Criteria for Oscillation of Half-Linear Functional Differential Equations of Second-Order
Abstract
:1. Introduction
2. Preliminary Lemmas
- (H)
- There is a positive constant c such that .
3. Oscillation Theorems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Almarri, B.; Muhib, A.; Cesarano, C.; Moaaz, O.; Anis, M. Functional differential equations with several delays: Oscillatory behavior. Symmetry 2022, 14, 1570. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I. On the sharp oscillation criteria for half-linear second-order differential equations with several delay arguments. Appl. Math. Comput. 2021, 397, 125915. [Google Scholar] [CrossRef]
- Jadlovská, I. New criteria for sharp oscillation of second-order neutral delay differential equations. Mathematics 2021, 9, 2089. [Google Scholar] [CrossRef]
- Moaaz, O.; El-Nabulsi, R.A.; Bazighifan, O. Oscillatory behavior of fourth-order differential equations with neutral delay. Symmetry 2020, 12, 371. [Google Scholar] [CrossRef] [Green Version]
- Grace, S.R.; Jadlovska, I.; Zafer, A. On oscillation of second order delay differential equations with a sublinear neutral term. Mediterr. J. Math. 2020, 17, 116. [Google Scholar] [CrossRef]
- Mackey, M.C.; Glass, L. Oscillations and chaos in physiological control systems. Science 1977, 197, 287–289. [Google Scholar] [CrossRef]
- Gopalsamy, K. Stability and Oscillations in Delay Differential Equations of Population Dynamics; Kluwer: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Oaxaca-Adams, G.; Villafuerte-Segura, R.; Aguirre-Hernández, B. On non-fragility of controllers for time delay systems: A numerical approach. J. Frankl. Inst. 2021, 358, 4671–4686. [Google Scholar] [CrossRef]
- Islas, J.M.; Castillo, J.; Aguirre-Hernandez, B.; Verduzco, F. Pseudo-Hopf Bifurcation for a Class of 3D Filippov Linear Systems. Int. J. Bifurc. Chaos 2021, 31, 1–15. [Google Scholar] [CrossRef]
- Goldbeter, A. Dissipative structures in biological systems: Bistability, oscillations, spatial patterns and waves. Philos. Trans. R. Soc. A 2018, 376, 20170376. [Google Scholar] [CrossRef] [Green Version]
- Hale, J.K. Functional differential equations. In Oxford Applied Mathematical Sciences; Springer: New York, NY, USA, 1971; Volume 3. [Google Scholar]
- Rihan, F.A. Delay Differential Equations and Applications to Biology; Springer Nature Singapore Pte Ltd.: Singapore, 2021. [Google Scholar]
- Li, T.; Baculíková, B.; Džurina, J.; Zhang, C. Oscillation of fourth-order neutral differential equations with p-Laplacian like operators. Bound. Value Probl. 2014, 2014, 56. [Google Scholar] [CrossRef]
- Liu, Q.; Bohner, M.; Grace, S.R.; Li, T. Asymptotic behavior of even-order damped differential equations with p-Laplacian like operators and deviating arguments. J. Ineq. Appl. 2016, 2016, 321. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Agarwal, R.P.; Li, T. Oscillation and asymptotic behavior of higher-order delay differential equations with p-Laplacian like operators. J. Math. Analy. Appl. 2014, 409, 1093–1106. [Google Scholar] [CrossRef]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Erbe, L.H.; Kong, Q.; Zhong, B.G. Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Dynamic Equations; Series in Mathematical Analysis and Applications; Taylor & Francis Ltd.: London, UK, 2003; Volume 5. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, W.-T. Nonoscillation and oscillation: Theory for functional differential equations. In Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 2004; Volume 267. [Google Scholar]
- Tunç, C.; Tunç, O. On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order. J. Adv. Res. 2016, 7, 165–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graef, J.R.; Beldjerd, D.; Remili, M. Some New Stability, Boundedness, and Square Integrability Conditions for Third-Order Neutral Delay Differential Equations. Commun. Math. Anal. 2019, 22, 76–89. [Google Scholar]
