Chromogenic Mechanism and Formation of Zonal Genesis of Raspberry-Red Grossular from the Sierra de Cruces Range, Mexico
Abstract
1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sample Description
3.2. Analytical Methods
4. Results
4.1. Gemological Properties
4.2. Spectra Analysis
4.2.1. X-Ray Diffraction Analysis
4.2.2. UV-Vis-NIR Spectra
4.2.3. Raman Spectra
4.2.4. EPR Spectra
4.3. Chemical Compositions
4.3.1. Micro-X-Ray Fluorescence
4.3.2. Mineral Major Element Analysis
4.3.3. Mineral Trace Element Analysis
4.3.4. Oxygen Isotope
5. Discussion
5.1. Chemical Composition of Raspberry-red Grossular
5.2. Chromogenic Mechanism of Raspberry-Red Grossular
5.3. Formation of Zonal Genesis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Geiger, C.A. A tale of two garnets: The role of solid solution in the development toward a modern mineralogy. Am. Mineral. 2016, 101, 1735–1749. [Google Scholar] [CrossRef]
- Winchell, A.N. Elements of optical mineralogy. Part II. Descriptions of minerals. Geol. Föreningen I Stockh. Förhandlingar 1951, 73, 319–320. [Google Scholar] [CrossRef]
- Wang, F.-Q. Gemological study of some garnets in China. Acta Geol. Sin. 1986, 217, 151–163. [Google Scholar]
- Gao, X.; Deng, J.; Meng, J.-Y.; Yan, H.; Li, J.-X.; Yang, C.-H.; Sun, N.; Wei, C. Characteristics of garnet in the Hongniu skarn copper deposit, western Yunnan. Acta Petrol. Sin. 2014, 30, 2695–2708. [Google Scholar] [CrossRef]
- Hoare, B.C.; Arden, S.E.; O’Sullivan, G.J. U–Pb dating of gem-quality vanadium-bearing grossular garnet (var. tsavorite) from north-eastern Tanzania. Min. Depos. 2024, 59, 419–431. [Google Scholar] [CrossRef]
- Feneyrol, J.; Giuliani, G.; Ohnenstetter, D.; Rondeau, B.; Fritsch, E.; Anthony, E.F.; Ichang’I, D.; Omito, E.; Rakotondrazafy, M.; Ranatsenho, M.; et al. New typology and origin of tsavorite based on trace-element chemistry. Eur. J. Mineral. 2014, 26, 293–308. [Google Scholar] [CrossRef]
- Giuliani, G.; Fallick, A.E.; Feneyrol, J.; Ohnenstetter, D.; Pardieu, V.; Saul, M. 18O/16O and V/Cr ratios in gem tsavorites from the Neoproterozoic Mozambique metamorphic belt: A clue towards their origins? Min. Depos. 2011, 46, 671–676. [Google Scholar] [CrossRef]
- Feneyrol, J.; Giuliani, G.; Demaiffe, D.; Ohnenstetter, D.E.; Fallick, A.; Dubessy, J.; Martelat, J.-E.; Rakotondrazafy, A.F.M.; Omito, E.; Ichang’i, D.; et al. Age and Origin of the Tsavorite and Tanzanite Mineralizing Fluids in the Neoproterozoic Mozambique Metamorphic Belt. Can. Mineral. 2017, 55, 763–786. [Google Scholar] [CrossRef]
