, N.; Kato, T.; Miura, Y.; Hirowatari, F. Sugilite, a new silicate mineral from Iwagi Islet, Southwest Japan. Mineral. J. 1976, 8, 110–121. [Google Scholar] [CrossRef]
- Murakami, N.; Kato, T.; Hirowatari, F. Katayamalite, a new Ca-Li-Ti silicate mineral from Iwagi Islet, Southwest Japan. Mineral. J. 1983, 11, 261–268. [Google Scholar] [CrossRef]
- Imaoka, T.; Nagashima, M.; Kano, T.; Kimura, J.-I.; Chang, Q.; Fukuda, C. Murakamiite, LiCa2Si3O8(OH), a Li-analogue of pectolite, from the Iwagi Islet, southwest Japan. Eur. J. Mineral. 2017, 29, 1045–1053. [Google Scholar] [CrossRef]
- Nagashima, M.; Imaoka, T.; Kano, T.; Kimura, J.-I.; Chang, Q.; Matsumoto, T. Ferro-ferri-holmquistite, □Li2(Fe2+3Fe3+2)Si8O22(OH)2, Fe2+Fe3+-analogue of holmquistite, from the Iwagi islet, Ehime, Japan. Eur. J. Mineral. 2022, 34, 425–438. [Google Scholar] [CrossRef]
- Imaoka, T.; Akita, S.; Nagashima, M. Dalyite (K2ZrSi6O15) and zektzerite (LiNaZrSi6O15) in aegirine-bearing albitite from Iwagi Islet, SW Japan. J. Tokyo Geogr. Soc. 2021, 130, 369–378. [Google Scholar]
- Imaoka, T.; Nagashima, M. Mode of occurrence, crystal chemistry, and origins of Li-minerals of metasomatic albitite: Murakamiite from Iwagi Islet SW Japan. J. Tokyo Geogr. Soc. 2022, 131, 235–256. [Google Scholar] [CrossRef]
- Brenan, J.M.; Neroda, E.; Lundstrom, C.C.; Shaw, H.F.; Ryerson, F.J.; Phinney, D.L. Behaviour of boron, beryllium, and lithium during melting and crystallization: Constraints from mineral–melt partitioning experiments. Geochim. Cosmochim. Acta 1998, 62, 2129–2141. [Google Scholar] [CrossRef]
- Imaoka, T.; Kimura, J.-I.; Chang, Q.; Ishikawa, T.; Nagashima, M.; Takeshita, N. Chemical and lithium isotope characteristics of murakamiite and Li-rich pectolite from Iwagi Islet, Southwest Japan. J. Mineral. Petrol. Sci. 2021, 116, 9–25. [Google Scholar] [CrossRef]
- Menand, T. The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth Planet. Sci. Lett. 2008, 267, 93–99. [Google Scholar] [CrossRef]
- Kirkland, C.L.; Smithies, R.H.; Taylor, R.J.M.; Evans, N.; McDonald, B. Zircon Th/U ratios in magmatic environs. Lithos 2015, 212–215, 397–414. [Google Scholar] [CrossRef]
- Eshima, K.; Owada, M. Whore-rock geochemistry of diorite and dikes from Mt. Shaku-dake area, Fukuoka, Kyushu. J. Geol. Soc. Jpn. 2018, 124, 857–862. [Google Scholar] [CrossRef]
- Ryan, J.G.; Langmuir, C.H. The systematics of lithium abundances in young volcanic rocks. Geochim. Cosmochim. Acta 1987, 51, 1727–1741. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 2004, 205, 115–140. [Google Scholar] [CrossRef]
- Paces, J.B.; Miller, J.D. Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. J. Geophys. Res. Solid Earth 1993, 98, 13997–14013. [Google Scholar] [CrossRef]
- Iwano, H.; Orihashi, Y.; Hirata, T.; Ogasawara, M.; Danhara, T.; Horie, K.; Hasebe, N.; Sueoka, S.; Tamura, A.; Hayasaka, Y.; et al. An inter-laboratory evaluation of OD-3 zircon for use as a secondary U–Pb dating standard. Isl. Arc 2013, 22, 382–394. [Google Scholar] [CrossRef]
- Kimura, J.-I.; Chang, Q. Origin of the suppressed matrix effect for improved analytical performance in determination of major and trace elements in anhydrous silicate samples using 200 nm femtosecond laser ablation sector-field inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2012, 27, 1549–1559. [Google Scholar] [CrossRef]
- Kimura, J.-I.; Chang, Q.; Itano, K.; Iizuka, T.; Vaglarov, B.S.; Tani, K. An improved U–Pb age dating method for zircon and monazite using 200/266 nm femtosecond laser ablation and enhanced sensitivity multiple-Faraday collector inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2015, 30, 494–505. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 4: A Geochronological Toolkit for Microsoft Excel; Special Publication; Geochronology Center: Berkeley, CA, USA, 2007; pp. 25–32. [Google Scholar]
- Kuiper, K.F.; Deino, A.; Hilgen, F.J.; Krijgsman, W.; Renne, P.R.; Wijbrans, J.R. Synchronizing rock clocks of earth history. Science 2008, 320, 500–504. [Google Scholar] [CrossRef] [PubMed]
- The RRUFF Website. Available online: http://rruff.info/ima/ (accessed on 4 June 2024).
