Wilson Bases and Ultradistributions
Abstract
:1. Introduction
Notation
2. Preliminaries
2.1. Wilson Bases
2.2. Weight Functions
2.3. Coorbit Spaces
- (a)
- if and only if
- (b)
- if and only if
- (a)
- The Wilson basis of exponential decay is an unconditional basis for the coorbit spaces and .
- (b)
- Every function has the unique expansion
- (c)
- Every function has the unique expansion of the form (18) and
2.4. Gelfand–Shilov Spaces
- (a)
- ();
- (b)
- There exists (for every )
- (c)
- There exists (for every ) such that
- (a)
- (), if and only if
- (b)
- (), if and only if
3. Main Results
- (a)
- If () then
- (b)
- Conversely, if is a (double) sequence such that
- (a)
- Every () has a unique expansion
- (b)
- Conversely, if (29) holds for some sequence and for every (for some) , then there exists () such that
4. Alternative Proof via Modulation Spaces
5. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Daubechies, I.; Jaffard, S.; Journé, J. A Simple Wilson Orthonormal Basis With Exponential Decay. SIAM J. Math. Anal. 1991, 22, 554–572. [Google Scholar] [CrossRef]
- Feichtinger, H.G.; Gröchenig, K.; Walnut, D. Wilson Bases and Modulation Spaces. Math. Nachr. 1992, 155, 7–17. [Google Scholar] [CrossRef]
- Pilipović, S.; Teofanov, N. Pseudodifferential operators on ultra-modulation spaces. J. Funct. Anal. 2004, 208, 194–228. [Google Scholar] [CrossRef] [Green Version]
- Tachizawa, K. The boundedness of pseudodifferential operators on modulation spaces. Math. Nachr. 1994, 168, 263–277. [Google Scholar] [CrossRef]
- Chassande–Mottin, E.; Jaffard, S.; Meyer, Y. Des ondelettes pour détecter les ondes gravitationnelle. Gaz. Math. 2016, 148, 61–64. [Google Scholar]
- Necula, V.; Klimenko, S.; Mitselmakher, G. Transient analysis with fast Wilson-Daubechies time-frequency transform. J. Phys. Conf. Ser. 2012, 363, 012032. [Google Scholar] [CrossRef] [Green Version]
- Bownik, M.; Jakobsen, M.S.; Lemvig, J.; Okoudjou, K.A. On Wilson bases in L2(Rd). SIAM J. Math. Anal. 2017, 49, 3999–4023. [Google Scholar] [CrossRef] [Green Version]
- Tachizawa, K. The pseudodifferential operators and Wilson bases. J. Math. Pures Appl. 1996, 75, 509–529. [Google Scholar]
- Gelfand, I.M.; Shilov, G.E. Generalized Functions, II; Academic Press: New York, NY, USA, 1968. [Google Scholar]
- Gramchev, T. Gelfand-Shilov Spaces: Structural Properties and Applications to Pseudodifferential Operators in Rn, in Quantization, PDEs, and Geometry, 1–68, Oper. Theory Adv. Appl. 251; Birkhäuser/Springer: Cham, Switzerland, 2016. [Google Scholar]
- Toft, J. Images of function and distribution spaces under the Bargmann transform. J. Pseudo-Differ. Oper. Appl. 2017, 8, 83–139. [Google Scholar] [CrossRef] [Green Version]
- Langenbruch, M. Hermite functions and weighted spaces of generalized functions. Manuscripta Math. 2006, 119, 269–285. [Google Scholar] [CrossRef]
- Pilipović, S. Tempered Ultradistributions. Boll. Un. Mat. Ital. 1988, 7, 235–251. [Google Scholar]
- Pilipović, S.; Teofanov, N. Wilson bases and ultramodulation spaces. Math. Nach. 2002, 242, 179–196. [Google Scholar] [CrossRef]
- Feichtinger, H.G.; Gröchenig, K. Banach Spaces Related to Integrable Group Representations and Their Atomic Decompositions, I. J. Funct. Anal. 1989, 86, 307–340. [Google Scholar] [CrossRef] [Green Version]