- Martelat, J.E.; Paquette, J.L.; Bosse, V.; Giuliani, G.; Monié, P.; Omito, E.; Simonet, C.; Ohnenstetter, D.; Ichang’i, D.; Nyamai, C.; et al. Chronological Constraints On Tsavorite Mineralizations and Related Metamorphic Episodes In Southeast Kenya. Can. Mineral. 2017, 55, 845–865. [Google Scholar] [CrossRef]
- Moore; Thomas, P. What’s New in Minerals-Denver Show 1997. Mineral. Rec. 1998, 29, 125–133. [Google Scholar]
- Lueth, V.W.; Jones, R. Red Grossular from the Sierra de Cruces, Coahuila, Mexico. Mineral. Rec. 2003, 34, 73–79. [Google Scholar]
- Geiger, C.A.; Stahl, A.; Rossman, G.R. Raspberry-red grossular from Sierra de Cruces Range, Coahuila, Mexico. Eur. J. Mineral. 1999, 11, 1109–1113. [Google Scholar] [CrossRef]
- Yong, C.-Y. Study on the Gemological and Mineralogical Characteristic of Strawberry-Red Grossular Garnet in Mexico. Master’s Thesis, China University of Geosciences, Beijing, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Wang, S.; Zhang, S.-H.; Zhang, Q.-Q.; Liang, X.; Kong, L.-H.; Hu, G.-H.; Wang, K.; Wang, H.-Y.; Cai, Y.-H. In-situ zircon U-Pb dating method by LA-ICP-MS and discussions on the effect of different beam spot diameters on the dating results. J. Geochem. 2022, 28, 642–652. [Google Scholar] [CrossRef]
- Ding, T.P.; Jiang, S.Y.; Li, Y.-H.; Wan, D.F.; Bai, R.-M.; Tian, S.-H.; Zhang, Z.-J.; Wang, C.-Y.; Gao, J.-F. Silicon Isotope Geochemistry; Geology Publishing House: Beijing, China, 1994; pp. 1–102. (In Chinese) [Google Scholar]
- Yang, M.-L.; Wang, Y.-Y. Gemological and Mineralogical Characteristics of Bright Pink Rhodonite. China Gems Jades 2020, 6, 18–24. [Google Scholar]
- Shang, Y.-R.; Wang, W.-Z.; Jin, T.-L.; Huang, L.-M.; Wu, Z.-Y.; Guo, Y. Colouration in purple jadeite-jade from Myanmar: A spectroscopy and chromaticity investigation. Acta Petrol. Et Mineral. 2024, 43, 643–651. [Google Scholar]
- Hu, Y.; Lu, R. Color characteristics of blue to yellow beryl from multiple origins. Gems Gemol. 2020, 56, 54–65. [Google Scholar] [CrossRef]
- Andersen, F.A.; Brečević, L.; Beuter, G.; Dell’amico, D.B.; Calderazzo, F.; Bjerrum, N.J.; Underhill, A.E. Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chem. Scand. 1991, 45, 1018–1024. [Google Scholar] [CrossRef]
- Kolesov, B.A.; Geiger, C.A. Raman spectra of silicate garnets. Phys. Chem. Miner. 1998, 25, 142–151. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, X.-C.; Zhu, Z.-L. Quantitative Relation between Raman Shift and Metal Ion Content in Garnets. J. Light Scatt. 2015, 27, 350–354. [Google Scholar]
- He, M.-C.; Hong, B.; Lv, X.-B. The Feature of Raman Spectra of Grossular-Andradite. J. Light Scatt. 2002, 14, 121–126. [Google Scholar] [CrossRef]