- Ishihara, S. The magnetite-series and ilmenite-series granitic rocks. Min. Geol. 1977, 27, 293–305. [Google Scholar]
- Murakami, N.; Matsunaga, S. Petrological studies on the metasomatic syenites in Japan. Part 2. Petrology of the aegirine syenite from Iwagi Islet, Ehime Prefecture, Japan. Sci. Rep. Yamaguchi Univ. 1966, 16, 17–33. [Google Scholar]
- Slaby, E.; Lensch, G.; Mihm, A. Metasomatic aplites from Rauschermühle and Kreimbach (Palatinate, West Germany). Neues Jahrb. Mineral. Monatshefte 1990, 8, 343–352. [Google Scholar]
- Slaby, E. Changes in the structural state of secondary albite during progressive albitization. Neues Jahrb. Mineral. Monatshefte 1992, 7, 321–335. [Google Scholar]
- Sidike, A.; Kobayashi, S.; Zhu, H.-J.; Kusachi, I.; Yamashita, N. Photoluminescence of baratovite and katayamalite. Phys. Chem. Miner. 2010, 37, 705–710. [Google Scholar] [CrossRef]
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, J.; Aoki, K.; Gottardi, G. Nomenclature of pyroxenes. Am. Mineral. 1988, 73, 1123–1133. [Google Scholar]
- Armbruster, T.; Oberhänsli, R. Crystal chemistry of double-ring silicates: Structures of sugilite and brannockite. Am. Mineral. 1988, 73, 595–600. [Google Scholar]
- Kato, T.; Miúa, Y.; Murakami, N. Crystal structure of sugilite. Mineral. J. 1976, 8, 184–192. [Google Scholar] [CrossRef]
- Dunn, P.J.; Brummer, J.J.; Belsky, H. Sugilite, a second occurrence: Wessels mine, Kalahari manganese field, Republic of South Africa. Can. Mineral. 1980, 18, 37–39. [Google Scholar]
- Dixon, R.D. Sugilite and associated minerals from Wessels mine, Kalahari manganese fields. Trans. Geol. Soc. S. Afr. 1985, 88, 11–17. [Google Scholar]
- Kawachi, Y.; Ashley, P.M.; Vince, D.; Doodwin, M. Sugilite in manganese silicate rocks from the Hoskins mine and Woods mine, New South Wales, Australia. Mineral. Mag. 1994, 58, 671–677. [Google Scholar] [CrossRef]
- Hirowatari, F.; Fukuoka, M. Some problems of the studies on the manganese minerals in Japan. J. Mineral. Soc. Jpn. 1988, 18, 347–365. [Google Scholar]
- Kato, T.; Murakami, N. The crystal structure of katayamalite. Mineral. J. 1985, 12, 206–217. [Google Scholar] [CrossRef]
- Baur, W.; Kassner, D. Katayamalite and baratovite are structurally identical. Eur. J. Mineral. 1992, 4, 839–841. [Google Scholar] [CrossRef]
- Andrade, M.B.; Doell, D.; Downs, R.; Yang, H. Redetermination of katayamalite, KLi3Ca7Ti2(SiO3)12(OH)2. Acta Crystallogr. Sect. E Struct. Rep. Online 2013, 69, i41. [Google Scholar] [CrossRef] [PubMed]
- Dusmatov, V.D.; Semenov, E.I.; Khomayakov, A.P.; Bykova, A.V.; Dzharfarov, N.Z. Baratovite, a new mineral. Int. Geol. Rev. 1976, 18, 851–852. [Google Scholar] [CrossRef]
- Reguir, E.P.; Chakmouradian, A.R.; Evdokimov, M.D. The mineralogy of a unique baratovite- and miserite-bearing quartz-albite-aegirine rock from the Dara-i-Pioz Complex, northern Tajikistan. Can. Mineral. 1999, 37, 1369–1384. [Google Scholar]
- Uvarova, Y.A.; Sokolova, E.; Hawthorne, F.C.; Agakhanov, A.A.; Pautov, L.A. The crystal chemistry of faizievite, K2Li6Na(Ca6Na)Ti4[Si6O18]2[Si12O30]F2, a novel structure based on intercalated blocks of the baratovite and berezanskite structures. Can. Mineral. 2008, 46, 163–171. [Google Scholar] [CrossRef]
- Dunn, P.J.; Rouse, R.C.; Cannon, B.; Nelen, J.A. Zektzerite: A new lithium sodium zirconium silicate related to tuhualite and the osumilite group. Am. Mineral. 1977, 62, 416–420. [Google Scholar]
