An Improved Whale Optimization Algorithm for Web Service Composition
Abstract
:1. Introduction
2. Related Work
3. Whale Optimization Algorithm (WOA)
4. Improved Whale Optimization Algorithm (IWOA)
4.1. Sine Mapping for Initialization
4.2. Lévy Flight Mechanism
4.3. Neighborhood Search Strategy
5. Experiments and Comparative Analysis
5.1. Experimental Settings
5.2. Experimental Results and Analysis
5.2.1. Local Exploitation Validation Experiments
5.2.2. Global Search Validation Experiments
5.2.3. Wilcoxon’s Rank-Sum Test Analysis
6. Conclusions and Future Research
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Podili, P.; Pattanaik, K.K.; Rana, P.S. BAT and hybrid BAT meta-heuristic for quality of service-based web service selection. J. Intell. Syst. 2017, 26, 123–137. [Google Scholar] [CrossRef]
- Canfora, G.; di Penta, M.; Esposito, R.; Villani, M.L. A lightweight approach for QoS-aware service composition. In Proceedings of the 2nd International Conference on Service Oriented Computing (ICSOC 04), New York, NY, USA, 15–19 November 2004; pp. 1–2. [Google Scholar]
- Akyol, S.; Alatas, B. Plant intelligence based metaheuristic optimization algorithms. Artif. Intell. Rev. 2017, 47, 417–462. [Google Scholar] [CrossRef]
- Ju, C.; Ding, H.; Hu, B. A Hybrid Strategy Improved Whale Optimization Algorithm for Web Service Composition. Comput. J. 2021, bxab187. [Google Scholar] [CrossRef]
- Jin, H.; Lv, S.; Yang, Z.; Liu, Y. Eagle strategy using uniform mutation and modified whale optimization algorithm for QoS-aware cloud service composition. Appl. Soft Comput. 2022, 114, 108053. [Google Scholar] [CrossRef]
- Teng, X.; Luo, Y.; Zheng, T.; Zhang, X. An improved whale optimization algorithm based on aggregation potential energy for qos-driven web service composition. Wirel. Commun. Mob. Comput. 2022, 2022, 9741278. [Google Scholar] [CrossRef]
- Ye, Y.; Chen, S.; Cheng, K.; Zhang, H. A Web Service composition Method Based on Improved Whale Optimization Algorithm. In Proceedings of the 2022 IEEE 12th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 15–17 July 2022; pp. 85–88. [Google Scholar]
- Seghir, F. FDMOABC: Fuzzy discrete multi-objective artificial bee colony approach for solving the non-deterministic QoS-driven web service composition problem. Expert Syst. Appl. 2021, 167, 114413. [Google Scholar] [CrossRef]
- Zhang, S.; Shao, Y.; Zhou, L. Optimized artificial bee colony algorithm for web service composition problem. Int. J. Mach. Learn. Comput. 2021, 11, 327–332. [Google Scholar] [CrossRef]
- Dahan, F.; El Hindi, K.; Ghoneim, A. Enhanced artificial bee colony algorithm for QoS-aware web service selection problem. Computing 2017, 99, 507–517. [Google Scholar] [CrossRef]
- Dahan, F.; Mathkour, H.; Arafah, M. Two-step artificial bee colony algorithm enhancement for QoS-aware Web service selection problem. IEEE Access 2019, 7, 21787–21794. [Google Scholar] [CrossRef]
- Seghir, F.; Khababa, A.; Semchedine, F. An interval-based multi-objective artificial bee colony algorithm for solving the web service composition under uncertain QoS. J. Supercomput. 2019, 75, 5622–5666. [Google Scholar] [CrossRef]
