Analyzing the Main Determinants for Being an Immigrant in Cuenca (Ecuador) Based on a Fuzzy Clustering Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Questionnaire and Data
2.2. Methods
2.2.1. Fuzzy Set Theory Preliminaries
2.2.2. A Hybrid Fuzzy TOPSIS Model
2.2.3. Fuzzy Clustering Method
3. Results
3.1. Fuzzy Hybrid Model
3.2. The Fuzzy Clusters
4. Discussion
4.1. Fuzzy Hybrid Model
4.2. Elasticities, Fuzzy Clustering and ANOVA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Coninck, D. Migrant categorizations and European public opinion: Diverging attitudes towards immigrants and refugees. J. Ethn. Migr. Stud. 2020, 46, 1667–1686. [Google Scholar] [CrossRef]
- Goodman, S.; Burke, S.; Liebling, H.; Zasada, D. ‘I Can’t Go Back Because If I Go Back I Would Die’: How Asylum Seekers Manage Talk about Returning Home by Highlighting the Importance of Safety. J. Community Appl. Soc. Psychol. 2015, 25, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Heath, A.; Davidov, E.; Ford, R.; Green, E.G.T.; Ramos, A.; Schmidt, P. Contested terrain: Explaining divergent patterns of public opinion towards immigration within Europe. J. Ethn. Migr. Stud. 2020, 46, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Hatton, T.J. Public opinion on immigration in Europe: Preference and salience. Eur. J. Polit. Econ. 2020, 66, 101969. [Google Scholar] [CrossRef]
- Meuleman, B.; Abts, K.; Schmidt, P.; Pettigrew, T.F.; Davidov, E. Economic conditions, group relative deprivation and ethnic threat perceptions: A cross-national perspective. J. Ethn. Migr. Stud. 2020, 46, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Davidov, E.; Seddig, D.; Gorodzeisky, A.; Raijman, R.; Schmidt, P.; Semyonov, M. Direct and indirect predictors of opposition to immigration in Europe: Individual values, cultural values, and symbolic threat. J. Ethn. Migr. Stud. 2020, 46, 553–573. [Google Scholar] [CrossRef] [Green Version]
- Martín, J.C.; Indelicato, A. A DEA MCDM Approach Applied to ESS8 Dataset for Measuring Immigration and Refugees Citizens’ Openness. J. Int. Migr. Integr. 2021, 1–21. [Google Scholar] [CrossRef]
- Martín, J.C.; Bustamante-Sánchez, N.S. A cultural analysis of the secondary housing tourism in Vilcabamba, Ecuador. Int. J. Hous. Mark. Anal. 2019, 12, 604–625. [Google Scholar] [CrossRef]
- Jaakson, R. Second-home domestic tourism. Ann. Tour. Res. 1986, 13, 367–391. [Google Scholar] [CrossRef]
- Gustafson, P. Retirement migration and transnational lifestyles. Ageing Soc. 2001, 21, 371–394. [Google Scholar] [CrossRef]
- Hall, K.; Hardill, I. Retirement migration, the “other” story: Caring for frail elderly British citizens in Spain. Ageing Soc. 2016, 36, 562–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alba, R.; Foner, N. Strangers No More: Immigration and the Challenges of Integration in North America and Western Europe; Princeton University Press: Princeton, NJ, USA, 2015; ISBN 9781400865901. [Google Scholar]
- Hayes, M. “Sometimes you gotta get out of your comfort zone”: Retirement migration and active ageing in Cuenca, Ecuador. Ageing Soc. 2021, 41, 1221–1239. [Google Scholar] [CrossRef]
