An Index for Graphs and Graph Groupoids
Abstract
:1. Introduction
1.1. Motivation
1.2. Overview
1.3. Why Connected Finite Graphs with More Than One Vertex?
2. Preliminaries
2.1. Graph Groupoids
2.2. Graph Groupoid Algebra
2.3. From Undirected Graphs to Graph Groupoids
2.4. Semicircular Elements
3. Radial Operators of Graph -Probability Spaces
4. Semicircular Elements of
5. Graph Groupoid Index and Graph-Tree Index
5.1. The Graph Groupoid Index
5.2. Graph-Tree Index
5.3. Graph-Tree Equivalence
6. The Gluing on Graphs
7. The Graph-Tree Index and Graph-Tree Towers
Certain Quotient Graphs Induced by
8. The Tree-Monoid
9. The Operad Induced by
9.1. Operads
9.2. The Operad Induced by the Tree-Monoid
10. The Tree-Monoidal Algebra
11. Discrete Statistical Models of
11.1. A Tree-Index Statistical Model
11.2. A Vertex-Cardinality Model
12. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Gibbons, A.; Novak, L. Hybrid Graph Theory and Network Analysis; Cambridge University Press: Cambridge, UK, 1999; ISBN 0-521-46117-0. [Google Scholar]
- Myasnikov, A.G.; Shapilrain, V. (Eds.) Group Theory, Statistics and Cryptography; AMS: Providence, RI, USA, 2003; Volume 360. [Google Scholar]
- Scapellato, R.; Lauri, J. Topics in Graph Automorphisms and Reconstruction, London Mathematics Society, Student Text 54; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Shirai, T. The Spectrum of Infinite Regular Line Graphs. Trans. AMS 2000, 352, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Bartholdi, L.; Grigorchuk, R.; Nekrashevych, V. From Fractal Groups to Fractal Sets. arXiv 2002, arXiv:math.GR/0202001v4. [Google Scholar]
- Exel, R. A new Look at the Crossed-Product of a C*-algebra by a Semigroup of Endomorphisms. Ergod. Theory Dyn. Syst. 2008, 28, 749–789. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Boyd, S.; Saberi, A. Minimizing Effective Resistance of a Graph. SIAM Rev. 2008, 50, 37–66. [Google Scholar] [CrossRef] [Green Version]
- Gill, A. Introduction to the Theory of Finite-State Machines, MR0209083 (34\#8891); McGraw-Hill Book Co.: New York, NY, USA, 1962. [Google Scholar]
- Gliman, R.; Shpilrain, V.; Myasnikov, A.G. (Eds.) Computational and Statistical Group Theory; AMS: Providence, RI, USA, 2001; Volume 298. [Google Scholar]
- Kucherenko, I.V. On the Structurization of a Class of Reversible Cellular Automata. Diskret. Math. 2007, 19, 102–121. [Google Scholar]
- Lind, D.A. Entropies of Automorphisms of a Topological Markov Shift. Proc. AMS 1987, 99, 589–595. [Google Scholar] [CrossRef]
- Lind, D.A.; Marcus, B. An Introduction to Symbolic Dynamics and Coding; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Schiff, J.L. Cellular Automata, Discrete View of the World, Wiley-Interscience Series in Discrete Mathematics & Optimazation; John Wiley & Sons Press: Hoboken, NJ, USA, 2008; ISBN 978-0-470-16879-0. [Google Scholar]
- Weintraub, S.H. Representation Theory of Finite Groups: Algebra and Arithmetic: Algebra and Arithmetic; AMS: Providence, RI, USA, 2003; Volume 59. [Google Scholar]