- Arunachalam, N.; Amuthan, A. Integrated probability multi-search and solution acceptance rule-based artificial bee colony optimization scheme for web service composition. Nat. Comput. 2021, 20, 23–38. [Google Scholar] [CrossRef]
- Chandra, M.; Niyogi, R. Web service selection using modified artificial bee colony algorithm. IEEE Access 2019, 7, 88673–88684. [Google Scholar] [CrossRef]
- Li, T.; Yin, Y.; Yang, B.; Hou, J.; Zhou, K. A self-learning bee colony and genetic algorithm hybrid for cloud manufacturing services. Computing 2022, 104, 1977–2003. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Preethi, G. Artificial bee colony and genetic algorithms in selecting and combining web services for enhancing QoS. Des. Eng. 2021, 2021, 6009–6021. [Google Scholar]
- Dahan, F.; Alwabel, A. Artificial bee colony with cuckoo search for solving service composition. Intell. Autom. Soft Comput. 2023, 35, 3385–3402. [Google Scholar] [CrossRef]
- Dahan, F. Neighborhood search based improved bat algorithm for web service composition. Comput. Syst. Sci. Eng. 2023, 45, 1343–1356. [Google Scholar] [CrossRef]
- Kouicem, A.; Khanouche, M.E.; Tari, A. Novel bat algorithm for QoS-aware services composition in large scale internet of things. Clust. Comput. 2022, 25, 3683–3697. [Google Scholar] [CrossRef]
- El Allali, N.; Fariss, M.; Asaidi, H.; Bellouki, M. A web service composition framework in a heterogeneous environment. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 1–25. [Google Scholar] [CrossRef]
- Wang, Z. Optimization of resource service composition in cloud manufacture based on improved genetic and ant colony algorithm. Smart Innov. Syst. Technol. 2022, 268, 183–198. [Google Scholar]
- Dahan, F.; El Hindi, K.; Ghoneim, A.; Alsalman, H. An enhanced ant colony optimization based algorithm to solve QoS-aware web service composition. IEEE Access 2021, 9, 34098–34111. [Google Scholar] [CrossRef]
- Dahan, F. An effective multi-agent ant colony optimization algorithm for QoS-aware cloud service composition. IEEE Access 2021, 9, 17196–17207. [Google Scholar] [CrossRef]
- Wang, H.; Ding, Y.; Xu, H. Particle swarm optimization service composition algorithm based on prior knowledge. J. Intell. Manuf. 2022, 1–19. [Google Scholar] [CrossRef]
- Shirvani, M.H. Bi-objective web service composition problem in multi-cloud environment: A bi-objective time-varying particle swarm optimisation algorithm. J. Exp. Theor. Artif. Intell. 2021, 33, 179–202. [Google Scholar] [CrossRef]
- Dogani, J.; Khunjush, F. Cloud service composition using genetic algorithm and particle swarm optimization. In Proceedings of the 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE), Mashhad, Iran, 28–29 October 2021; pp. 98–104. [Google Scholar]
- Subbulakshmi, S.; Ramar, K.; Saji, A.E.; Chandran, G. Optimized web service composition using evolutionary computation techniques. In Proceedings of the Intelligent Data Communication Technologies and Internet of Things: Proceedings of ICICI 2020, Coimbatore, India, 27–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 457–470. [Google Scholar]
