Next Article in Journal
Mathematical Modeling to Study Optimal Allocation of Vaccines against COVID-19 Using an Age-Structured Population
Next Article in Special Issue
Solving Integral Equations Using Weakly Compatible Mappings via D*-Metric Spaces
Previous Article in Journal
RainPredRNN: A New Approach for Precipitation Nowcasting with Weather Radar Echo Images Based on Deep Learning
Previous Article in Special Issue
Fixed Point Results for New Types of Fuzzy Contractions via Admissible Functions and FZ -Simulation Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Rectangular Gb-Metric Spaces and Some Fixed Point Theorems

Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, China
*
Author to whom correspondence should be addressed.
Axioms 2022, 11(3), 108; https://doi.org/10.3390/axioms11030108
Submission received: 18 January 2022 / Revised: 7 February 2022 / Accepted: 9 February 2022 / Published: 1 March 2022
(This article belongs to the Special Issue Fixed Point Theory and Its Related Topics III)

Abstract

:
In this paper, we first introduce the concept of rectangular G b -metric space which generalizes the notion of rectangular metric space and G b -metric space. Then, some fixed point results connected with certain contractions are obtained in the setting of rectangular G b -metric spaces. Additionally, we also introduce the concept of convex rectangular G b -metric space by means of the convex structure and study the fixed points of enriched type contractions in this space.

1. Introduction

In recent decades, fixed point theory has had a rapid development. On the one hand, the study of new spaces have been an interesting topic among the mathematical research community. In 1993, Czerwik [1] introduced the concept of b-metric space as a generalization of metric space, and generalized Banach contraction principle [2] to this space. Since then, Branciari [3] developed the notion of rectangular metric space via substituting the triangle inequality with the quadrilateral inequality. Recently, George et al. [4] introduced the notion of rectangular b-metric space as a generalization of rectangular metric space and they also proved some well-known fixed point results. Meanwhile, Mustafa et al. [5,6] introduced a new class of generalized metric spaces aim to recovered the flaws of Dhage’s theory, called G metric spaces. Later, Aghajani et al. [7,8] generalized the concept of G metric space to G b -metric space through b-metric and proved some fixed point theorems in this spaces. Many fixed point results in metric spaces see [9,10,11,12,13,14,15,16,17,18].
On the other hand, Takahashi [19] introduced a notion of convexity structure in a metric space which offers the minimal tools for constructing various fixed point iterative methods for approximating fixed points of nonlinear operators. Very recently, Chen et al. [20] introduced the notion of convex b-metric space, and extend Mann’s algorithms directly to b-metric spaces. Enriched contraction was introduced by Berinde et al. [21] as follows: Let ( E , · ) be a linear normed space. A mapping T is said to be an enriched contraction if
k ( u v ) + T u T v θ u v , f o r a l l u , v E ,
where k [ 0 , ) and θ [ 0 , k ) . For more results on enriched type contraction, the reader may see [22,23,24,25].
In this paper, we aim to extend the concept of G b -metric space by defining the notion of rectangular G b -metric space which is not necessarily Hausdorff. Then we obtain some well known fixed point theorems such as the Banach contraction principle, the Ćirić type fixed point theorem and the Reich type theorem. Furthermore, we also first introduce the concept of a convex rectangular G b -metric space by means of the convex structure and generalize enriched type contraction in this space.
Let us give some basic notations and fundamental results.

2. Preliminaries

Definition 1
([1]). Let E be a nonempty set, and for all u , v , z E , let a function d : E × E [ 0 , ) satisfies the following conditions:
(1) 
d ( u , v ) = 0 if and only if u = v ;
(2) 
d ( u , v ) = d ( v , u ) ;
(3) 
there exists a real number s 1 such that d ( u , v ) s [ d ( u , z ) + d ( z , v ) ] .
Then d is called a b-metric on E and the pair ( E , d ) is called a b-metric space ( b M S ) with coefficient s 1 .
Definition 2
([3]). Let E be a nonempty set, and for all u , v E , let a function d : E × E [ 0 , ) satisfies the following conditions:
(1) 
d ( u , v ) = 0 if and only if u = v ;
(2) 
d ( u , v ) = d ( v , u ) ;
(3) 
d ( u , v ) d ( u , z ) + d ( z , h ) + d ( h , v ) for all distinct points z , h E \ u , v .
Then d is called a rectangular metric on E and ( E , d ) is called a rectangular metric space ( R M S ) .