- Novak, G.A.; Gibbs, G.V. The Crystal Chemistry of the Silicate Garnets. Am. Mineral. 1971, 56, 791–825. [Google Scholar]
- Bersani, D.; Sergio, A.; Vignola, P.; Moltifiori, G.; Marino, I.G.; Lottici, P.P.; Diella, V. Micro-Raman spectroscopy as a routine tool for garnet analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 73, 484–491. [Google Scholar] [CrossRef]
- Antao, S.M. Crystal Chemistry of Six Grossular Garnet Samples from Different Well-Known Localities. Minerals 2021, 11, 767. [Google Scholar] [CrossRef]
- Cheng, Y.-Z.; Kang, J.; Yan, P.-W.; Shen, J.-M.; Chen, Z.-L.; Zhu, X.-W.; Tan, Q.; Shen, L.-L.; Wang, S.-Y.; Wang, S.-B. Surface oxygen vacancies prompted the formation of hydrated hydroxyl groups on ZnOx in enhancing interfacial catalytic ozonation. Appl. Catal. B Environ. 2024, 341, 123325. [Google Scholar] [CrossRef]
- Han, W.; Liu, Y.; Zhang, J.; Lu, T.-J. Color origins of two types of natural lavender jadeite jades. Acta Mineral. Sin. 2020, 40, 549–555. [Google Scholar] [CrossRef]
- Luth, R.; Virgo, D.; Boyd, F.R.; Wood, B.J. Ferric iron in mantle derived garnets: Implications for thermobarometry and for the oxidation state of the mantle. Contrib. Mineral. Petrol. 1990, 104, 56–72. [Google Scholar] [CrossRef]
- Dyar, M.D.; Guidorttri, C.V.; Holdaway, M.J.; CoLucci, M. Nonstoichiometric hydrogen contents in common rock-forming hydroxyl silicates. Geochim. Et Cosmochim. Acta 1993, 57, 2913–2918. [Google Scholar] [CrossRef]
- Schingaro, E.; Lacalamita, M.; Mesto, E.; Ventruti, G.; Pedrazzi, G.; Ottolini, L.; Scordari, F. Crystal chemistry and light elements analysis of Ti-rich garnets. Am. Mineral. 2016, 101, 371–384. [Google Scholar] [CrossRef]
- Masoumipour, Z.; Jamali, H.; Harris, C.; Lentz, D.R.; Yousefi, F. Origin and evolution of the ore-forming fluids in the southern Abbas Abad iron skarn deposit, NE Isfahan, Central Iran: Insights from geology, fluid inclusions, and C-O isotopes. J. Geochem. Explor. 2023, 248, 107194. [Google Scholar] [CrossRef]
- Du, L.-J.; Li, B.; Huang, Z.-L.; Zhou, J.-X.; Zou, G.-F.; Yan, Z.-F. Carbon-oxygen isotopic geochemistry of the Yangla Cu skarn deposit, SW China: Implications for the source and evolution of hydrothermal fluids. Ore Geol. Rev. 2017, 88, 809–821. [Google Scholar] [CrossRef]
- Liu, J.-K.; Deng, M.-G.; Mao, Z.-L.; Wang, D.; Geng, Q.-W. Characteristics and Indication of Carbon-Oxygen Isotopes and Rare Earth Elements of Hydrothermal Calcite from the Mengxing Pb-Zn Deposit, Western Yunnan. Geol. Explor. 2021, 57, 852–864. [Google Scholar] [CrossRef]
