A New Family of Boolean Functions with Good Cryptographic Properties
Abstract
:1. Introduction
2. Preliminaries
3. Maiorana-McFarland-Guillot’s Construction
4. Construction of and
4.1. One-to-One
4.2. Two-to-One
5. Construction of
6. Reed-Solomon Codes
7. Boolean Functions from
8. On the Number of Distinct Boolean Functions
9. Examples
9.1. Example # 1. One-to-One
9.2. Example # 2. Two to One
10. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Lachowicz, P. Walsh–Hadamard Transform and Tests for Randomness of Financial Return- Series. Presented at Quant at Risk (Online), 7 April 2015. Available online: https://quantatrisk.com/2015/04/07/walsh-hadamard-transform-python-tests-for-randomness-of-financial-return-series/ (accessed on 15 March 2021).
- Menezes, A.J.; Van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Pasalic, E. On Boolean Functions in Symmetric-Key Ciphers; Lund University: Lund, Sweden, 2003. [Google Scholar]
- Zeebaree, S.R. DES encryption and decryption algorithm implementation based on FPGA. Indones. J. Electr. Eng. Comput. Sci. 2020, 18, 774–781. [Google Scholar] [CrossRef]
- Jiao, L.; Hao, Y.; Feng, D. Stream cipher designs: A review. Sci. China Inf. Sci. 2020, 63, 131101. [Google Scholar] [CrossRef] [Green Version]
- Cusick, T.W.; Stanica, P. Cryptographic Boolean Functions and Applications; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Biham, E.; Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 1991, 4, 3–72. [Google Scholar] [CrossRef]
- Langford, S.K.; Hellman, M.E. Differential-linear cryptanalysis. In Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 1994; pp. 17–25. [Google Scholar]
- Chuan-Kun, W.; Dengguo, F. Boolean Functions and Their Applications in Cryptography; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Henríquez, F.R. De la búsqueda de funciones booleanas con buenas propiedades criptográficas. Cinvestav 2007, 26, 50–65. [Google Scholar]
- Chee, S.; Lee, S.; Lee, D.; Sung, S.H. On the correlation immune functions and their nonlinearity. In International Conference on the Theory and Application of Cryptology and Information Security; AsiaCrypt; Springer: Berlin/Heidelberg, Germany, 1996; pp. 232–243. [Google Scholar] [CrossRef]
- Forrié, R. The strict avalanche criterion: Spectral properties of Boolean functions and an extended definition. In Conference on the Theory and Application of Cryptography; Springer: Berlin/Heidelberg, Germany, 1988; pp. 450–468. [Google Scholar]
- Stichtenoth, H. A Note on Hermitian Codes Over GF(q2). IEEE Trans. Inf. Theory 1988, 34, 1345–1348. [Google Scholar] [CrossRef]
- Forney, G.D. Concatenated Codes; Citeseer: Princeton, NJ, USA, 1966; Volume 11. [Google Scholar]
- Carlet, C. A Larger Class of Cryptographic Boolean Functions via a Study of the Maiorana-McFarland Construction. In Advances in Cryptology; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2442, pp. 549–564. [Google Scholar] [CrossRef] [Green Version]
- Guillot, P. Cryptographical boolean functions construction from linear codes. Boolean Funct. Cryptogr. Appl. 2005, 387, 141. [Google Scholar]
- Wicker, S.B.; Bhargava, V.K. Reed-Solomon Codes and Their Applications; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Van Lint, J.H. Introduction to Coding Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 86. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sosa-Gómez, G.; Paez-Osuna, O.; Rojas, O.; Madarro-Capó, E.J. A New Family of Boolean Functions with Good Cryptographic Properties. Axioms 2021, 10, 42. https://doi.org/10.3390/axioms10020042
Sosa-Gómez G, Paez-Osuna O, Rojas O, Madarro-Capó EJ. A New Family of Boolean Functions with Good Cryptographic Properties. Axioms. 2021; 10(2):42. https://doi.org/10.3390/axioms10020042
Chicago/Turabian StyleSosa-Gómez, Guillermo, Octavio Paez-Osuna, Omar Rojas, and Evaristo José Madarro-Capó. 2021. "A New Family of Boolean Functions with Good Cryptographic Properties" Axioms 10, no. 2: 42. https://doi.org/10.3390/axioms10020042
APA StyleSosa-Gómez, G., Paez-Osuna, O., Rojas, O., & Madarro-Capó, E. J. (2021). A New Family of Boolean Functions with Good Cryptographic Properties. Axioms, 10(2), 42. https://doi.org/10.3390/axioms10020042