- Feichtinger, H.G.; Gröchenig, K. Banach Spaces Related to Integrable Group Representations and Their Atomic Decompositions. Part II. Mon Hefte Math. 1989, 108, 129–148. [Google Scholar] [CrossRef]
- Gröchenig, K. Foundations of Time-Frequency Analysis; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Cordero, E.; Rodino, L. Time-Frequency Analysis of Operators; Studies in Mathematics, 75; De Gruyter: Berlin, Germany, 2020. [Google Scholar]
- Wilson, K.G. Generalized Wannier Functions; 1987; Unpublished Manuscript. [Google Scholar]
- Gröchenig, K. Weight functions in time-frequency analysis. In Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis; AMS: Providence, RI, USA, 2007; pp. 343–366. [Google Scholar]
- Toft, J. The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 2012, 3, 145–227. [Google Scholar] [CrossRef]
- Dahlke, S.; Häuser, S.; Teschke, G.S.G. Shearlet Coorbit Theory. In Harmonic and Applied Analysis; Applied and Numerical Harmonic Analysis; Dahlke, S., Mari, F.D., Grohs, P., Labate, D., Eds.; Birkhäuser: Cham, Switzerland, 2015; Volume 68, pp. 83–147. [Google Scholar]
- Teofanov, N. Gelfand-Shilov spaces and localization operators. Funct. Anal. Approx. Comput. 2015, 2, 135–158. [Google Scholar]
- Gröchenig, K.; Zimmermann, G. Spaces of test functions via the STFT. J. Funct. Spaces Appl. 2004, 2, 25–53. [Google Scholar] [CrossRef]
- Kamiński, A.; Perišić, D.; Pilipović, S. On Various Integral Transformations of Tempered Ultradistributions. Demonstr. Math. 2000, XXXIII, 641–655. [Google Scholar] [CrossRef] [Green Version]
- Cordero, E.; Pilipović, S.; Rodino, L.; Teofanov, N. Quasianalytic Gelfand-Shilov spaces with applications to localization operators. Rocky Mt. J. Math. 2010, 40, 1123–1147. [Google Scholar] [CrossRef]
- Zemanian, A.H. Generalized Integral Transformations; John Wiley and Sons: New York, NY, USA, 1968. [Google Scholar]
- Teofanov, N. Ultramodulation Spaces and Pseudodifferential Operators; Endowment Andrejević: Belgrade, Serbia, 2003. [Google Scholar]
- Feichtinger, H.G. Modulation Spaces on Locally Compact Abelian Groups; Technical Report; University of Vienna: Vienna, Austria, 1983; Also in Wavelets and Their Applications, 99–140; Allied Publishers Private Limited: New Dehli, India, 2003. [Google Scholar]
- Bényi, A.; Okoudjou, K. Modulation Spaces With Applications to Pseudodifferential Operators and Nonlinear Schrödinger Equations; Springer Science+Business Media, LLC: New York, NY, USA, 2020. [Google Scholar]
- Toft, J. Continuity of Gevrey-Hörmander pseudo-differential operators on modulation spaces. J. Pseudo-Differ. Oper. Appl. 2019, 10, 337–358. [Google Scholar] [CrossRef] [Green Version]
- Teofanov, N. Modulation spaces, Gelfand-Shilov spaces and pseudodifferential operators. Sampl. Theory Signal Image Process. 2006, 5, 225–242. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teofanov, N. Wilson Bases and Ultradistributions. Axioms 2021, 10, 241. https://doi.org/10.3390/axioms10040241
Teofanov N. Wilson Bases and Ultradistributions. Axioms. 2021; 10(4):241. https://doi.org/10.3390/axioms10040241
Chicago/Turabian StyleTeofanov, Nenad. 2021. "Wilson Bases and Ultradistributions" Axioms 10, no. 4: 241. https://doi.org/10.3390/axioms10040241
APA StyleTeofanov, N. (2021). Wilson Bases and Ultradistributions. Axioms, 10(4), 241. https://doi.org/10.3390/axioms10040241