Definition 3
([4]). Let E be a nonempty set, and for all u , v E , let a function d : E × E [ 0 , ) satisfies the following conditions:
(1) 
d ( u , v ) = 0 if and only if u = v ;
(2) 
d ( u , v ) = d ( v , u ) ;
(3) 
there exists a real number s 1 such that d ( u , v ) s [ d ( u , z ) + d ( z , h ) + d ( h , v ) ] for all distinct points z , h E \ u , v .
Then d is called a rectangular b-metric on E and ( E , d ) is called a rectangular b-metric space ( R b M S ) with coefficient s 1 .
Example 1
([4]). Let E = Γ H , where Γ = 1 n : n N and H is the set of all positive integers. Let d b : E × E [ 0 , ) such that d b ( u , v ) = d b ( v , u ) for all u , v E and
d b ( u , v ) = 0 , i f u = v ; 2 a , i f u , v Γ ; a 2 n , i f u Γ a n d v { 2 , 3 } ; a , o t h e r w i s e ,
where a > 0 is a constant. Then ( E , d b ) is a R b M S with coefficient s = 2 > 1 .
Definition 4
([5]). Let E be a nonempty and for all u , v , o E , let a function G : E × E × E [ 0 , ) satisfies the following conditions:
(1) 
G ( u , v , o ) = 0 if u = v = o ;
(2) 
0 < G ( u , u , v ) with u v ;
(3) 
G ( u , u , v ) G ( u , v , z ) for all z E with v z ;
(4) 
G ( u , v , o ) = G ( u , o , v ) = G ( v , o , u ) = , (symmetry in all three variables);
(5) 
G ( u , v , o ) G ( u , z , z ) + G ( z , v , o ) for all z E .
Then G is called a G metric on E and the pair ( E , G ) is called a G metric space ( G M S ) .
Example 2
([6]). Let E = R \ 0 and define G : E × E × E [ 0 , ) by
G ( u , v , o ) = 1 + u v + v o + u o i f   u , v , o a l l h a v e t h e s a m e s i g n ; u v + v o + u o o t h e r w i s e ,
for all u , v , o E . Then ( E , G ) is a G M S .
Definition 5
([7]). Let E be a nonempty and for all u , v , o E , let a function G : E × E × E [ 0 , ) satisfies the following conditions:
(1) 
G ( u , v , o ) = 0 if u = v = o ;
(2) 
0 < G ( u , u , v ) with u v ;
(3) 
G ( u , u , v ) G ( u , v , z ) for all z E with v z ;
(4) 
G ( u , v , o ) = G ( u , o , v ) = G ( v , o , u ) = , (symmetry in all three variables);
(5) 
there exists a real number s 1 such that G ( u , v , o ) s [ G ( u , z , z ) + G ( z , v , o ) ] .
Then G is called a G b -metric on E and the pair ( E , G ) is called a G b -metric space ( G b M S ) .
Example 3
([7]). Let ( E , G ) be a G M S and G b -metric defined by G b ( u , v , o ) = ( G ( u , v , o ) ) p . Then ( E , G b ) is a G b M S with s = 2 p 1 .
Each G M S is a G b M S with s = 1 , and a G b M S is not necessarily a G M S (see [7]).
Definition 6
([5]). A G metric is said to be symmetric if G ( u , v , v ) = G ( v , u , u ) for all u , v E .

3. Rectangular G b -Metric Spaces

Now, we define the notion of rectangular G b -metric spaces.
Definition 7.
Let E be a nonempty and for all u , v , o E , let a function G : E × E × E [ 0 , ) satisfies the following conditions:
(RGb1) 
G ( u , v , o ) = 0 if u = v = o ;
(RGb2) 
0 < G ( u , u , v ) with u v ;
(RGb3) 
G ( u , u , v ) G ( u , v , z ) for all z E with v z ;
(RGb4) 
G ( u , v , o ) = G ( u , o , v ) = G ( v , o , u ) = , (symmetry in all three variables);
(RGb5) 
there exists a real number s 1 such that G ( u , v , o ) s [ G ( u , z , z ) + G ( z , h , h ) + G ( h , v , o ) ] for all distinct points z , h E \ u , v .
Then G is called a rectangular G b -metric on E and the pair ( E , G ) is called a rectangular G b -metric space ( R G b M S ) .
Remark 1. 
(1) 
It is worth mentioning that R G b M S generalizes rectangular G metric space (RGMS), because a R G b M S reduces a R G M S for s = 1 .
(2) 
Every G b M S with coefficient s is a R G b M S with coefficient s 2 . Indeed, let ( E , G b ) is a G b M S , for all distinct z , h E \ u , v , o , we have
G b ( u , v , o ) s [ G b ( u , z , z ) + G b ( z , v , o ) ] s [ G b ( u , z , z ) + s G b ( z , h , h ) + s G b ( h , v , o ) ] s 2 [ G b ( u , z , z ) + G b ( z , h , h ) + G b ( h , v , o ) ] ,
which shows that ( E , G b ) is a R G b M S with coefficient s 2 .