- Freier, L.F.; Holloway, K. The Impact of Tourist Visas on Intercontinental South-South Migration: Ecuador’s Policy of “Open Doors” as a Quasi-Experiment. Int. Migr. Rev. 2019, 53, 1171–1208. [Google Scholar] [CrossRef]
- Hanson, G.H.; Robertson, R.; Spilimbergo, A. Does Border Enforcement Protect U.S. Workers from Illegal Immigration? Rev. Econ. Stat. 2002, 84, 73–92. [Google Scholar] [CrossRef]
- Stringer, A. Crossing the Border: Latino Attitudes toward Immigration Policy. J. Int. Migr. Integr. 2018, 19, 701–715. [Google Scholar] [CrossRef]
- Miyagiwa, K.; Sato, Y. Illegal immigration, unemployment, and multiple destinations. J. Reg. Sci. 2019, 59, 118–144. [Google Scholar] [CrossRef] [Green Version]
- De Haas, H. A theory of migration: The aspirations-capabilities framework. Comp. Migr. Stud. 2021, 9, 8. [Google Scholar] [CrossRef]
- Pagogna, R.; Sakdapolrak, P. Disciplining migration aspirations through migration-information campaigns: A systematic review of the literature. Geogr. Compass 2021, 15, e12585. [Google Scholar] [CrossRef]
- Kim, K.; Cohen, J.E. Determinants of International Migration Flows to and from Industrialized Countries: A Panel Data Approach beyond Gravity. Int. Migr. Rev. 2010, 44, 899–932. [Google Scholar] [CrossRef]
- Aziz, N.; Chowdhury, M.; Cooray, A. Why do people from wealthy countries migrate? Eur. J. Polit. Econ. 2021, 102156. [Google Scholar] [CrossRef]
- Palloni, A.; Massey, D.S.; Ceballos, M.; Espinosa, K.; Spittel, M. Social Capital and International Migration: A Test Using Information on Family Networks. Am. J. Sociol. 2001, 106, 1262–1298. [Google Scholar] [CrossRef] [Green Version]
- Williams, N.E.; Hughes, C.; Bhandari, P.; Thornton, A.; Young-DeMarco, L.; Sun, C.; Swindle, J. When Does Social Capital Matter for Migration? A Study of Networks, Brokers, and Migrants in Nepal. Int. Migr. Rev. 2020, 54, 964–991. [Google Scholar] [CrossRef] [PubMed]
- Thielemann, E.R. How Effective are National and EU Policies in the Area of Forced Migration? Refug. Surv. Q. 2012, 31, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Jo, H.M. Constitutionalizing trans-border nationhood: From Latin American perspectives. Asian J. Law Soc. 2020, 7, 61–84. [Google Scholar] [CrossRef]
- Doña Reveco, C.; Finn, V. Conflicting Priorities in South American Migration Governance. Bull. Lat. Am. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Palop-García, P.; Pedroza, L. Do Diaspora Engagement Policies Endure? An Update of the Emigrant Policies Index (EMIX) to 2017. Glob. Policy 2021, 12, 361–371. [Google Scholar] [CrossRef]
- Hammoud-Gallego, O. A Liberal Region in a World of Closed Borders? The Liberalization of Asylum Policies in Latin America, 1990–2020. Int. Mig. Rev. 2022, 56, 63–96. [Google Scholar] [CrossRef]
- Solano, G.; Wali, A.; Yar, A. Gaps in Migration Research. Review of Migration Theories and the Quality and Compatibility of Migration Data on the National and International Level. Migration Policies at the Local Level: The Case of Belgian Municipalities View Project; HIVA-Research Institute for Work and Society: Leuven, Belgium, 2020. [Google Scholar]