- Connes, A. Noncommutative Geometry; Lecture Notes in Mathematics, Mathematics Research Today and Tomorrow (Barcelona), 1525, MR:1247054; Springer: Berlin/Heidelberg, Germany, 1992; pp. 40–58. [Google Scholar]
- Radulescu, F. Random Matrices, Amalgamated Free Products and Subfactors of the C*-Algebra of a Free Group, of Noninteger Index. Invent. Math. 1994, 115, 347–389. [Google Scholar] [CrossRef]
- Speicher, R. Combinatorial Theory of the Free Product with Amalgamation and Operator-Valued Free Probability Theory; AMS: Providence, RI, USA, 1998; Volume 132. [Google Scholar]
- Voiculescu, D.; Dykema, K.; Nica, A. Free Random Variables; CRM Monograph Series; AMS: Providence, RI, USA, 1992; Volume 1. [Google Scholar]
- Cho, I. Banach-Space Operators Acting on Semicircular Elements Induced by Orthogonal Projections. Complex Anal. Oper. Theory 2019, 13, 4065–4115. [Google Scholar] [CrossRef]
- Cho, I. Graph von Neumann algebras. Acta Appl. Math. 2007, 95, 95–135. [Google Scholar] [CrossRef]
- Cho, I. Characterization of the Amalgamated Free Blocks of a Graph von Neumann Algebra. Complex Anal. Oper. Theory 2007, 1, 367–398. [Google Scholar] [CrossRef]
- Cho, I. Fractal Properties in B(H) Induced by Partial Isometries. Complex Anal. Oper. Theory 2011, 5, 1–40. [Google Scholar] [CrossRef]
- Cho, I. Frames, Fractals and Radial Operators in Hilbert Space. J. Math. Sci. Adv. Appl. 2010, 5, 333–393. [Google Scholar]
- Cho, I.; Jorgensen, P.E.T. C*-Subalgebras Generated by Partial Isometries. J. Math. Phys. 2009, 50, 023516. [Google Scholar] [CrossRef]
- Kribs, D.W. Quantum Causal Histories and the Directed Graph Operator Framework. arXiv 2005, arXiv:math.OA/0[50]1087v1. [Google Scholar]
- Mitchener, P.D. C*-Categories, Groupoid Actions, Equivalent KK-Theory, and the Baum-Connes Conjecture. arXiv 2005, arXiv:math.KT/0204291v1. [Google Scholar]
- Raeburn, I. Graph Algebras; CBMS; AMS: Providence, RI, USA, 2005. [Google Scholar]
- Solel, B. You can see the arrows in a Quiver Operator Algebras. J. Aust. Math. Soc. 2004, 77, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Vega, V. Finite Directed Graphs and W*-Correspondences. Ph.D. Thesis, University of Iowa, Iowa City, IA, USA, 2007. [Google Scholar]
- Jorgensen, P.E.T.; Song, M. Entropy Encoding, Hilbert Spaces, and Kahunen-Loeve Transforms. J. Math. Phys. 2007, 48, 103503. [Google Scholar] [CrossRef] [Green Version]
- Potgieter, P. Nonstandard Analysis, Fractal Properties and Brownian Motion. arXiv 2007, arXiv:math.FA/0701649v1. [Google Scholar] [CrossRef] [Green Version]
- Afsar, Z.; Sims, A. KMS-States on the C*-Algebras of Fell Bundles over Groupoids. Math. Proc. Camb. Philos. Soc. 2021, 170, 221–246. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.H.; Clark, L.O.; Huef, A. Dense Subalgebras of Purely Infinite Simple Groupoid C*-Algebras. Proc. Edinb. Math. Soc. 2020, 63, 609–629. [Google Scholar] [CrossRef] [Green Version]
- Cho, I.; Jorgensen, P.E.T. The Semicircular Law of Free Probability as Noncommutative Multivariable Operator Theory. Adv. Oper. Theory 2021, 6, 1–40. [Google Scholar] [CrossRef]
- Cho, I. Semicircular-Like, and Semicircular Laws on Banach *-Probability Spaces Induced by Dynamical Systems of the Finite Adele Ring. Adv. Oper. Theory 2019, 4, 24–70. [Google Scholar] [CrossRef]