- Kovalenko, V.I.; Tsaryeva, G.M.; Goreglyad, A.V.; Yarmolyuk, V.V.; Troitsky, V.A. The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, Western Mongolia. Econ. Geol. 1995, 90, 530–547. [Google Scholar] [CrossRef]
- Pasero, M.; Kampf, A.R.; Ferraris, C.; Pekov, I.V.; Rakovan, J.; White, T.J. Nomenclature of the apatite supergroup minerals. Eur. J. Mineral. 2010, 22, 163–179. [Google Scholar] [CrossRef]
- Tropper, P.D.; Harlov, D.; Krenn, E.; Finger, F.; Rhede, D.F.; Bernhard, F. Zr-bearing minerals as indicators for the polymetamorphic evolution of the eastern, lower Austroalpine nappes (Stubenberg Granite contact aureole, Styria, Eastern Alps, Austria). Lithos 2007, 95, 72–86. [Google Scholar] [CrossRef]
- Baker, J.H. Rare earth and other trace element mobility accompanying albitization in a Proterozoic granite, W. Bergslagen, Sweden. Mineral. Mag. 1985, 49, 107–115. [Google Scholar] [CrossRef]
- Nishio, Y.; Okamura, K.; Tanimizu, M.; Ishikawa, T.; Sano, Y. Lithium and strontium isotopic systematics of waters around Ontake volcano, Japan: Implications for deep-seated fluids and earthquake swarms. Earth Planet. Sci. Lett. 2010, 297, 567–576. [Google Scholar] [CrossRef]
- Umam, R.; Tanimizu, M.; Nakamura, H.; Nishio, Y.; Nakai, R.; Sugimoto, N.; Mori, Y.; Kobayashi, Y.; Ito, A.; Wakaki, S.; et al. Lithium isotope systematics of Arima hot spring waters and groundwaters in Kii Peninsula. Geochem. J. 2022, 56, e8–e17. [Google Scholar] [CrossRef]
- Kusuda, C.; Iwamori, H.; Nakamura, H.; Kazahaya, K.; Morikawa, N. Arima hot spring waters as a deep-seated brine from subducting slab. Earth Planet Space 2014, 66, 119. [Google Scholar] [CrossRef]
- Ishikawa, T.; Hirono, T.; Matsuta, N.; Kawamoto, K.; Fujimoto, K.; Kameda, J.; Nishio, Y.; Maekawa, Y.; Honda, G. Geochemical and mineralogical characteristics of fault gouge in the Median Tectonic Line, Japan: Evidence for earthquake slip. Earth Planet Space 2014, 66, 36. [Google Scholar] [CrossRef]
- Kimura, J.-I.; Stern, R.J.; Yoshida, T. Reinitiation of subduction and magmatic responses in SW Japan during Neogene time. Geol. Soc. Am. Bull. 2005, 117, 969–986. [Google Scholar] [CrossRef]
- Kimura, J.-I.; Gill, J.B.; Kunikiyo, T.; Osaka, I.; Shimoshioiri, Y.; Katakuse, M.; Kakubuchi, S.; Nagao, T.; Furuyama, K.; Kamei, A.; et al. Diverse magmatic effects of subducting a hot slab in SW Japan: Results from forward modeling. Geochem. Geophys. Geosyst. 2014, 15, 691–739. [Google Scholar] [CrossRef]
- Liu, S.; Gurnis, M.; Ma, P.; Zhang, B. Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma. Earth Sci. Rev. 2017, 175, 114–142. [Google Scholar] [CrossRef]
- Imaoka, T.; Kiminami, K.; Nishida, M.; Takemoto, T.; Ikawa, T.; Kagami, T.; Iizumi, S. K–Ar age and geochemistry of the SW Japan Paleogene cauldron cluster: Implications for Eocene–Oligocene thermo-tectonic reactivation. J. Asian Earth Sci. 2011, 40, 509–533. [Google Scholar] [CrossRef]
- Anderson, G.H. Granitization, albitization, and related phenomena in the northern Inyo range of California–Nevada. Geol. Soc. Am. Bull. 1937, 48, 1–74. [Google Scholar] [CrossRef]
- Moore, D.E.; Liou, J.G. Chessboard-twinned albite from Franciscan metaconglomerates of the Diablo Range, California. Am. Mineral. 1979, 64, 329–336. [Google Scholar]