- Pedroza, L.; Palop-García, P. Diaspora policies in comparison: An application of the Emigrant Policies Index (EMIX) for the Latin American and Caribbean region. Polit. Geogr. 2017, 60, 165–178. [Google Scholar] [CrossRef]
- Müller, D.K. 20 years of Nordic second-home tourism research: A review and future research agenda. Scand. J. Hosp. Tour. 2021, 21, 91–101. [Google Scholar] [CrossRef]
- Stylidis, D.; Cherifi, B.; Melewar, T.C. Exploring Czechs’ and Greeks’ mental associations of London: A tourist destination or a place to live in? J. Destin. Mark. Manag. 2021, 19, 100530. [Google Scholar] [CrossRef]
- Müller, D.K.; Hoogendoorn, G. Second Homes: Curse or Blessing? A Review 36 Years Later. Scand. J. Hosp. Tour. 2013, 13, 353–369. [Google Scholar] [CrossRef]
- Pytel, S.; Rahmonov, O.; Ruman, M. Internal and external migrations of pensioners in Poland: A directional typology. Popul. Space Place 2020, 26, e2330. [Google Scholar] [CrossRef]
- Marjavaara, R.; Lundholm, E. Does Second-Home Ownership Trigger Migration in Later Life? Popul. Space Place 2016, 22, 228–240. [Google Scholar] [CrossRef]
- Behdioğlu, S.; Acar, E.; Burhan, H.A. Evaluating service quality by fuzzy SERVQUAL: A case study in a physiotherapy and rehabilitation hospital. Total Qual. Manag. Bus. Excell. 2019, 30, 301–319. [Google Scholar] [CrossRef]
- Martínez, M.P.; Cremasco, C.P.; Gabriel Filho, L.R.A.; Braga Junior, S.S.; Bednaski, A.V.; Quevedo-Silva, F.; Correa, C.M.; da Silva, D.; Moura-Leite Padgett, R.C. Fuzzy inference system to study the behavior of the green consumer facing the perception of greenwashing. J. Clean. Prod. 2020, 242, 116064. [Google Scholar] [CrossRef]
- Leon, S.; Martín, J.C. A fuzzy segmentation analysis of airline passengers in the U.S. based on service satisfaction. Res. Transp. Bus. Manag. 2020, 37, 100550. [Google Scholar] [CrossRef]
- Martin, J.C.; Román, C.; Moreira, P.; Moreno, R.; Oyarce, F. Does the access transport mode affect visitors’ satisfaction in a World Heritage City? The case of Valparaiso, Chile. J. Transp. Geogr. 2021, 91, 102969. [Google Scholar] [CrossRef]
- Herrera, F.; Herrera-Viedma, E. Linguistic decision analysis: Steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 2000, 115, 67–82. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, H.J. Fuzzy Set Theory and Its Applications, 2nd ed.; Springer Science: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Mendel, J.M. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, 2nd ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Kaufmann, A.; Gupta, M.M. Introduction to Fuzzy Arithmetic Theory and Application; Van Nortrand Reinhold: New York, NY, USA, 1985. [Google Scholar]
- Zimmermann, H.J. Fuzzy Set Theory and Its Applications, 4th ed.; Kluwer Academic Publishers: Nowell, MA, USA, 2001; ISBN 9789401038706. [Google Scholar]
- Bector, C.R.; Chandra, S. Fuzzy Mathematical Programming and Fuzzy Matrix Games; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 3-540-23729-1. [Google Scholar]
- Mamdani, E.H.; Assilian, S. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. Int. J. Man-Mach. Stud. 1975, 7, 1–13. [Google Scholar] [CrossRef]