- Cho, I. Free Semicircular Families in Free Product Banach *-Algebras Induced by p-Adic Number Fields Qp Over Primes p. Complex Anal. Oper. Theory 2017, 11, 507–565. [Google Scholar] [CrossRef]
- Cho, I.; Jorgensen, P.E.T. Certain *-Homomorphisms on C*-Algebras and Sequences of Semicircular Elements: A Banach Space View. Ill J. Math. 2020, 64, 519–567. [Google Scholar] [CrossRef]
- Cho, I.; Dong, J. Catalan Numbers and Free Distributions of Mutually Free Semicircular Elements. Adv. Appl. Stat. Sci. 2018; submitted. [Google Scholar]
- Guillou, B.J.; May, J.P.; Merling, M.; Osorno, A.M. Symmetric Monoidal G-Categories and Their Strictification. Q. J. Math. 2020, 71, 207–246. [Google Scholar] [CrossRef] [Green Version]
- Harpez, Y.; Nuiten, J.; Prasma, M. Tangent Categories of Algebras over Operads. Isr. J. Math. 2019, 234, 691–742. [Google Scholar] [CrossRef] [Green Version]
- Jones, V.F.R. Plannar Algebras I. arXiv 1999, arXiv:math/9909027. [Google Scholar]
- Moerdijk, I. Closed Dendroidal Sets and Unital Operads. Theory Appl. Categ. 2021, 36, 118–170. [Google Scholar]
- Spielberg, J. Groupoids and C*-Algebras for Left Cancellative Small Categories. Indiana Univ. Math. J. 2020, 69, 1579–1626. [Google Scholar] [CrossRef]
- Dutkay, D.E.; Jorgensen, P.E.T. Iterated Function Systems, Ruelle Operators and Invariant Projective Measures. arXiv 2005, arXiv:math.DS/0[50]1077/v3. [Google Scholar] [CrossRef] [Green Version]
- Guido, D.; Isola, T.; Lapidus, M.L. A Trace on Fractal Graphs and the Ihara Zeta Function. arXiv 2006, arXiv:math.OA/0608060v1. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, P.E.T. Use of Operator Algebras in the Analysis of Measures from Wavelets and Iterated Function Systems. Contemp. Math. 2006, 414, 13. [Google Scholar]
- Jorgensen, P.E.T.; Schmitt, L.M.; Werner, R.F. q-Canonical Commutation Relations and Stability of the Cuntz Algebra. Pac. J. Math. 1994, 165, 131–151. [Google Scholar] [CrossRef] [Green Version]
- Kigami, J.; Strichartz, R.S.; Walker, K.C. Constructing a Laplacian on the Diamond Fractal. Exp. Math. 2001, 10, 437–448. [Google Scholar] [CrossRef]
- Dicks, W.; Ventura, E. The Group Fixed by a Family of Injective Endomorphisms of a Free Group; AMS: Providence, RI, USA, 1996; Volume 195. [Google Scholar]
- Markl, M.; Shnider, S.; Stasheff, J. Operads in Algebra, Topology and Physics; AMS: Providence, RI, USA, 2002; Volume 96, ISBN 0-8218-2134-2. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, I.; Jorgensen, P. An Index for Graphs and Graph Groupoids. Axioms 2022, 11, 47. https://doi.org/10.3390/axioms11020047
Cho I, Jorgensen P. An Index for Graphs and Graph Groupoids. Axioms. 2022; 11(2):47. https://doi.org/10.3390/axioms11020047
Chicago/Turabian StyleCho, Ilwoo, and Palle Jorgensen. 2022. "An Index for Graphs and Graph Groupoids" Axioms 11, no. 2: 47. https://doi.org/10.3390/axioms11020047
APA StyleCho, I., & Jorgensen, P. (2022). An Index for Graphs and Graph Groupoids. Axioms, 11(2), 47. https://doi.org/10.3390/axioms11020047