- Ghobaei-Arani, M.; Rahmanian, A.A.; Aslanpour, M.S.; Dashti, S.E. CSA-WSC: Cuckoo search algorithm for web service composition in cloud environments. Soft Comput. 2018, 22, 8353–8378. [Google Scholar] [CrossRef]
- Kouchi, S.; Nacer, H. Service selection in cloud computing environment by using cuckoo search. In Proceedings of the International Conference on Information, Communication & Cybersecurity, Khourigba, Morocco, 10–11 November 2021; Springer: Cham, Switzerland, 2021; pp. 219–228. [Google Scholar]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Xia, K.; Fan, S.; Wang, L.; Li, T.; Zhang, J.; Feng, Y. A multi-strategy Whale optimization algorithm and its application. Eng. Appl. Artif. Intell. 2022, 108, 104558. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, R. Multistrategy Improved Whale Optimization Algorithm and Its Application. Comput. Intell. Neurosci. 2022, 2022. [Google Scholar] [CrossRef]
- Altay, E.V.; Alatas, B. Bird swarm algorithms with chaotic mapping. Artif. Intell. Rev. 2020, 53, 1373–1414. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, Y. Neighborhood search based improved bat algorithm for data clustering. Appl. Intell. 2022, 52, 10541–10575. [Google Scholar] [CrossRef]
- Al-Masri, E.; Mahmoud, Q.H. Discovering the best web service. In Proceedings of the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 1257–1258. [Google Scholar]
- Wang, X.; Wang, Z.; Xu, X. An improved artificial bee colony approach to QoS-aware service selection. In Proceedings of the IEEE 20th International Conference on Web Services ICWS, Santa Clara, CA, USA, 28 June–3 July 2013; pp. 395–402. [Google Scholar]
- Li, J.; Ren, H.; Li, C.; Chen, H. A novel and efficient salp swarm algorithm for large-scale QoS-aware service composition selection. Computing 2022, 104, 2031–2051. [Google Scholar] [CrossRef]
QoS Criteria | Aggregation Formula |
---|---|
Cost (C) | |
Response Time (RT) | |
Throughput (A) | |
Reliability (R) |
Dataset | Size | No. Tasks | No. WSs/Task |
---|---|---|---|
DS1 | Small | 10 | 100 |
DS2 | 10 | 400 | |
DS3 | 10 | 800 | |
DS4 | 10 | 1000 | |
DS5 | Medium | 30 | 100 |
DS6 | 40 | 100 | |
DS7 | 50 | 100 | |
DS8 | 60 | 100 | |
DS9 | Large | 70 | 100 |
DS10 | 80 | 100 | |
DS11 | 90 | 100 | |
DS12 | 100 | 100 |
Size | Dataset | Evaluation | WOA | OABC | SABC | MWOA | LEWOA | ABC_CS | IWOA |
---|---|---|---|---|---|---|---|---|---|
Small | DS1 | BFV | 14,034.44 | 14,034.44 | 14,034.44 | 14,034.44 | 14,034.44 | 14,034.44 | 14,034.44 |
STD | 187.97 | 65.18 | 18.93 | 65.18 | 34.49 | 54.90 | 0.00 | ||
AET | 70 | 95 | 94 | 172 | 154 | 87 | 92 | ||
DS2 | BFV | 13,881.90 | 14,528.76 | 14,683.33 | 14,598.99 | 14,822.91 | 14,844.86 | 14,844.86 | |
STD | 195.56 | 194.24 | 137.85 | 218.07 | 114.44 | 151.31 | 54.04 | ||
AET | 100 | 416 | 129 | 380 | 237 | 120 | 129 | ||
DS3 | BFV | 15,102.50 | 15,327.59 | 15,427.52 | 15,225.15 | 15,306.70 | 15,771.44 | 15,769.43 | |
STD | 248.21 | 189.18 | 221.66 | 182.52 | 168.31 | 124.38 | 100.69 | ||
AET | 115 | 721 | 141 | 1380 | 211 | 138 | 145 | ||