- Saker, S. Oscillation Theory of Delay Differential and Difference Equations: Second and Third Orders. Saarbrücken; LAP Lambert Academic Publishing: Saarbruecken, Germany, 2010. [Google Scholar]
- Drábek, P.; Kufner, A.; Kuliev, K. Oscillation and nonoscillation results for solutions of half-linear equations with deviated argument. J. Math. Anal. Appl. 2017, 447, 371–382. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A note on oscillation of second-order delay differential equa tions. Appl. Math. Lett. 2017, 69, 126–132. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. Oscillatory results for second-order noncanonical delay dif ferential equations. Opusc. Math. 2019, 39, 483–495. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 2016, 274, 178–181. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovská, I. Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017, 60, 2017. [Google Scholar] [CrossRef]
- Grace, S.R.; Džurina, J.; Jadlovská, I.; Li, T. An improved approach for studying oscillation of second-order neutral delay differential equations. J. Inequalities Appl. 2018, 193, 2018. [Google Scholar] [CrossRef] [Green Version]
- Hindi, A.A.; Moaaz, O.; Cesarano, C.; Alharbi, W.R.; Abdou, M.A. Noncanonical neutral ddes of second-order: New sufficient conditions for oscillation. Mathematics 2021, 9, 2026. [Google Scholar] [CrossRef]
- Moaaz, O.; Ramos, H.; Awrejcewicz, J. Second-order Emden–Fowler neutral differential equations: A new precise criterion for oscillation. Appl. Math. Lett. 2021, 118, 107172. [Google Scholar] [CrossRef]
- Moaaz, O.; El-Nabulsi, R.A.; Muhsin, W.; Bazighifan, O. Improved oscillation criteria for 2nd-order neutral differential equations with distributed deviating arguments. Mathematics 2020, 8, 849. [Google Scholar] [CrossRef]
- Hassan, T.S. Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales. Appl. Math. Comput. 2011, 217, 5285–5297. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhang, C.; Li, T. New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations. Appl. Math. Comput. 2013, 225, 822–828. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Džurina, J.; Jadlovská, I. New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 2019, 347, 404–416. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
- Dzurina, J.; Stavroulakis, I.P. Oscillation criteria for second-order delay differential equations. Appl. Math. Comput. 2003, 140, 445–453. [Google Scholar] [CrossRef]
- Sun, Y.G.; Meng, F.W. Note on the paper of J. Dzurina and I. P. Stavroulakis: “Oscillation criteria for second-order delay differential equations”. Appl. Math. Comput. 2006, 174, 1634–1641. [Google Scholar] [CrossRef]
- Ye, L.; Xu, Z. Oscillation criteria for second order quasilinear neutral delay differential equations. Appl. Math. Comput. 2009, 207, 388–396. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almarri, B.; Moaaz, O.; Muhib, A. Criteria for Oscillation of Half-Linear Functional Differential Equations of Second-Order. Axioms 2022, 11, 719. https://doi.org/10.3390/axioms11120719
Almarri B, Moaaz O, Muhib A. Criteria for Oscillation of Half-Linear Functional Differential Equations of Second-Order. Axioms. 2022; 11(12):719. https://doi.org/10.3390/axioms11120719
Chicago/Turabian StyleAlmarri, Barakah, Osama Moaaz, and Ali Muhib. 2022. "Criteria for Oscillation of Half-Linear Functional Differential Equations of Second-Order" Axioms 11, no. 12: 719. https://doi.org/10.3390/axioms11120719
APA StyleAlmarri, B., Moaaz, O., & Muhib, A. (2022). Criteria for Oscillation of Half-Linear Functional Differential Equations of Second-Order. Axioms, 11(12), 719. https://doi.org/10.3390/axioms11120719