- Zadeh, L.A. The Concept of a Linguistic Variable and its Application to Approximate Reasoning-I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Hwang, C.; Yoon, K. Multiple Attribute Decision Making: Methods and Application; Springer: New York, NY, USA, 1981. [Google Scholar]
- Chen, C. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Chu, T.C. Selecting plant location via a fuzzy TOPSIS approach. Int. J. Adv. Manuf. Technol. 2002, 20, 859–864. [Google Scholar] [CrossRef]
- Chen, C.T. A fuzzy approach to select the location of the distribution center. Fuzzy Sets Syst. 2001, 118, 65–73. [Google Scholar] [CrossRef]
- Buckley, J.J. Ranking alternatives using fuzzy numbers. Fuzzy Sets Syst. 1985, 15, 21–31. [Google Scholar] [CrossRef]
- Li, D.F. Compromise ratio method for fuzzy multi-attribute group decision making. Appl. Soft Comput. J. 2007, 7, 807–817. [Google Scholar] [CrossRef]
- Zhao, R.; Govind, R. Algebraic characteristics of extended fuzzy numbers. Inf. Sci. 1991, 54, 103–130. [Google Scholar] [CrossRef]
- Kaufman, A.; Gupta, M. Fuzzy Mathematical Models in Engineering and Management Science; Elsevier: New York, NY, USA, 1988. [Google Scholar]
- Chen, S.-M. Evaluating weapon systems using fuzzy arithmetic operations. Fuzzy Sets Syst. 1996, 77, 265–276. [Google Scholar] [CrossRef]
- Zeleny, M. Multiple Criteria Decision Making; McGraw-Hill: New York, NY, USA, 1982. [Google Scholar]
- D’Urso, P.D. Clustering of fuzzy data. In Advances in Fuzzy Clustering and Its Applications; Valente de Oliveira, J., Pedrycz, W., Eds.; J. Wiley and Sons: Chichester, UK, 2007; pp. 155–192. [Google Scholar]
- D’Urso, P.D.; Disegna, M.; Massari, R.; Osti, L. Fuzzy segmentation of postmodern tourists. Tour. Manag. 2016, 55, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; Gattone, S.A.; Balzanella, A.; Di Battista, T. Cluster Analysis: An Application to a Real Mixed-Type Data Set. In Models and Theories in Social Systems; Flaut, C., Hošková-Mayerová, Š., Flaut, D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 525–533. ISBN 978-3-030-00084-4. [Google Scholar]
- Dolnicar, S.; Leisch, F. Segmenting Markets by Bagged Clustering. Australas. Mark. J. 2004, 12, 51–65. [Google Scholar] [CrossRef] [Green Version]
- D’Urso, P.; Giordani, P. A weighted fuzzy c -means clustering model for fuzzy data. Comput. Stat. Data Anal. 2006, 50, 1496–1523. [Google Scholar] [CrossRef]
- D’Urso, P.; Disegna, M.; Massari, R.; Prayag, G. Knowledge-Based Systems Bagged fuzzy clustering for fuzzy data: An application to a tourism market. Knowl.-Based Syst. 2015, 73, 335–346. [Google Scholar] [CrossRef]
- Martín, J.C.; Moreira, P.; Román, C. A hybrid-fuzzy segmentation analysis of residents’ perception towards tourism in Gran Canaria. Tour. Econ. 2020, 26, 1282–1304. [Google Scholar] [CrossRef]
- Aguila, E.; Zissimopoulos, J. Retirement and health benefits for Mexican migrant workers returning from the United States. Int. Soc. Secur. Rev. 2013, 66, 101–125. [Google Scholar] [CrossRef] [Green Version]
- Longino, C.F.; Bradley, D.E. Geographical distribution and migration. In Aging and the Social Sciences; Binstock, R.H., Georg, L.K., Eds.; Oxford Univeristy Press: Oxford, UK, 2001; pp. 103–213. [Google Scholar]