- Wang, C.-G.; Xu, W.-L.; Yang, D.-B.; Liu, Y.-S.; Pei, F.-P.; Li, Q.-L.; Zhou, Q.-J. Olivine Oxygen Isotope Evidence for Intracontinental Recycling of Delaminated Continental Crust. Geochem. Geophy. Geosy. 2017, 19, 1913–1924. [Google Scholar] [CrossRef]
- Jiang, J.-J.; Zheng, Y.-Y.; Lentz, D.-R. Geology, fluid inclusion, and stable isotope constraints on the mineralization of the Nuocang skarn Pb-Zn polymetallic deposit, western Gangdese, Tibet. Miner. Resour. Discov. 2017, 1, 367–370. [Google Scholar]
- Grew, E.S.; Locock, A.J.; Mills, S.J.; Galuskina, I.O.; Galuskin, E.V.; Hålenius, U. Nomenclature of the garnet supergroup. Am. Mineral. 2013, 98, 785–811. [Google Scholar] [CrossRef]
- Sasmaz, A.; Kilic, A.D.; Akgul, B.; Sasmaz, B. A spectral approach on mineralogy and geochemistry of garnet skarns in Arc-Type granitoids. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 286, 122037. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.-Q.; Qi, L.-J.; Du, G.-P.; Chen, X.-Y. UV-VIS-NIR Spectrum of Jadeite Jade from Burma. J. Gems Gemmol. 2003, 5, 11–16. [Google Scholar] [CrossRef]
- Wang, H.; Guan, Q.-Y.; Liu, Y.-C.; Guo, Y. Effects of Transition Metal Ions on the Colour of Blue-Green Beryl. Minerals 2022, 12, 86. [Google Scholar] [CrossRef]
- Jon, B.; John, D. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib. Mineral. Petrol. 2000, 139, 356–371. [Google Scholar] [CrossRef]
- Danielson, A.; Möller, P.; Dulski, P. The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chem. Geol. 1992, 97, 89–100. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Duan, D.-F. REE Distribution Character in Skarn Garnet and Its Geological Implication. Acta Sci. Nat. Univ. Pekin. 2021, 57, 446–458. [Google Scholar]
- He, X.-K.; Luan, Y.; Sun, X.-H.; Chen, W.; Niu, A.-B.; Gao, L.-Q. LA-ICP-MS Mapping and Element Distribution Characteristics of Garnet from the Altered Wall-rock of the Gongchangling Iron Deposit in Liaoning Province. Rock Miner. Anal. 2023, 42, 707–720. [Google Scholar] [CrossRef]
- Chen, Y.; Su, B.; Guo, S. The Dabie—Sulu orogenic peridotites: Progress and key issues. Sci. China Earth Sci. 2015, 58, 1679–1699. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, Y.-Y.; Xu, R.-K.; Guo, X.-Z.; Wang, H.-M.; Cai, P.-J.; Du, W.-Y.; Lin, G.-G.; Fang, C.-T.; Lu, R.; et al. Exhumation processes of UHP matamorphic belt in the Northern Qaidam and their constrains to rutile mineralization: Evidences from compositional zoning of garnets in Yuqia and West Tieshiguan area. J. Earth Sci. Environ. 2016, 38, 143–159. [Google Scholar]