- Drury, M.R.; Urai, J. Deformation-related recrystallization processes. Tectonophysics 1990, 172, 235–253. [Google Scholar] [CrossRef]
- Hickey, K.A.; Bell, T.H. Syn-deformational grain growth: Matrix coarsening during foliation development and regional metamorphism rather than by static annealing. Eur. J. Mineral. 1996, 8, 1351–1373. [Google Scholar] [CrossRef]
- Rübenach, M. Structural controls on a regional scale. In Metasomatism and the Chemical Transformation of Rock; Harlov, D.E., Austrheim, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 93–140. [Google Scholar]
- Sibson, R.H. Crustal stress, faulting and fluid flow. Geol. Soc. Lond. Spec. Publ. 1994, 78, 69–84. [Google Scholar] [CrossRef]
- Fossen, H.; Cavalcante, G.C.G. Shear zones—A review. Earth. Sci. Rev. 2017, 171, 434–455. [Google Scholar] [CrossRef]
- Bons, P.D.; Elburg, M.A.; Gomez-Rivas, E. A review of the formation of tectonic veins and their microstructures. J. Struct. Geol. 2012, 43, 33–62. [Google Scholar] [CrossRef]
- Suikkanen, E.; Rämö, O.T. Episyenites—Characteristics, genetic constraints, and mineral potential. Min. Metall. Explor. 2019, 36, 861–878. [Google Scholar] [CrossRef]
- Kaur, P.; Chaudhri, N.; Hofmann, A.H.; Raczek, I.; Okrusch, M.; Skora, S.; Baumgartner, L.P. Two-stage, extreme albitization of A-type granites from Rajasthan, NW India. J. Petrol. 2012, 53, 919–948. [Google Scholar] [CrossRef]
- Ferry, J.M.A. A historical review of metamorphic fluid flow. J. Geophys. Res. Solid Earth 1994, 99, 15487–15498. [Google Scholar] [CrossRef]
- Yardley, B.W.D.; Bodnar, R.J. Fluids in the continental crust. Geochem. Perspect. 2014, 3, 1–2. [Google Scholar] [CrossRef]
- Duan, G.; Guan, Q.; Ram, R.; Etschmann, B.; Brugger, J. Goldilocks effect of fluorine and chlorine in albitization. Chem. Geol. 2022, 591, 120728. [Google Scholar] [CrossRef]
- Watson, E.B. Zircon saturation in felsic liquids: Experimental results and applications to trace element geochemistry. Contrib. Mineral. Petrol. 1979, 70, 407–419. [Google Scholar] [CrossRef]
- Geisler, T.; Schaltegger, U.; Tomaschek, F. Re-equilibration of zircon in aqueous fluids and melt. Element 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Grimes, C.B.; John, B.E.; Cheadle, M.J.; Mazdab, F.K.; Wooden, J.L.; Swapp, S.; Schwartz, J.J. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib. Mineral. Petrol. 2009, 158, 757–783. [Google Scholar] [CrossRef]
- Caruba, R.; Baumer, A.; Turco, G. Première synthèse hydrothermale de la dalyite K2ZrSi6O15. Comtes Rendus L’Académie Sci. Ser. D 1970, 270, 2741–2744. [Google Scholar]
- Jeffery, A.J.; Gertisser, R.; Jackson, R.A.; O’Driscoll, B.; Kronz, A. On the compositional variability of dalyite, K2ZrSi6O15: A new occurrence from Terceira, Azores. Mineral. Mag. 2016, 80, 547–565. [Google Scholar] [CrossRef]
- Ridolfi, F.; Renzulli, A.; Santi, P.; Upton, B.G.J. Evolutionary stages of crystallization of weakly peralkaline syenites: Evidence from ejecta in the plinian deposits of Agua de Pau volcano (Sao Miguel, Azores Islands). Mineral. Mag. 2003, 67, 749–767. [Google Scholar] [CrossRef]
- Furnes, H.; Mitchell, J.G.; Robins, B.; Ryan, P.; Skjerlie, F.J. Petrography and geochemistry of peralkaline, ultrapotassic syenite dykes of Middle Permian age, Sunnnfjord, West Norway. Norsk Geol. Tidsskr. 1982, 2, 147–159. [Google Scholar]