- Kureková, L. Welfare Systems as Emigration Factor: Evidence from the New Accession States. JCMS J. Common Mark. Stud. 2013, 51, 721–739. [Google Scholar] [CrossRef]
- Cowper, D.C.; Longino, C.F.; Kubal, J.D.; Manheim, L.M.; Dienstfrey, S.J.; Palmer, J.M. The Retirement Migration of U.S. Veterans, 1960, 1970, 1980, and 1990. J. Appl. Gerontol. 2000, 19, 123–137. [Google Scholar] [CrossRef]
- Van Dalen, H.P.; Groenewold, G.; Schoorl, J.J. Out of Africa: What drives the pressure to emigrate? J. Popul. Econ. 2005, 18, 741–778. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Liu, Y.; Zhu, Z.; Li, Z. Does where you live matter to your health? Investigating factors that influence the self-rated health of urban and rural Chinese residents: Evidence drawn from Chinese General Social Survey data. Health Qual. Life Outcomes 2017, 15, 78. [Google Scholar] [CrossRef] [Green Version]
- Mancinelli, F. Digital nomads: Freedom, responsibility and the neoliberal order. Inf. Technol. Tour. 2020, 22, 417–437. [Google Scholar] [CrossRef]
- Docquier, F.; Peri, G.; Ruyssen, I. The Cross-country Determinants of Potential and Actual Migration. Int. Migr. Rev. 2014, 48, 37–99. [Google Scholar] [CrossRef] [Green Version]
- Grimsrud, M.; El-Geneidy, A. Transit to eternal youth: Lifecycle and generational trends in Greater Montreal public transport mode share. Transportation 2014, 41, 1–19. [Google Scholar] [CrossRef]
Item | Description |
---|---|
1 | Climate |
2 | Cost of Living |
3 | Safety |
4 | Language |
5 | Local Culture |
6 | General Image and Landscape |
7 | Social Atmosphere 1 |
8 | Local Gastronomy |
9 | Tourist Attractions |
10 | Leisure and Entertainment |
11 | Ease of integration |
12 | Lifestyle |
13 | Banks. Monetary Exchange |
14 | Shops; Commercial Activity |
15 | Accessibility of Roads |
16 | Means of Transport |
17 | Variety of Types of Houses |
18 | House Rental Costs |
19 | Quality of Water |
20 | Quality of Air |
21 | Quality of Grounds and Cleanliness |
22 | General Vegetation/Green Space |
23 | Medical Assistance |
24 | Quality of Urban Services |
25 | Access to Internet |
26 | Tourist Services |
27 | Education |
28 | Programs for Foreigners |
29 | Benefits for Retirees |
30 | Sport facilities |
Variable | Categories | N | Perc. |
---|---|---|---|
Nationality * | United States | 76 | 20.60 |
Colombia | 38 | 10.30 | |
Other South American countries | 32 | 8.67 | |
Canada | 30 | 8.13 | |
Argentina | 28 | 7.59 | |
Other nationality | 25 | 6.78 | |
Peru | 22 | 5.96 | |
France | 21 | 5.69 | |
Venezuela | 19 | 5.15 | |
Other European countries | 16 | 4.34 | |
Netherlands | 15 | 4.07 | |
Germany | 13 | 3.52 | |
Cuba | 10 | 2.71 | |
Italy | 9 | 2.44 | |
Mexico | 8 | 2.17 | |
Iberian countries | 7 | 1.90 | |
Gender | Male | 206 | 55.83 |
Female | 163 | 44.17 | |
Age | ≤24 years old | 45 | 12.20 |
25–34 years old | 116 | 31.44 | |
35–44 years old | 83 | 22.49 | |
45–54 years old | 37 | 10.03 | |
55–64 years old | 47 | 12.74 | |
≥65 years old | 41 | 11.11 | |
Marital status | Single | 164 | 44.44 |