- Jiang, P.-F.; Li, P.; Li, J.-K.; He, X.-M.; Shi, G.-H.; Huang, X.-Q.; Lin, Y.; Yin, J. Compositional characteristics of garnet in granite-pegmatite system in Mufushan area and its implications for magmatic evolution and rare metal mineralization. Acta Petrol. Sin. 2023, 39, 2025–2044. [Google Scholar] [CrossRef]
- Hong, D.-M.; Jian, X.; Huang, X.; Zhang, W.; Ma, J.-G. Garnet trace elemental geochemistry and its application in sedimentary provenance analysis. Earth Sci. Front. 2020, 27, 191–201. [Google Scholar] [CrossRef]
- She, H.-D.; Fan, H.-R.; Hu, F.-F.; Yang, K.-F.; Yang, Z.-F.; Wang, Q.-W. Migration and precipitation of rare earth elements in the hydrothermal fluids. Acta Petrol. Sin. 2018, 34, 3567–3581. [Google Scholar]
- Huang, C.-X.; Tan, H.-Q.; Yang, Y.-L.; Wang, Q.; Hu, J.-L.; Tang, Y. Mineral chemical characteristics and constraint on metamorphic temperature of garnet from the Liwu Group, Western Sichuan, China. Multipurp. Util. Miner. Resour. 2024, 45, 15–26. [Google Scholar] [CrossRef]
Sample Number | Gro-1 | Gro-2 |
---|---|---|
Property | Sierra de Cruces, Coahuila, Mexico | |
Color | Pink–black–white–black–pink | Pink–black–pink |
Weight | 3.32 g | 3.18 g |
Diaphaneity | Pink: subtranslucent; black and white: opaque | |
Luster | Glassy luster | |
RI | 1.744 | 1.751 |
SG | 3.6734 | 3.5825 |
UV | LWSW inertness | |
Internal features | Black solid inclusions; partially healed fractures |
Samples | Gro-1-R-1 | Gro-1-R-2 | Gro-1-R-3 | Gro-1-R-4 | Gro-1-M-1 | Gro-1-M-2 | Gro-1-M-3 | Gro-1-M-4 | Gro-1-M-5 | Gro-1-C-1 | Gro-1-C-2 | Gro-1-C-3 | Gro-1-C-4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 39.80 | 40.05 | 39.11 | 39.46 | 37.69 | 38.18 | 38.44 | 39.03 | 39.15 | 39.48 | 39.92 | 39.34 | 39.54 |
TiO2 | 0.09 | 0.77 | 0.62 | 0.98 | 0.84 | 0.78 | 0.37 | 0.88 | 0.04 | 0.08 | 0.09 | 0.08 | |
Al2O3 | 19.43 | 21.84 | 17.34 | 17.05 | 13.69 | 14.21 | 14.45 | 16.12 | 17.06 | 20.23 | 19.15 | 19.75 | 18.84 |
Cr2O3 | 0.07 | 0.02 | 0.02 | 0.05 | 0.03 | 0.04 | 0.03 | 0.04 | |||||
FeO | 3.28 | 0.31 | 4.46 | 4.89 | 9.74 | 9.16 | 8.92 | 7.56 | 4.20 | 3.11 | 3.50 | 3.24 | 4.34 |
MnO | 0.35 | 1.04 | 0.15 | 0.16 | 0.17 | 0.20 | 0.18 | 0.19 | 0.14 | 0.25 | 0.30 | 0.21 | 0.29 |
MgO | 0.60 | 0.82 | 0.98 | 0.83 | 0.90 | 0.91 | 0.80 | 0.60 | 1.10 | 0.26 | 0.50 | 0.32 | 0.30 |
CaO | 36.32 | 35.88 | 37.15 | 36.93 | 36.70 | 36.44 | 36.39 | 36.10 | 37.38 | 36.47 | 36.45 | 36.83 | 36.54 |
Total | 99.93 | 99.95 | 99.97 | 99.94 | 99.92 | 99.97 | 99.96 | 99.96 | 99.92 | 99.89 | 99.92 | 99.84 | 99.93 |
Gro | 86.23 | 93.22 | 79.19 | 79.04 | 61.84 | 64.31 | 65.96 | 72.62 | 78.94 | 88.48 | 86.15 | 87.19 | 84.19 |
And | 11.15 | 2.70 | 21.05 | 20.07 | 40.33 | 36.23 | 33.93 | 25.77 | 21.68 | 10.30 | 11.46 | 12.82 | 14.70 |