DS4 | BFV | 15,015.99 | 15,546.62 | 15,843.82 | 15,714.46 | 16,167.67 | 16,359.07 | 16,652.91 | |
STD | 305.47 | 253.32 | 254.81 | 282.40 | 239.66 | 257.85 | 182.23 | ||
AET | 133 | 857 | 155 | 632 | 225 | 144 | 161 | ||
Medium | DS5 | BFV | 39,549.11 | 40,925.86 | 41,480.35 | 41,579.97 | 41,580.27 | 41,303.38 | 42,244.81 |
STD | 466.95 | 387.99 | 304.97 | 415.87 | 380.29 | 499.45 | 189.24 | ||
AET | 130 | 211 | 295 | 383 | 320 | 163 | 159 | ||
DS6 | BFV | 49,504.53 | 53,542.62 | 53,978.77 | 52,359.56 | 53,629.34 | 53,339.69 | 54,863.24 | |
STD | 567.70 | 769.34 | 499.94 | 600.86 | 323.96 | 703.61 | 247.38 | ||
AET | 175 | 268 | 430 | 484 | 450 | 224 | 220 | ||
DS7 | BFV | 59,404.74 | 62,868.06 | 64,666.89 | 63,090.82 | 64,332.29 | 64,557.35 | 66,334.41 | |
STD | 758.02 | 683.73 | 569.30 | 802.93 | 531.55 | 1218.42 | 460.52 | ||
AET | 293 | 344 | 508 | 652 | 520 | 366 | 352 | ||
DS8 | BFV | 71,031.27 | 75,333.25 | 76,726.71 | 74,787.07 | 77,232.77 | 76,847.28 | 79,246.31 | |
STD | 905.19 | 830.80 | 612.59 | 757.43 | 592.98 | 985.48 | 496.85 | ||
AET | 362 | 371 | 589 | 694 | 602 | 442 | 411 | ||
Large | DS9 | BFV | 82,385.25 | 87,238.51 | 88,628.78 | 86,483.38 | 88,552.77 | 90,320.09 | 91,230.12 |
STD | 1086.45 | 1076.90 | 732.32 | 832.21 | 728.38 | 1198.45 | 545.88 | ||
AET | 442 | 466 | 787 | 808 | 764 | 552 | 508 | ||
DS10 | BFV | 95,166.52 | 100,921.44 | 102,985.17 | 100,920.84 | 103,414.77 | 104,215.63 | 106,334.80 | |
STD | 1200.26 | 977.53 | 921.33 | 1020.61 | 982.57 | 1490.25 | 563.01 | ||
AET | 494 | 560 | 954 | 867 | 798 | 659 | 560 | ||
DS11 | BFV | 103,702.74 | 111,073.19 | 112,471.75 | 110,045.35 | 111,488.06 | 115,029.29 | 115,887.13 | |
STD | 1256.80 | 1156.91 | 996.85 | 1421.54 | 687.06 | 1791.95 | 649.83 | ||
AET | 582 | 632 | 890 | 834 | 1647 | 798 | 678 | ||
DS12 | BFV | 116,861.69 | 122,028.88 | 125,650.03 | 124,063.88 | 126,162.04 | 127,963.65 | 129,768.36 | |
STD | 1744.84 | 1181.03 | 1141.18 | 1846.44 | 1228.71 | 1952.69 | 715.02 | ||
AET | 610 | 641 | 1141 | 921 | 895 | 930 | 790 |
WOA | OABC | SABC | MWOA | LEWOA | ABC_CS | ||
---|---|---|---|---|---|---|---|
Small datasets | − | 4 | 4 | 3 | 4 | 3 | 2 |
+ | 0 | 0 | 0 | 0 | 0 | 1 | |
= | 0 | 0 | 1 | 0 | 1 | 1 | |
Medium datasets | − | 4 | 4 | 4 | 4 | 4 | 4 |
+ | 0 | 0 | 0 | 0 | 0 | 0 | |
= | 0 | 0 | 0 | 0 | 0 | 0 | |
Large datasets | − | 4 | 4 | 4 | 4 | 4 | 4 |
+ | 0 | 0 | 0 | 0 | 0 | 0 | |
= | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahan, F. An Improved Whale Optimization Algorithm for Web Service Composition. Axioms 2022, 11, 725. https://doi.org/10.3390/axioms11120725
Dahan F. An Improved Whale Optimization Algorithm for Web Service Composition. Axioms. 2022; 11(12):725. https://doi.org/10.3390/axioms11120725
Chicago/Turabian StyleDahan, Fadl. 2022. "An Improved Whale Optimization Algorithm for Web Service Composition" Axioms 11, no. 12: 725. https://doi.org/10.3390/axioms11120725
APA StyleDahan, F. (2022). An Improved Whale Optimization Algorithm for Web Service Composition. Axioms, 11(12), 725. https://doi.org/10.3390/axioms11120725