Married | 125 | 33.88 | |
Widowed | 16 | 4.34 | |
Divorced | 40 | 10.84 | |
Unmarried couple | 24 | 6.50 | |
Retired | Y | 66 | 17.89 |
N | 303 | 82.11 |
Semantic Scale | TFN 1 |
---|---|
Not important at all | (0, 0, 30) |
Slightly important | (20, 30, 40) |
Somewhat important | (30, 50, 70) |
Important | (60, 70, 80) |
Very important | (70, 100, 100) |
Item | TFN | Crisp | A+ | A− |
---|---|---|---|---|
Climate | (58.78, 79.92, 86.59) | 76.30 | 89.69 | 59.44 |
Cost of Living | (61.65, 86.04, 90.60) | 81.08 | 92.50 | 64.03 |
Safety | (61.76, 83.55, 88.27) | 79.28 | 92.50 | 53.91 |
Language | (44.42, 61.11, 74.23) | 60.22 | 70.00 | 51.41 |
Local Culture | (45.07, 60.79, 74.55) | 60.30 | 72.31 | 50.00 |
General Image and Landscape | (46.83, 62.44, 75.37) | 61.77 | 70.58 | 50.00 |
Social Atmosphere | (50.33, 65.45, 77.15) | 64.59 | 75.19 | 54.31 |
Local Gastronomy | (42.93, 58.48, 72.66) | 58.14 | 70.68 | 48.21 |
Tourist Attractions | (50.95, 65.45, 76.53) | 64.59 | 78.86 | 40.56 |
Leisure and Entertainment | (54.25, 72.22, 81.41) | 70.03 | 92.50 | 59.06 |
Ease of integration | (59.81, 81.65, 87.40) | 77.63 | 92.50 | 55.00 |
Lifestyle | (59.81, 80.70, 87.05) | 77.07 | 92.50 | 63.75 |
Banks. Monetary Exchange | (56.59, 78.43, 84.91) | 74.59 | 92.50 | 36.72 |
Shops. Commercial Activity | (44.77, 61.65, 74.63) | 60.68 | 78.64 | 38.33 |
Accessibility of Roads | (35.72, 51.57, 66.78) | 51.41 | 65.45 | 42.92 |
Means of Transport | (36.72, 51.60, 66.23) | 51.54 | 64.22 | 44.50 |
Variety of Types of Houses | (51.65, 67.15, 78.02) | 66.00 | 77.50 | 53.75 |
House Rental Costs | (59.05, 79.30, 86.12) | 75.94 | 92.50 | 62.63 |
Quality of Water | (66.29, 92.41, 94.88) | 86.50 | 92.50 | 73.28 |
Quality of Air | (60.46, 76.67, 84.42) | 74.55 | 81.25 | 59.86 |
Quality of Grounds and Cleanliness | (47.07, 64.12, 77.51) | 63.20 | 77.41 | 50.00 |
General Vegetation/Green Space | (49.59, 66.26, 78.21) | 65.08 | 74.13 | 50.00 |
Medical Assistance | (65.15, 91.65, 94.50) | 85.74 | 92.50 | 60.78 |
Quality of Urban Services | (58.92, 78.10, 85.34) | 75.12 | 92.50 | 57.97 |
Access to Internet | (54.80, 71.25, 80.70) | 69.50 | 92.50 | 48.00 |
Tourist Services | (48.75, 63.33, 76.12) | 62.89 | 73.13 | 49.58 |
Education | (34.85, 49.89, 64.93) | 49.89 | 87.68 | 37.17 |
Programs for Foreigners | (56.69, 79.59, 85.58) | 75.37 | 92.50 | 52.81 |
Benefits for Retirees | (44.23, 61.54, 73.50) | 60.20 | 92.50 | 37.68 |
Sport facilities | (34.85, 49.30, 64.07) | 49.38 | 81.56 | 33.28 |
Variable | Categories | DEI |
---|---|---|
Nationality | Germany | 0.523 |
Argentina | 0.525 | |
Other nationality | 0.454 | |
Other European countries | 0.455 | |
Other South American countries | 0.510 | |
Canada | 0.484 | |
Colombia | 0.562 | |
Cuba | 0.600 | |
Iberian countries | 0.518 | |
United States | 0.427 | |
France | 0.491 | |
Netherlands | 0.526 | |
Italy | 0.347 | |
Mexico | 0.623 | |
Peru | 0.625 | |
Venezuela | 0.623 | |
Gender | Male | 0.474 |
Female | 0.547 | |
Age | ≤24 years old | 0.480 |
25–34 years old | 0.501 | |
35–44 years old | 0.514 | |
45–54 years old | 0.529 | |
55–64 years old | 0.482 | |
≥65 years old | 0.542 | |
Marital status | Single | 0.490 |