Uvr | 0.21 | 0.06 | 0.06 | 0.17 | 0.08 | 0.13 | 0.09 | 0.12 | |||||
Samples | Gro-2-R-1 | Gro-2-R-2 | Gro-2-R-3 | Gro-2-R-4 | Gro-2-R-5 | Gro-2-M-1 | Gro-2-M-2 | Gro-2-M-3 | Gro-2-M-4 | Gro-2-M-5 | |||
SiO2 | 40.31 | 40.19 | 39.95 | 40.10 | 40.11 | 39.00 | 39.03 | 39.18 | 39.16 | 38.93 | |||
TiO2 | 0.02 | 0.02 | 0.02 | 0.98 | 0.95 | 0.99 | 1.00 | 0.84 | |||||
Al2O3 | 21.71 | 21.78 | 21.04 | 21.51 | 21.81 | 16.50 | 16.68 | 16.62 | 16.75 | 16.62 | |||
Cr2O3 | 0.01 | 0.07 | 0.04 | 0.05 | |||||||||
FeO | 0.34 | 0.16 | 1.25 | 0.39 | 0.20 | 4.79 | 4.45 | 4.51 | 4.28 | 5.09 | |||
MnO | 1.15 | 1.31 | 1.65 | 1.72 | 1.27 | 0.11 | 0.16 | 0.17 | 0.14 | 0.13 | |||
MgO | 0.79 | 0.79 | 0.55 | 0.71 | 0.77 | 1.30 | 1.27 | 1.21 | 1.34 | 1.14 | |||
CaO | 35.62 | 35.73 | 35.37 | 35.48 | 35.74 | 37.28 | 37.38 | 37.31 | 37.30 | 37.23 | |||
Total | 99.93 | 99.97 | 99.89 | 99.93 | 99.97 | 99.96 | 99.96 | 99.98 | 99.98 | 99.98 | |||
Gro | 93.62 | 93.39 | 90.28 | 92.08 | 93.30 | 76.10 | 76.94 | 77.34 | 77.54 | 76.02 | |||
And | 1.07 | 1.82 | 4.35 | 2.68 | 2.01 | 24.40 | 23.69 | 22.78 | 22.61 | 24.80 | |||
Uvr | 0.03 | 0.19 | 0.11 | 0.14 | 0.01 |
Samples | Gro-1-R-1 | Gro-1-R-2 | Gro-1-R-3 | Gro-1-R-4 | Gro-1-R-5 | Gro-1-M-1 | Gro-1-M-2 | Gro-1-M-3 | Gro-1-M-4 | Gro-1-M-5 | Gro-1-C-1 | Gro-1-C-2 | Gro-1-C-3 | Gro-1-C-4 | Gro-1-C-5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sc | 9.07 | 0.19 | 10.7 | 0.75 | 0.11 | 22.8 | 29.4 | 0.36 | 5.60 | 6.16 | 0.98 | 0.51 | 0.93 | 0.96 | 8.13 |
V | 81.2 | 16.6 | 66.6 | 6.15 | 1.32 | 69.9 | 62.5 | 59.7 | 58.2 | 64.7 | 9.63 | 9.52 | 13.3 | 9.03 | 21.3 |
Cr | 2.05 | 0.006 | 2.64 | 0.46 | 10.3 | 16.0 | 0.51 | 1.34 | 1.30 | 1.01 | 0.32 | 0.47 | 0.86 | 0.64 | |
Co | 0.17 | 0.14 | 0.14 | 0.14 | 0.26 | 0.11 | 0.17 | 0.15 | 0.25 | 0.23 | 0.051 | 0.018 | 0.018 | 0.041 | 0.024 |
Ni | 0.63 | 0.22 | 0.71 | 0.039 | 0.60 | 0.88 | 0.16 | 0.92 | 0.56 | ||||||
Zn | 8.54 | 4.41 | 7.25 | 3.94 | 6.98 | 4.75 | 7.34 | 2.36 | 5.43 | 4.93 | 7.88 | 2.31 | 3.77 | 4.84 | 2.13 |
Sr | 0.67 | 0.20 | 0.37 | 0.17 | 0.12 | 0.44 | 0.86 | 0.47 | 0.55 | 0.53 | 9.07 | 10.2 | 6.69 | 7.69 | 15.7 |
Y | 45.8 | 6.32 | 63.0 | 4.20 | 1.54 | 107 | 80.5 | 15.6 | 32.4 | 70.9 | 15.0 | 37.4 | 20.5 | 8.70 | 46.1 |
Nb | 40.9 | 11.1 | 13.3 | 0.89 | 0.24 | 2.36 | 9.63 | 15.1 | 10.7 | 17.0 | 1.41 | 0.79 | 2.00 | 0.82 | 1.95 |
La | 0.87 | 3.87 | 0.63 | 3.81 | 3.85 | 0.53 | 1.25 | 1.94 | 1.67 | 2.07 | 2.04 | 2.32 | 1.09 | 1.43 | 4.80 |
Ce | 10.6 | 25.6 | 8.16 | 24.8 | 15.3 | 6.88 | 15.0 | 21.9 | 18.6 | 22.2 | 6.87 | 7.65 | 6.35 | 6.24 | 11.3 |
