Higher-Order Jacobsthal–Lucas Quaternions
Abstract
:1. Introduction
2. Definitions
3. Results
3.1. Higher-Order Jacobsthal–Lucas Numbers
3.2. Higher-Order Jacobsthal–Lucas Quaternions
3.3. Some Identities of Higher-Order Jacobsthal–Lucas Quaternions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley-Interscience Publishing: Hoboken, NJ, USA, 2001. [Google Scholar]
- Özkan, E.; Taştan, M.; Aydoğdu, A. 2-Fibonacci polynomials in the family of Fibonacci numbers. Notes Number Theory Discret. Math. 2018, 24, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, N.; Aydoğdu, A.; Özkan, E. Some properties of 𝒌-Generalized Fibonacci numbers. Math. Montisnigri. 2021, 50, 73–79. [Google Scholar] [CrossRef]
- Kizilates, C.; Kone, T. On higher order Fibonacci hyper complex numbers. Chaos Solitons Fractals 2021, 148, 111044. [Google Scholar] [CrossRef]
- Çelik, S.; Durukan, İ.; Özkan, E. New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers. Chaos Solitons Fractals 2021, 150, 111173. [Google Scholar] [CrossRef]
- Özvatan, M. Generalized Golden-Fibonacci Calculus and Applications. Master’s Thesis, Izmir Institute of Technology, Izmir, Turkey, 2018. [Google Scholar]
- Bednarz, N. On (k, p)-Fibonacci Numbers. Mathematics 2021, 9, 727. [Google Scholar] [CrossRef]
- Özkan, E.; Taştan, M. A New families of Gauss k-Jacobsthal numbers and Gauss k-Jacobsthal-Lucas numbers and their polynomials. J. Sci. Arts 2020, 4, 93–908. [Google Scholar] [CrossRef]
- Uygun, S. A New Generalization for Jacobsthal and Jacobsthal Lucas Sequences. Asian J. Math. Phys. 2018, 2, 14–21. [Google Scholar]
- Filipponi, P.; Horadam, A.F. Integration sequences of Jacobsthal and Jacobsthal-Lucas Polynomials. Appl. Fibonacci Numbers 1999, 8, 129–139. [Google Scholar]
- Jhala, D.; Sisodiya, K.; Rathore, G.P.S. On some identities for k-Jacobsthal numbers. Int. J. Math. Anal. Anal. 2013, 7, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Cook, C.K.; Bacon, M.R. Some identities for Jacobsthal and Jacobsthal-Lucas numbers satisfying higher order recurrence relations. Ann. Math. Inf. 2013, 27–39. [Google Scholar]
- Horadam, A.F. Jacobsthal representation numbers. Fibonacci Quart. 1996, 34, 40–53. [Google Scholar]
- Hamilton, W.R. Elements of Quaternions; Longman; Green & Company: London, UK, 1866. [Google Scholar]
- Horadam, A.F. Complex Fibonacci numbers and Fibonacci quaternions. Amer. Math. Mon. 1963, 70, 289–291. [Google Scholar] [CrossRef]
- Halici, S. On Fibonacci quaternions. Adv. Appl. Clifford. Algebr. 2012, 22, 321–327. [Google Scholar] [CrossRef]
- Iyer, M.R. Some results on Fibonacci quaternions. Fibonacci Quart. 1969, 7, 201–210. [Google Scholar]
- Kizilates, C.; Kone, T. On higher order Fibonacci quaternions. J. Anal. 2021, 29, 1071–1082. [Google Scholar] [CrossRef]
- Kizilates, C. On quaternions with incomplete Fibonacci and Lucas numbers components. Util. Math. 2019, 110, 263–269. [Google Scholar]
- Deveci, Ö. The generalized quaternion sequence. AIP Conf. Proc. 2016, 1726, 020125. [Google Scholar]
- Cerda-Morales, G. Identities for third order Jacobsthal quaternions. Adv. Appl. Clifford Algebr. 2017, 27, 1043–1053. [Google Scholar] [CrossRef] [Green Version]
- Szynal-Liana, A.; Włoch, I. A note on Jacobsthal quaternions. Adv. Appl. Clifford. Algebr. 2016, 26, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Torunbalcı-Aydın, F.; Yüce, S. A new approach to Jacobsthal quaternions. Filomat 2017, 31, 5567–5579. [Google Scholar] [CrossRef] [Green Version]
- Keçilioğlu, O.; Akkus, I. The Fibonacci octonions. Adv. Appl. Clifford Algebr. 2015, 25, 151–158. [Google Scholar] [CrossRef]
- Bilgici, G.; Tokeşer, Ü.; Ünal, Z. Fibonacci and Lucas Sedenions. J. Integer Seq. 2017, 20, 1–8. [Google Scholar]
- Çimen, C.B.; Ipek, A. On jacobsthal and jacobsthal–lucas octonions. Mediterr. J. Math. 2017, 14, 1–13. [Google Scholar] [CrossRef]
- Özkan, E.; Uysal, M. On Quaternions with Higher Order Jocobsthal Numbers Components. Gazi J. Sci. 2022, 36, 1. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uysal, M.; Özkan, E. Higher-Order Jacobsthal–Lucas Quaternions. Axioms 2022, 11, 671. https://doi.org/10.3390/axioms11120671
Uysal M, Özkan E. Higher-Order Jacobsthal–Lucas Quaternions. Axioms. 2022; 11(12):671. https://doi.org/10.3390/axioms11120671
Chicago/Turabian StyleUysal, Mine, and Engin Özkan. 2022. "Higher-Order Jacobsthal–Lucas Quaternions" Axioms 11, no. 12: 671. https://doi.org/10.3390/axioms11120671