Let us present some specific examples of R G b M S .
Example 4.
Let ( E , G * ) be a G metric space. Define G : E × E × E [ 0 , ) by G ( u , v , o ) = [ G * ( u , v , o ) ] r for all u , v , o E and r 1 . Then, ( E , G ) is a R G b M S with s = 3 r 1 . Obviously, G satisfies conditions ( R G b 1 ) ( R G b 4 ) of the Definition 7. Next, we shall prove that ( R G b 5 ) is hold. If 1 r < , from the convexity of function f ( u ) = u r for u 0 , we have
( a + b + c ) r 3 r 1 ( a r + b r + c r ) ,
for nonnegative real numbers a, b, c. Thus for distinct points z , h E \ u , v , o , we obtain
G ( u , v , o ) = [ G * ( u , v , o ) ] r [ G * ( u , z , z ) + G * ( z , h , h ) + G * ( h , v , o ) ] r 3 p 1 ( [ G * ( u , z , z ) r + G * ( z , h , h ) r + G * ( h , v , o ) r ] = 3 r 1 [ G ( u , z , z ) + G ( z , h , h ) + G ( h , v , o ) ] .
Therefore, ( E , G ) is a R G b M S with s = 3 r 1 .
Example 5.
Let E = R and we define G : E × E × E [ 0 , ) by the formula
G ( u , v , o ) = ( u v + v o + u o ) r , ( r 1 )
Then ( E , G ) is a R G b M S with s = 3 r 1 . Obviously, G satisfies conditions ( R G b 1 ) ( R G b 4 ) of the Definition 7. Next, we shall verify that G satisfies (RGb5). If 1 r < , from the convexity of function f ( u ) = u r for u 0 , we have
( a + b + c ) r 3 r 1 ( a r + b r + c r ) ,
for nonnegative real numbers a, b, c. Thus for distinct points z , h E \ u , v , o , we obtain
G ( u , v , o ) = ( u v + v o + u o ) r ( u z + z v + v o + u z + z o ) r ( u z + z h + h v + v o + u z + z h + h o ) r = ( u z + u z ) + ( z h + z h ) + ( h v + v o + h o ) r 3 r 1 ( u z + u z ) r + ( z h + z h ) r + ( h v + v o + h o ) r = 3 r 1 G ( u , z , z ) + G ( z , h , h ) + G ( h , v , o ) .
Hence, ( E , G ) is a R G b M S with s = 3 r 1 .
The following example shows that a R G b M S does not a R G M S and a G b M S .
Example 6.
Let E = Γ { 1 , 2 } H , where Γ = 1 n : n = 2 , 3 , 4 , and H = 3 , 4 , 5 , . Define G : E × E × E [ 0 , ) such that G ( u , v , o ) = G ( u , o , v ) = G ( v , o , u ) = for all u , v , o E and
G ( u , v , o ) = 0 i f u = v = o ; 4 a i f u , v , o Γ a n d u v o ; a 2 n i f u Γ a n d v = o { 1 , 2 } ; a o t h e r w i s e ,
where a > 0 is a constant. Then ( E , G ) is a R G b M S with coefficient s = 2 > 1 . However, ( E , G ) is not a R G M S , as G ( 1 2 , 1 3 , 1 4 ) = 4 a > 9 a 4 = G ( 1 2 , 1 , 1 ) + G ( 1 , 2 , 2 ) + G ( 2 , 1 3 , 1 4 ) and not a G b M S , as there does not exists s 1 such that G ( u , v , o ) s [ G ( u , z , z ) + G ( z , v , o ) ] for all u , v , o , z E .
Proposition 1.
Let ( E , G ) be a R G b M S and ε > 0 , then for each u , v , o E , we have:
(1) 
if G ( u , v , o ) = 0 , then u = v = o ;
(2) 
if G ( u n , u m , u l ) < ε for any n , m , l N , then G ( u n , u m , u m ) < ε and G ( u n , u n , u m ) < ε .
Proof. 
(1)
By (RGb2) and (RGb3), we get a contradiction. Indeed,
0 = G ( u , v , o ) G ( u , u , v ) > 0 ,
when u v and v o . In addition,
0 = G ( u , v , o ) = G ( v , v , o ) > 0
when u = v and v o .
(2)
It can be obtain from (RGb3) of the Definition 7.
Proposition 2.