Pr | 3.19 | 5.04 | 2.61 | 4.27 | 1.49 | 2.19 | 4.26 | 5.86 | 5.34 | 5.94 | 1.02 | 1.05 | 1.22 | 0.94 | 1.50 |
Nd | 25.6 | 22.9 | 20.9 | 15.7 | 3.55 | 19.0 | 31.6 | 39.5 | 37.7 | 39.9 | 4.91 | 5.16 | 6.52 | 4.40 | 7.30 |
Sm | 10.6 | 3.26 | 10.1 | 1.28 | 0.44 | 10.2 | 12.2 | 10.5 | 12.1 | 13.9 | 1.55 | 2.86 | 1.71 | 1.30 | 3.27 |
Eu | 1.66 | 0.85 | 1.52 | 0.59 | 0.09 | 1.63 | 1.96 | 2.24 | 2.10 | 2.16 | 1.09 | 1.23 | 1.23 | 1.04 | 1.32 |
Gd | 10.7 | 1.81 | 11.7 | 0.61 | 0.37 | 13.9 | 13.4 | 6.22 | 8.61 | 13.1 | 2.14 | 5.66 | 2.39 | 1.34 | 4.49 |
Tb | 1.59 | 0.21 | 1.97 | 0.081 | 0.051 | 2.69 | 2.15 | 0.69 | 1.13 | 2.08 | 0.38 | 1.05 | 0.47 | 0.25 | 0.99 |
Dy | 9.56 | 1.19 | 12.2 | 0.58 | 0.28 | 19.5 | 15.2 | 3.65 | 6.84 | 13.4 | 2.59 | 6.63 | 3.36 | 1.49 | 7.28 |
Ho | 1.75 | 0.22 | 2.49 | 0.12 | 0.049 | 3.98 | 3.13 | 0.59 | 1.24 | 2.75 | 0.52 | 1.18 | 0.69 | 0.27 | 1.58 |
Er | 4.94 | 0.57 | 6.89 | 0.45 | 0.13 | 11.9 | 9.37 | 1.38 | 3.44 | 7.56 | 1.41 | 2.76 | 1.94 | 0.85 | 4.77 |
Tm | 0.67 | 0.08 | 1.05 | 0.08 | 0.02 | 1.74 | 1.41 | 0.17 | 0.52 | 1.09 | 0.18 | 0.31 | 0.27 | 0.11 | 0.72 |
Yb | 4.36 | 0.59 | 6.46 | 0.52 | 0.13 | 11.8 | 9.95 | 1.12 | 3.46 | 7.15 | 1.21 | 1.80 | 1.60 | 0.74 | 4.92 |
Lu | 0.59 | 0.08 | 0.90 | 0.11 | 0.06 | 1.68 | 1.43 | 0.12 | 0.47 | 0.98 | 0.13 | 0.18 | 0.18 | 0.12 | 0.67 |
Hf | 0.08 | 0.04 | 0.002 | 0.31 | 1.40 | 0.58 | 0.23 | 0.14 | 0.07 | 0.22 | 0.50 | ||||
Ta | 11.4 | 0.055 | 4.39 | 0.009 | 0.003 | 1.12 | 2.31 | 0.78 | 1.59 | 2.15 | 0.11 | 0.062 | 0.100 | 0.066 | 0.15 |
Pb | 0.23 | 0.008 | 0.088 | 0.005 | 0.014 | 0.043 | 0.018 | 0.034 | 0.038 | 3.12 | 1.09 | 0.78 | 1.82 | 3.47 | |
Th | 73.9 | 0.99 | 26.0 | 0.25 | 0.069 | 2.55 | 9.67 | 4.53 | 6.97 | 12.8 | 0.27 | 0.23 | 0.25 | 0.15 | 0.40 |
U | 1.43 | 2.86 | 0.74 | 2.89 | 1.57 | 0.63 | 1.17 | 1.02 | 1.29 | 1.78 | 0.32 | 0.20 | 0.30 | 0.19 | 0.96 |
Samples | Gro-2-R-1 | Gro-2-R-2 | Gro-2-R-3 | Gro-2-R-4 | Gro-2-R-5 | Gro-2-M-1 | Gro-2-M-2 | Gro-2-M-3 | Gro-2-M-4 | Gro-2-M-5 | |||||
Sc | 0.28 | 0.22 | 0.057 | 0.028 | 0.28 | 2.55 | 3.64 | 3.44 | 3.35 | 1.86 | |||||
V | 3.04 | 2.85 | 1.91 | 1.73 | 2.98 | 73.1 | 75.2 | 77.3 | 76.0 | 76.8 | |||||
Cr | 0.45 | 1.28 | 0.41 | 0.15 | 0.74 | 2.77 | 2.83 | 1.50 | 2.07 | 0.32 | |||||
Co | 0.27 | 0.33 | 0.27 | 0.22 | 0.22 | 0.091 | 0.16 | 0.15 | 0.14 | 0.074 | |||||
Ni | 0.019 | 0.21 | 0.12 | 0.55 | 0.24 | 0.81 | 0.0024 | 0.46 | |||||||
Zn | 8.70 | 8.99 | 7.26 | 6.92 | 7.08 | 4.93 | 7.63 | 5.28 | 5.39 | 3.25 | |||||
Sr | 0.16 | 0.21 | 0.20 | 0.19 | 0.18 | 0.35 | 0.36 | 0.37 | 0.39 | 0.32 | |||||
Y | 1.30 | 1.32 | 1.32 | 1.36 | 1.88 | 52.2 | 62.3 | 56.8 | 53.6 | 54.7 | |||||