- Heinrich, W. Fluid infiltration through metachert layers at the contact aureole of the Bufa del Diente intrusion, northeast Mexico: Implications for wollastonite formation and fluid immiscibility. Am. Mineral. 1993, 78, 804–817. [Google Scholar]
- Caredda, A.M.; Cruciani, G.; Franceschelli, M.; Giorgetti, G.; Loi, M. Pectolite in calc-silicates from NE Sardinia, Italy: Evidence of metasomatism during Variscan metamorphism. J. Czech Geol. Soc. 2003, 48, 1–2. [Google Scholar]
- Vilalva, F.C.J.; Vlach, S.R.F. Major- and trace-element composition of REE-rich turkestanite from peralkaline granites of the Morro Redondo Complex, Graciosa Province, south Brazil. Mineral. Mag. 2010, 74, 645–658. [Google Scholar] [CrossRef]
- Piccoli, P.M.; Candela, P.A. Apatite in igneous systems. Rev. Mineral. Geochem. 2002, 48, 255–292. [Google Scholar] [CrossRef]
- Finger, F.; Broska, I.; Roberts, M.P.; Schermaier, A. Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the Eastern Alps. Am. Mineral. 1998, 83, 248–258. [Google Scholar] [CrossRef]
- Harlov, D.E.; Wirth, R.; Hetherington, C.J. Fluid-mediated partial alteration in monazite: The role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contrib. Mineral. Petrol. 2011, 162, 329–348. [Google Scholar] [CrossRef]
- Budzyń, B.; Harlov, D.E.; Williams, M.L.; Jercinovic, M.J. Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. Am. Mineral. 2011, 96, 1547–1567. [Google Scholar] [CrossRef]
- Ondrejka, M.; Uher, P.; Putiš, M.; Broska, I.; Bačík, P.; Konečný, P.; Schmiedt, I. Two-stage breakdown of monazite by post-magmatic and metamorphic fluids: An example from the Veporic orthogneiss, Western Carpathians, Slovakia. Lithos 2012, 142–143, 245–255. [Google Scholar] [CrossRef]
- Zirner, A.L.K.; Marks, M.A.W.; Wenzel, T.; Jacob, D.E.; Markl, G. Rare earth elements in apatite as a monitor of magmatic and metasomatic processes: The Ilímaussaq complex, South Greenland. Lithos 2015, 228–229, 12–22. [Google Scholar] [CrossRef]
- Liferovich, R.P.; Mitchell, R.H. Composition and paragenesis of Na-, Nb- and Zr-bearing titanite from Khibina, Russia, and crystal-structure data for synthetic analogues. Can. Mineral. 2005, 43, 795–812. [Google Scholar] [CrossRef]
- Kropáč, K.; Dolníček, Z.; Uher, P.; Buriánek, D.; Sasfai, A.; Urubek, T. Zirconian–niobian titanite and associated Zr-, Nb-, REE-rich accessory minerals: Products of hydrothermal overprint of leucocratic teschenites (Silesian Unit, Outer Western Carpathians, Czech Republic). Geol. Carpath. 2020, 71, 343–360. [Google Scholar] [CrossRef]
- Urueña, C.L.; Möller, C.; Plan, A. Metamorphic titanite–zircon pseudomorphs after igneous zirconolite. Eur. J. Mineral. 2023, 35, 773–788. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R. Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia. Am. Mineral. 2004, 89, 1752–1762. [Google Scholar] [CrossRef]
- Jorjani, E.; Ghahreman, A. Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues; a review. Hydrometallurgy 2017, 171, 333–343. [Google Scholar] [CrossRef]
- Kim, B.; Park, C.; Cho, K.; Kim, J.; Choi, N.; Lee, S. Sulfuric acid baking—Water leaching for gold enrichment and arsenic removal from gold concentrate. Minerals 2021, 11, 1332. [Google Scholar] [CrossRef]