Let ( E , G ) be a R G b M S . Then, the function given as d G ( u , v ) = G ( u , v , v ) + G ( v , u , u ) , defines a rectangular b-metric on E. We call it a rectangular b-metric d G induced by the rectangular G b -metric G.
Proof. 
Let us prove that conditions of Definition 3 are fulfilled for d G ( u , v ) .
(1)
If d G ( u , v ) = 0 , then G ( u , v , v ) = G ( v , u , u ) = 0 and by Proposition 1, it follows that u = v . If u = v , then G ( u , v , v ) = G ( v , u , u ) = 0 and d G ( u , v ) = 0 ;
(2)
Property ( R G b 4 ) of the Definition 7 implies that
d G ( u , v ) = G ( u , v , v ) + G ( v , u , u ) = G ( v , u , u ) + G ( u , v , v ) = d G ( v , u ) ;
(3)
By ( R G b 5 ) of the Definition 7, for distinct points z , h E \ u , v , it follows that
d G ( u , v ) = G ( u , v , v ) + G ( u , u , v ) s [ G ( u , z , z ) + G ( z , h , h ) + G ( h , v , v ) ] + s [ G ( v , h , h ) + G ( h , z , z ) + G ( z , u , u ) ] = s [ G ( u , z , z ) + G ( z , u , u ) + G ( z , h , h ) + G ( h , z , z ) + G ( h , v , v ) + G ( v , h , h ) ] = s [ d G ( u , z ) + d G ( z , h ) + d G ( h , v ) ] .
We now define G convergent and G Cauchy sequence in R G b M S and completeness of R G b M S .
Definition 8.
Let ( E , G ) be a R G b M S . The sequence u n in E and u E , then
(1) 
the sequence u n is said to be G convergent in E to u, if for any ε > 0 , there exists a positive integer n 0 N such that G ( u n , u m , u ) < ε for all m , n n 0 , and this fact is represented by lim n , m G ( u n , u m , u ) = 0 ;
(2) 
the sequence u n is said to be G Cauchy sequence in E, if for any ε > 0 , there exists a positive integer n 0 N such that G ( u n , u m , u l ) < ε for all n , m , l n 0 , and this fact is represented by lim n , m , l G ( u n , u m , u l ) = 0 ;
(3) 
( E , G ) is said to be a complete R G b M S , if every G Cauchy sequence in E converges to some u E .
Definition 9.
A rectangular G b -metric G is said to be symmetric if G ( u , v , v ) = G ( u , u , v ) for all u , v E .
Remark 2.
It follows Example 4 that rectangular G b -metric G is symmetric if G metric G * is symmetric.
Definition 10.
Let ( E , G ) be a R G b M S , for u 0 E , r > 0 , then G ball with center u 0 and radius r is
B G ( u 0 , r ) = { v E : G ( u 0 , v , v ) < r } .
Remark 3.
Open balls in R G b M S are not necessarily open. In Example 6, B G ( 1 2 , a 2 ) = 1 2 , 1 , 2 and there does not exists any open ball with center 1 and contained in B G ( 1 2 , a 2 ) . So B G ( 1 2 , a 2 ) is not an open set.
Proposition 3.
Let ( E , G ) be a R G b M S , then for any u 0 E , r > 0 , we have
(1) 
if G ( u 0 , v , o ) < r , then v , o B G ( u 0 , r ) .
(2) 
if G is symmetric, then
B G ( u 0 , r 2 ) B d G ( u 0 , r ) B G ( u 0 , r ) .
Thus, if rectangular G b -metric is symmetric, then the R G b M S is topologically equivalent to a R b M S . This allows us to readily transport many concepts and results from R b M S into R G b M S setting.
It should be noted that R G b M S is not necessarily Hausdorff.
Example 7.
Let ( E , d b ) is a R b M S with s = 2 as shows in Example 1. For all u , v , o E , we define G : E × E × E [ 0 , ) by the formula G ( u , v , o ) = max d b ( u , v ) , d b ( u , o ) , d b ( o , u ) . Obviously, G satisfies conditions ( R G b 1 ) ( R G b 4 ) of the Definition 7, so we only need to verify that ( R G b 5 ) is hold. Indeed,
(1) 
if u v o , then G ( u , v , o ) = max d b ( u , v ) , d b ( u , o ) , d b ( o , u ) ;
(2) 
if u = v o , then G ( u , v , o ) = G ( u , u , o ) = d b ( u , o ) .