Nb | 8.90 | 6.00 | 1.91 | 2.17 | 4.47 | 38.7 | 42.2 | 34.6 | 40.8 | 27.0 | |||||
La | 0.68 | 0.42 | 0.14 | 0.21 | 0.24 | 0.79 | 0.63 | 0.76 | 0.80 | 0.59 | |||||
Ce | 2.89 | 2.54 | 0.47 | 0.65 | 1.21 | 8.60 | 7.11 | 8.90 | 9.42 | 6.90 | |||||
Pr | 0.52 | 0.48 | 0.080 | 0.080 | 0.17 | 2.61 | 2.25 | 2.69 | 2.83 | 2.19 | |||||
Nd | 2.13 | 1.94 | 0.39 | 0.46 | 0.75 | 20.1 | 18.1 | 21.2 | 21.8 | 17.8 | |||||
Sm | 0.24 | 0.24 | 0.13 | 0.15 | 0.15 | 7.95 | 8.34 | 9.17 | 8.98 | 7.73 | |||||
Eu | 0.093 | 0.072 | 0.018 | 0.035 | 0.058 | 1.24 | 1.33 | 1.41 | 1.33 | 1.33 | |||||
Gd | 0.12 | 0.13 | 0.17 | 0.15 | 0.23 | 9.75 | 10.5 | 9.87 | 10.3 | 10.1 | |||||
Tb | 0.027 | 0.034 | 0.023 | 0.021 | 0.029 | 1.68 | 1.81 | 1.76 | 1.67 | 1.74 | |||||
Dy | 0.20 | 0.18 | 0.22 | 0.19 | 0.30 | 11.3 | 12.5 | 11.7 | 11.3 | 11.1 | |||||
Ho | 0.052 | 0.041 | 0.031 | 0.033 | 0.048 | 1.97 | 2.50 | 2.22 | 2.17 | 2.02 | |||||
Er | 0.083 | 0.13 | 0.14 | 0.11 | 0.21 | 5.28 | 6.53 | 6.22 | 5.43 | 5.61 | |||||
Tm | 0.019 | 0.019 | 0.017 | 0.018 | 0.034 | 0.65 | 0.91 | 0.80 | 0.75 | 0.74 | |||||
Yb | 0.17 | 0.11 | 0.14 | 0.15 | 0.27 | 4.10 | 5.31 | 4.60 | 4.26 | 4.47 | |||||
Lu | 0.027 | 0.032 | 0.032 | 0.016 | 0.040 | 0.52 | 0.64 | 0.60 | 0.52 | 0.50 | |||||
Hf | 2.89 | 2.03 | 0.16 | 0.16 | 2.01 | 5.96 | 7.57 | 6.89 | 8.15 | 1.78 | |||||
Ta | 0.96 | 0.64 | 0.076 | 0.11 | 0.50 | 7.77 | 9.94 | 8.00 | 8.08 | 5.51 | |||||
Pb | 0.019 | 0.011 | 0.0024 | 0.0081 | 0.096 | 0.079 | 0.094 | 0.11 | 0.059 | ||||||
Th | 0.66 | 0.65 | 0.54 | 0.48 | 0.53 | 26.5 | 26.6 | 27.7 | 34.1 | 19.0 | |||||
U | 0.24 | 0.22 | 0.091 | 0.099 | 0.12 | 0.99 | 1.42 | 1.06 | 1.31 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Zhao, S.; Zhao, Y.; Zhang, C. Chromogenic Mechanism and Formation of Zonal Genesis of Raspberry-Red Grossular from the Sierra de Cruces Range, Mexico. Minerals 2025, 15, 138. https://doi.org/10.3390/min15020138
Wu S, Zhao S, Zhao Y, Zhang C. Chromogenic Mechanism and Formation of Zonal Genesis of Raspberry-Red Grossular from the Sierra de Cruces Range, Mexico. Minerals. 2025; 15(2):138. https://doi.org/10.3390/min15020138
Chicago/Turabian StyleWu, Siyuan, Siyi Zhao, Yi Zhao, and Chenxi Zhang. 2025. "Chromogenic Mechanism and Formation of Zonal Genesis of Raspberry-Red Grossular from the Sierra de Cruces Range, Mexico" Minerals 15, no. 2: 138. https://doi.org/10.3390/min15020138
APA StyleWu, S., Zhao, S., Zhao, Y., & Zhang, C. (2025). Chromogenic Mechanism and Formation of Zonal Genesis of Raspberry-Red Grossular from the Sierra de Cruces Range, Mexico. Minerals, 15(2), 138. https://doi.org/10.3390/min15020138