- Aragón-Tobar, C.F.; Endara, D.; de la Torre, E. Dissolution of metals (Cu, Fe, Pb, and Zn) from different metal-bearing species (sulfides, oxides, and sulfates) using three deep eutectic solvents based on choline. Molecules 2024, 29, 290. [Google Scholar] [CrossRef]
- Einaudi, M.T.; Meinert, L.D.; Newberry, R.J. Skarn Deposits; Society of Economic Geologists, Economic Geology Publishing Company: Littleton, CO, USA, 1981; 75th Anniversary Volume, pp. 317–391. [Google Scholar]
- Einaudi, M.T.; Burt, D.M. Introduction–terminology, classification, and composition of skarn deposits. Econ. Geol. 1982, 77, 745–754. [Google Scholar] [CrossRef]
- Lentz, D.R. Carbonatite genesis: A reexamination of the role of intrusion-related pneumatolytic skarn processes in limestone melting. Geology 1999, 27, 335–338. [Google Scholar] [CrossRef]
- Jackson, C.R.M.; Parman, S.W.; Kelley, S.P.; Reid, F.; Cooper, R.F. Light noble gas dissolution into ring structure-bearing materials and lattice influences on noble gas recycling. Geochim. Cosmochim. Acta 2015, 159, 1–15. [Google Scholar] [CrossRef]
- Tani, K.; Dunkley, D.J.; Ohara, Y. Termination of backarc spreading: Zircon dating of a giant oceanic core complex. Geology 2011, 39, 47–50. [Google Scholar] [CrossRef]
- Pujol, M.; Marty, B.; Burgess, R.; Turner, G.; Philippot, P.P. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics. Nature 2013, 498, 87–90. [Google Scholar] [CrossRef]
- Kaneoka, I. Rare gas isotopes and mass fractionation: An indicator of gas transport into or from a magma. Earth Planet. Sci. Lett. 1980, 48, 284–292. [Google Scholar] [CrossRef]
- Matsumoto, A.; Uto, K.; Shibata, K. Argon isotopic ratios in historic lavas—Importance of correction for the initial argon in K–Ar dating of young volcanic rocks. J. Mass Spectrom. Soc. Jpn. 1989, 37, 353–363. [Google Scholar] [CrossRef]
- Aston, F.W. Mass-Spectra and Isotopes; Edward Arnold & Co.: London, UK, 1933; p. 248. [Google Scholar]
- Kaneoka, I. The effect of water on noble gas signatures of volcanic materials. In Noble Gas Geochemistry and Cosmochemistry; Matsuda, J., Ed.; TERRAPUB: Tokyo, Japan, 1994; pp. 205–215. [Google Scholar]
- Ryu, S.; Hyodo, H.; Itaya, T. Numerical analysis for argon isotope mass fractionation. Bull. Res. Inst. Nat. Sci. Okayama Univ. Sci. 2010, 36, 9–13. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imaoka, T.; Akita, S.; Ishikawa, T.; Tani, K.; Kimura, J.-I.; Chang, Q.; Nagashima, M. Petrogenesis of an Episyenite from Iwagi Islet, Southwest Japan: Unique Li–Na Metasomatism during the Turonian. Minerals 2024, 14, 929. https://doi.org/10.3390/min14090929
Imaoka T, Akita S, Ishikawa T, Tani K, Kimura J-I, Chang Q, Nagashima M. Petrogenesis of an Episyenite from Iwagi Islet, Southwest Japan: Unique Li–Na Metasomatism during the Turonian. Minerals. 2024; 14(9):929. https://doi.org/10.3390/min14090929
Chicago/Turabian StyleImaoka, Teruyoshi, Sachiho Akita, Tsuyoshi Ishikawa, Kenichiro Tani, Jun-Ichi Kimura, Qing Chang, and Mariko Nagashima. 2024. "Petrogenesis of an Episyenite from Iwagi Islet, Southwest Japan: Unique Li–Na Metasomatism during the Turonian" Minerals 14, no. 9: 929. https://doi.org/10.3390/min14090929
APA StyleImaoka, T., Akita, S., Ishikawa, T., Tani, K., Kimura, J.-I., Chang, Q., & Nagashima, M. (2024). Petrogenesis of an Episyenite from Iwagi Islet, Southwest Japan: Unique Li–Na Metasomatism during the Turonian. Minerals, 14(9), 929. https://doi.org/10.3390/min14090929