For distinct points z , h E \ u , v , we have
G ( u , v , o ) max s [ d b ( u , z ) + d b ( z , h ) + d b ( h , v ) ] , d b ( v , o ) , s [ d b ( o , h ) + d b ( h , z ) + d b ( z , u ) ] s [ d b ( u , z ) + d b ( z , h ) ] + s max d b ( h , v ) , d b ( v , o ) , d b ( o , h ) = s [ G ( u , z , z ) + G ( z , h , h ) + G ( h , v , o ) ] .
Hence, ( E , G ) is a R G b M S with s = 2 . However, there does not exists any r 1 , r 2 > 0 such that B G ( 2 , r 1 ) B G ( 3 , r 2 ) = , thus ( E , G ) is not Hausdorff.

4. Fixed Point Results

In this section, we show some results of fixed points for several contraction mappings in a R G b M S under suitable hypotheses.
Lemma 1.
[26] Let ( E , G ) be a R b M S with coefficient s 1 , and u n be a sequence in E such that
d ( u n + 1 , u n ) λ d ( u n , u n 1 )
for all n N and λ [ 0 , 1 ) . Then sequence u n is Cauchy sequence in E.
Lemma 2.
Let ( E , G ) be a R G b M S with coefficient s 1 . Suppose that there exists a symmetric rectangular G b -metric G on E and u n is a sequence in E induced by u n + 1 = T u n such that
G ( u n , u n + 1 , u n + 1 ) + G ( u n , u n , u n + 1 ) λ ( G ( u n 1 , u n , u n ) + G ( u n 1 , u n 1 , u n ) ) ,
for all n N and λ [ 0 , 1 ) . Then u n is a G Cauchy sequence in E.
Proof. 
The condition in Equation (1), together with Proposition 2, implies that
d G ( u n , u n + 1 ) λ d G ( u n 1 , u n )
for all n N . Utilizing Lemma 1, it shows that u n is a Cauchy sequence in R b M S . Since ( E , d G ) and ( E , G ) are topologically equivalent while rectangular G b -metric is symmetric, we have that u n is also a G Cauchy sequence in R G b M S . □
Lemma 3.
Let ( E , G ) be a R G b M S with coefficient s 1 and u n be a sequence in E induced by u n + 1 = T u n such that
G ( u n , u n + 1 , u n + 2 ) λ G ( u n 1 , u n , u n + 1 )
where λ [ 0 , 1 ) and n N . Then u n is a G Cauchy sequence in E.
Proof. 
Without loss of generality, we assume that u n u m for all n m . By the inequality (2), we obtain
G ( u n , u n + 1 , u n + 2 ) λ n G ( u 0 , u 1 , u 2 )
and
G ( u n , u n + 1 , u n + 1 ) λ n G ( u 0 , u 1 , u 2 ) G ( u n , u n , u n + 1 ) λ n G ( u 0 , u 1 , u 2 ) .
Setting G ( u n , u n + 1 , u n + 1 ) = G n , G ( u n + 1 , u n , u n ) = G n and G ( u n , u n + 1 , u n + 2 ) = G n * for all n N . Obviously, G n G n * and G n G n * for all n N . In order to prove our conclusion, we divide the proof into three cases.
Case 1 Let λ [ 0 , 1 s ) ( s > 1 ) . For the sequence u n , we consider G ( u n , u n + p , u n + p + q ) in four subcases.
Subcase 1 If p is even say 2 m ( m 1 ) , and q is even say 2 l ( l 1 ) . From Definition 7, it follows that