Married | 0.515 | |
Widowed | 0.583 | |
Divorced | 0.498 | |
Unmarried couple | 0.531 | |
Retired | Yes | 0.518 |
No | 0.504 |
Item | Total | Single | Married | Widowed | Divorced | Unmarried Couple |
---|---|---|---|---|---|---|
Climate | 0.1254 | 0.1284 | 0.1194 | 0.0793 | 0.1274 | 0.1100 |
Cost of Living | 0.1252 | 0.1329 | 0.1192 | 0.0896 | 0.1251 | 0.1067 |
Safety | 0.1654 | 0.1729 | 0.1615 | 0.1147 | 0.1592 | 0.1382 |
Language | 0.0611 | 0.0620 | 0.0602 | 0.0478 | 0.0600 | 0.0530 |
Local Culture | 0.0735 | 0.0749 | 0.0707 | 0.0555 | 0.0783 | 0.0637 |
General Image and Landscape | 0.0690 | 0.0712 | 0.0664 | 0.0443 | 0.0719 | 0.0584 |
Social Atmosphere | 0.0736 | 0.0766 | 0.0707 | 0.0556 | 0.0770 | 0.0626 |
Local Gastronomy | 0.0715 | 0.0727 | 0.0704 | 0.0562 | 0.0681 | 0.0623 |
Tourist Attractions | 0.1340 | 0.1437 | 0.1289 | 0.0985 | 0.1269 | 0.1144 |
Leisure and Entertainment | 0.1289 | 0.1357 | 0.1235 | 0.1122 | 0.1248 | 0.1121 |
Ease of integration | 0.1578 | 0.1723 | 0.1470 | 0.1181 | 0.1596 | 0.1342 |
Lifestyle | 0.1211 | 0.1232 | 0.1183 | 0.0922 | 0.1176 | 0.1062 |
Banks. Monetary Exchange | 0.2246 | 0.2263 | 0.2200 | 0.1588 | 0.2297 | 0.2036 |
Shops. Commercial Activity | 0.1330 | 0.1389 | 0.1297 | 0.1003 | 0.1201 | 0.1259 |
Accessibility of Roads | 0.0636 | 0.0668 | 0.0609 | 0.0494 | 0.0609 | 0.0541 |
Means of Transport | 0.0559 | 0.0562 | 0.0540 | 0.0370 | 0.0538 | 0.0500 |
Variety of Types of Houses | 0.0854 | 0.0877 | 0.0820 | 0.0560 | 0.0818 | 0.0753 |
House Rental Costs | 0.1241 | 0.1301 | 0.1194 | 0.1013 | 0.1150 | 0.1114 |
Quality of Water | 0.0897 | 0.0938 | 0.0861 | 0.0574 | 0.0897 | 0.0741 |
Quality of Air | 0.0860 | 0.0896 | 0.0832 | 0.0508 | 0.0858 | 0.0715 |
Quality of Grounds and Cleanliness | 0.0946 | 0.0967 | 0.0913 | 0.0674 | 0.0948 | 0.0818 |
General Vegetation/Green Space | 0.0850 | 0.0913 | 0.0798 | 0.0532 | 0.0871 | 0.0709 |
Medical Assistance | 0.1459 | 0.1548 | 0.1392 | 0.0881 | 0.1474 | 0.1204 |
Quality of Urban Services | 0.1415 | 0.1449 | 0.1397 | 0.1133 | 0.1388 | 0.1216 |
Access to Internet | 0.1688 | 0.1762 | 0.1626 | 0.1349 | 0.1712 | 0.1419 |
Tourist Services | 0.0804 | 0.0858 | 0.0768 | 0.0579 | 0.0757 | 0.0694 |
Education | 0.1393 | 0.1484 | 0.1326 | 0.1214 | 0.1216 | 0.1312 |
Programs for Foreigners | 0.1625 | 0.1681 | 0.1585 | 0.1236 | 0.1623 | 0.1397 |
Benefits for Retirees | 0.1809 | 0.1645 | 0.1885 | 0.1561 | 0.2001 | 0.1453 |
Sport facilities | 0.1312 | 0.1399 | 0.1239 | 0.1062 | 0.1334 | 0.1118 |
Item | Extreme Exigent | Extreme Unneedful | Intermediate |
---|---|---|---|
Climate | 5 | 3 | 4 |
Cost of Living | 5 | 1 | 5 |
Safety | 5 | 1 | 5 |
Language | 5 | 1 | 4 |
Local Culture | 5 | 1 | 4 |
General Image and Landscape | 5 | 1 | 4 |
Social Atmosphere | 5 | 1 | 4 |
Local Gastronomy | 5 | 1 | 4 |
Tourist Attractions | 5 | 1 | 5 |
Leisure and Entertainment | 5 | 1 | 3 |
Ease of integration | 5 | 1 | 4 |
Lifestyle | 5 | 1 | 5 |
Banks. Monetary Exchange | 5 | 1 | 5 |
Shops. Commercial Activity | 5 | 1 | 4 |
Accessibility of Roads | 5 | 1 | 2 |
Means of Transport | 5 | 1 | 2 |
Variety of Types of Houses | 5 | 1 | 4 |