G ( u n , u n + 2 m , u n + 2 m + 2 l ) = G ( u n + 2 m + 2 l , u n + 2 m , u n ) s [ G ( u n + 2 m + 2 l , u n + 2 m + 2 l 1 , u n + 2 m + 2 l 1 ) + G ( u n + 2 m + 2 l 1 , u n + 2 m 1 , u n + 2 m 1 ) + G ( u n + 2 m 1 , u n + 2 m , u n ) ] s [ G n + 2 m + 2 l 1 + G ( u n + 2 m + 2 l 1 , u n + 2 m + 2 l 2 , u n + 2 m 1 ) + G ( u n + 2 m 1 , u n + 2 m , u n ) ] = s G ( u n + 2 m 1 , u n + 2 m + 2 l 2 , u n + 2 m + 2 l 1 ) + s G n + 2 m + 2 l 1 + s G ( u n , u n + 2 m 1 , u n + 2 m ) s 2 [ G n + 2 m 1 + G n + 2 m + G ( u n + 2 m + 1 , u n + 2 m + 2 l 2 , u n + 2 m + 2 l 1 ) ] + s G n + 2 m + 2 l 1 + s G ( u n , u n + 2 m 1 , u n + 2 m ) s 2 [ G n + 2 m 1 + G n + 2 m ] + s 3 [ G n + 2 m + 1 + G n + 2 m + 2 ] + · · · + s l [ G n + 2 m + 2 l 5 + G n + 2 m + 2 l 4 + G n + 2 m + 2 l 3 * ] + s G n + 2 m + 2 l 1 + s G ( u n , u n + 2 m 1 , u n + 2 m ) s 2 [ λ n + 2 m 1 G 0 * + λ n + 2 m G 0 * ] + s 3 [ λ n + 2 m + 1 G 0 * + λ n + 2 m + 2 G 0 * ] + · · · + s l [ λ n + 2 m + 2 l 5 G 0 * + λ n + 2 m + 2 l 4 G 0 * + λ n + 2 m + 2 l 3 G 0 * ] + s λ n + 2 m + 2 l 1 G 0 * + s G ( u n , u n + 2 m 1 , u n + 2 m ) s 2 λ n + 2 m 1 [ 1 + s λ 2 + s 2 λ 4 + · · · ] G 0 * + s 2 λ n + 2 m [ 1 + s λ 2 + s 2 λ 4 + · · · ] G 0 * + s λ n + 2 m + 2 l 1 G 0 * + s G ( u n , u n + 2 m 1 , u n + 2 m ) = 1 + λ 1 s λ 2 s 2 λ n + 2 m 1 G 0 * + s λ n + 2 m + 2 l 1 G 0 * + s G ( u n , u n + 2 m 1 , u n + 2 m )
and
G ( u n , u n + 2 m 1 , u n + 2 m ) s [ G ( u n , u n + 1 , u n + 1 ) + G ( u n + 1 , u n + 2 , u n + 2 ) + G ( u n + 2 , u n + 2 m 1 , u n + 2 m ) ] s [ G n + G n + 1 ] + s 2 [ G n + 2 + G n + 3 ] + . . . + s m 1 [ G n + 2 m 4 + G n + 2 m 3 + G n + 2 m 2 * ] s [ λ n G 0 * + λ n + 1 G 0 * ] + s 2 [ λ n + 2 G 0 * + λ n + 3 G 0 * ] + . . . + s m 1 [ λ n + 2 m 3 G 0 * + λ n + 2 m 2 G 0 * + λ n + 2 m 1 G n + 2 m 2 * ] s λ n ( 1 + s λ 2 + s 2 λ 4 + . . . ) G 0 * + s λ n + 1 ( 1 + s λ 2 + s 2 λ 4 + . . . ) G 0 * 1 + λ 1 s λ 2 s λ n G 0 * .
Therefore, we have
G ( u n , u n + 2 m , u n + 2 m + 2 l ) 1 + λ 1 s λ 2 s 2 λ n + 2 m 1 G 0 * + s λ n + 2 m + 2 l 1 G 0 * + 1 + λ 1 s λ 2 s 2 λ n G 0 * .
Since λ < 1 s , we can deduce that
G ( u n , u n + 2 m , u n + 2 m + 2 l ) 3 + λ 1 s λ 2 s 2 λ n G 0 * ;
Subcase 2 If p is even say 2 m ( m 1 ) , and q is odd say 2 l + 1 ( l 0 ) . From Definition 7, it follows that
G ( u n , u n + 2 m , u n + 2 m + 2 l + 1 ) = G ( u n + 2 m + 2 l + 1 , u n + 2 m , u n ) s [ G ( u n + 2 m + 2 l + 1 , u n + 2 m + 2 l + 2 , x n + 2 m + 2 l + 2 ) + G ( u n + 2 m + 2 l + 2 , u n + 2 m 1 , u n + 2 m 1 ) + G ( u n + 2 m 1 , u n + 2 m , u n ) ] s [ G n + 2 m + 2 l + 1 + G ( u n + 2 m + 2 l + 2 , u n + 2 m + 2 l + 3 , u n + 2 m 1 ) + G ( u n + 2 m 1 , u n + 2 m , u n ) ] = s G ( u n + 2 m 1 , u n + 2 m + 2 l + 2 , u n + 2 m + 2 l + 3 ) + s G n + 2 m + 2 l + 1 + s G ( u n , u n + 2 m 1 , u n + 2 m ) s 2 [ G n + 2 m 1 + G n + 2 m + G ( u n + 2 m + 1 , u n + 2 m + 2 l + 2 , u n + 2 m + 2 l + 3 ) ] + s G n + 2 m + 2 l + 1 + s G ( u n , u n + 2 m 1 , u n + 2 m ) s 2 [ G n + 2 m 1 + G n + 2 m ] + s 3 [ G n + 2 m + 1 + G n + 2 m + 2 ] + · · · + s l + 2 [ G n + 2 m + 2 l 1 + G n + 2 m + 2 l + G n + 2 m + 2 l + 1 * ] + s G n + 2 m + 2 l + 1 + s G ( u n , u n + 2 m 1 , u n + 2 m ) s 2 [ λ n + 2 m 1 G 0 * + λ n + 2 m G 0 * ] + s 3 [ λ n + 2 m + 1 G 0 * + λ n + 2 m + 2 G 0 * ] + · · · + s l + 2 [ λ n + 2 m + 2 l 1 G 0 * + λ n + 2 m + 2 l G 0 * + λ n + 2 m + 2 l 3 G 0 * ] + s λ n + 2 m + 2 l + 1 G 0 * + s G ( u n , u n + 2 m 1 , u n + 2 m ) s 2 λ n + 2 m 1 [ 1 + s λ 2 + s 2 λ 4 + · · · ] G 0 * + s 2 λ n + 2 m [ 1 + s λ 2 + s 2 λ 4 + · · · ] G 0 * + s λ n + 2 m + 2 l + 1 G 0 * + s G ( u n , u n + 2 m 1 , u n + 2 m ) = 1 + λ 1 s λ 2 s 2 λ n + 2 m 1 G 0 * + s λ n + 2 m + 2 l + 1 G 0 * + s G ( u n , u n + 2 m 1 , u n + 2 m ) ,
combining with G ( u n , u n + 2 m 1 , u n + 2 m ) 1 + λ 1 s λ 2 s λ n G 0 * , we obtain that
G ( u n , u n + 2 m , u n + 2 m + 2 l + 1 ) 1 + λ 1 s λ 2 s 2 λ n + 2 m 1 G 0 * + s λ n + 2 m + 2 l G 0 * + 1 + λ 1 s λ 2 s 2 λ n G 0 * .
Since λ < 1 s , we can deduce that
G ( u n , u n + 2 m , u n + 2 m + 2 l ) 3 + λ 1 s λ 2 s 2 λ n G 0 * ;
Subcase 3 If p is odd say 2 m + 1 ( m 0 ) , and q is even say 2 l ( l 1 ) . From Definition 7, it follows that
G ( u n , u n + 2 m + 1 , u n + 2 m + 2 l + 1 ) = G ( u n + 2 m + 2 l + 1 , u n + 2 m + 1 , u n ) s [ G ( u n + 2 m + 2 l + 1 , u n + 2 m + 2 l + 2 , u n + 2 m + 2 l + 2 ) + G ( u n + 2 m + 2 l + 2 , u n + 2 m + 2 , u n + 2 m + 2 ) + G ( u n + 2 m + 2 , u n + 2 m + 1 , u n ) ] s G ( u n + 2 m + 2 , u n + 2 m + 2 l + 1 , u n + 2 m + 2 l + 2 ) + s G n + 2 m + 2 l + 1 + s G ( u n , u n + 2 m + 1 , u n + 2 m + 2 ) s 2 [ G n + 2 m + 2 + G n + 2 m + 3 ] + s 3 [ G n + 2 m + 4 + G n + 2 m + 5 ] + . . . + s l [ G n + 2 m + 2 l 2 + G n + 2 m + 2 l 1 + G n + 2 m + 2 l * ] + s G n + 2 m + 2 l + 1 + s G ( u n , u n + 2 m + 1 , x n + 2 m + 2 ) s 2 [ λ n + 2 m + 2 G 0 * + λ n + 2 m + 3 G 0 * ] + s 3 [ λ n + 2 m + 4 G 0 * + λ n + 2 m + 5 G 0 * ] + . . . + s l [ λ n + 2 m + 2 l 2 G 0 * + λ n + 2 m + 2 l 1 G 0 * + λ n + 2 m + 2 l G 0 * ] + s G n + 2 m + 2 l + 1 + s G ( u n , u n + 2 m + 1 , u n + 2 m + 2 ) s 2 λ n + 2 m + 2 [ 1 + s λ 2 + s 2 λ 4 + . . . ] G 0 * + s 2 λ n + 2 m + 3 [ 1 + s λ 2 + s 2 λ 4 + . . . ] G 0 * + s G n + 2 m + 2 l + 1 + s G ( u n , u n + 2 m + 1 , u n + 2 m + 2 ) = 1 + λ 1 s λ 2 s 2 λ n + 2 m + 2 G 0 * + s G n + 2 m + 2 l + 1 + s G ( u n , u n + 2 m + 1 , u n + 2 m + 2 )
and
G ( u n , u n + 2 m + 1 , u n + 2 m + 2 ) s [ G ( u n , u n + 1 , u n + 1 ) + G ( u n + 1 , u n + 2 , u n + 2 ) + G ( u n + 2 , u n + 2 m + 1 , u n + 2 m + 2 ) ] s [ G n + G n + 1 ] + s 2 [ G n + 2 + G n + 3 ] + . . . + s m [ G n + 2 m 2 + G n + 2 m 1 + G n + 2 m * ] s [ λ n G 0 * + λ n + 1 G 0 * ] + s 2 [ λ n + 2 G 0 * + λ n + 3 G 0 * ] + . . . + s m [ λ n + 2 m 2 G 0 * + λ n + 2 m 1 G 0 * + λ n + 2 m G 0 * ] s λ n [ 1 + s λ 2 + s 2 λ 4 + . . . ] G 0 * + s λ n + 1 [ 1 + s λ 2 + s 2 λ 4 + . . . ] G 0 * 1 + λ 1 s λ 2 s λ n G 0 * .