House Rental Costs | 5 | 1 | 4 |
Quality of Water | 5 | 1 | 5 |
Quality of Air | 5 | 1 | 4 |
Quality of Grounds and Cleanliness | 5 | 1 | 3 |
General Vegetation/Green Space | 5 | 1 | 4 |
Medical Assistance | 5 | 1 | 5 |
Quality of Urban Services | 5 | 1 | 5 |
Access to Internet | 5 | 1 | 5 |
Tourist Services | 5 | 1 | 4 |
Education | 5 | 1 | 1 |
Programs for Foreigners | 5 | 1 | 5 |
Benefits for Retirees | 5 | 1 | 4 |
Sport facilities | 5 | 1 | 3 |
Variable | Categories | Exigent 1 | Unneeded 1 | Interm. 1 | E.p 2 | U.p 2 | I.p 2 |
---|---|---|---|---|---|---|---|
Information channel | Internet | 26.4% | 3.2% | 70.4% | 0.0190 | 0.0000 | 0.0000 |
Social Media | 24.0% | 2.4% | 73.6% | ||||
Specialized Media | 23.6% | 3.7% | 72.7% | ||||
TV ads | 27.5% | 3.3% | 69.2% | ||||
Other channels | 35.0% | 11.1% | 53.9% | ||||
Reasons to come | Tourism | 24.4% | 2.9% | 72.7% | 0.0306 | 0.0002 | 0.0000 |
Work | 28.0% | 5.1% | 66.9% | ||||
Refugees | 19.4% | 1.0% | 79.7% | ||||
Studies | 39.4% | 8.0% | 52.6% | ||||
Retirement | 30.2% | 4.8% | 64.9% | ||||
Other reasons to come | 31.2% | 15.8% | 53.1% | ||||
House location | Historical center | 23.3% | 5.2% | 71.5% | 0.0015 | 0.4797 | 0.0029 |
Urban area | 25.3% | 3.2% | 71.4% | ||||
New urban area | 34.8% | 4.3% | 60.9% | ||||
Rural area | 34.9% | 5.4% | 59.8% | ||||
Main transport mode | Walking | 26.9% | 3.4% | 69.7% | 0.0433 | 0.0004 | 0.0001 |
Bike | 32.4% | 11.2% | 56.4% | ||||
Public transport | 24.1% | 2.7% | 73.1% | ||||
Private car | 30.1% | 2.8% | 67.1% | ||||
Motorcycle | 32.4% | 12.4% | 55.2% | ||||
Taxi | 19.8% | 3.3% | 76.9% | ||||
Other transport mode | 14.7% | 0.4% | 84.9% | ||||
Income | ECS 300 or less | 28.4% | 8.5% | 63.2% | 0.0002 | 0.0055 | 0.0000 |
ECS 301–600 | 21.4% | 3.3% | 75.3% | ||||
ECS 601–900 | 22.9% | 2.7% | 74.4% | ||||
ECS 901–1200 | 36.0% | 2.4% | 61.6% | ||||
ECS 1201–1500 | 31.4% | 1.6% | 67.1% | ||||
More than ECS 1500 | 31.5% | 7.2% | 61.3% | ||||
Main income source | Salary | 24.0% | 3.2% | 72.8% | 0.0476 | 0.0304 | 0.0031 |
Self-employed salary | 29.2% | 3.0% | 67.7% | ||||
Other income source | 29.3% | 6.4% | 64.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, J.C.; Bustamante-Sánchez, N.S.; Indelicato, A. Analyzing the Main Determinants for Being an Immigrant in Cuenca (Ecuador) Based on a Fuzzy Clustering Approach. Axioms 2022, 11, 74. https://doi.org/10.3390/axioms11020074
Martin JC, Bustamante-Sánchez NS, Indelicato A. Analyzing the Main Determinants for Being an Immigrant in Cuenca (Ecuador) Based on a Fuzzy Clustering Approach. Axioms. 2022; 11(2):74. https://doi.org/10.3390/axioms11020074
Chicago/Turabian StyleMartin, Juan Carlos, Natalia Soledad Bustamante-Sánchez, and Alessandro Indelicato. 2022. "Analyzing the Main Determinants for Being an Immigrant in Cuenca (Ecuador) Based on a Fuzzy Clustering Approach" Axioms 11, no. 2: 74. https://doi.org/10.3390/axioms11020074
APA StyleMartin, J. C., Bustamante-Sánchez, N. S., & Indelicato, A. (2022). Analyzing the Main Determinants for Being an Immigrant in Cuenca (Ecuador) Based on a Fuzzy Clustering Approach. Axioms, 11(2), 74. https://doi.org/10.3390/axioms11020074