Therefore, we have
G ( u n , u n + 2 m + 1 , u n + 2 m + 2 l + 1 ) 1 + λ 1 s λ 2 s 2 λ n + 2 m G 0 * + s λ n + 2 m + 2 l G 0 * + 1 + λ 1 s λ 2 s 2 λ n G 0 * .
Since λ < 1 s , we can deduce that
G ( u n , u n + 2 m , u n + 2 m + 2 l ) 3 + λ 1 s λ 2 s 2 λ n G 0 * ;
Subcase 4 If p is odd say 2 m + 1 ( m 0 ) , and q is odd say 2 l + 1 ( l 0 ) . From Definition 7, it follows that
G ( u n , u n + 2 m + 1 , u n + 2 m + 2 l + 2 ) = G ( u n + 2 m + 2 l + 2 , u n + 2 m + 1 , u n ) s [ G ( u n + 2 m + 2 l + 2 , u n + 2 m + 2 l + 1 , u n + 2 m + 2 l + 1 ) + G ( u n + 2 m + 2 l + 1 , u n + 2 m + 2 , u n + 2 m + 2 ) + G ( u n + 2 m + 2 , u n + 2 m + 1 , u n ) ] s [ G ( u n + 2 m + 2 , u n + 2 m + 2 l + 1 , u n + 2 m + 2 l + 2 ) + s G n + 2 m + 2 l + 1 + s G ( u n , u n + 2 m + 1 , u n + 2 m + 2 ) ] s 2 [ G n + 2 m + 2 + G n + 2 m + 3 ] + s 3 [ G n + 2 m + 4 + G n + 2 m + 5 ] + . . . + s l [ G n + 2 m + 2 l 2 + G n + 2 m + 2 l 1 + G n + 2 m + 2 l ] + s G n + 2 m + 2 l + 1 + s G ( u n , u n + 2 m + 1 , u n + 2 m + 2 ) s 2 [ λ n + 2 m + 2 G 0 * + λ n + 2 m + 3 G 0 * ] + s 3 [ λ n + 2 m + 4 G 0 * + λ n + 2 m + 5 G 0 * ] + . . . + s l [ λ n + 2 m + 2 l 2 G 0 * + λ n + 2 m + 2 l 1 G 0 * + λ n + 2 m + 2 l G 0 * ] + s λ n + 2 m + 2 l + 1 G 0 * + s G ( u n , u n + 2 m + 1 , u n + 2 m + 2 ) s 2 λ n + 2 m + 2 [ 1 + s λ 2 + s 2 λ 4 + . . . ] G 0 * + s 2 λ n + 2 m + 3 [ 1 + s λ 2 + s 2 λ 4 + . . . ] G 0 * + s λ n + 2 m + 2 l + 1 G 0 * + s G ( u n , u n + 2 m + 1 , u n + 2 m + 2 ) 1 + λ 1 s λ 2 s 2 λ n + 2 m + 2 G 0 * + s λ n + 2 m + 2 l + 1 G 0 * + s G ( u n , u n + 2 m + 1 , u n + 2 m + 2 ) ,
combining with G ( u n , u n + 2 m + 1 , u n + 2 m + 2 ) 1 + λ 1 s λ 2 s λ n G 0 * , we obtain that
G ( u n , u n + 2 m , u n + 2 m + 2 l + 1 ) 1 + λ 1 s λ 2 s 2 λ n + 2 m G 0 * + s λ n + 2 m + 2 l + 1 G 0 * + 1 + λ 1 s λ 2 s 2 λ n G 0 * .
Since λ < 1 s , we can deduce that
G ( u n , u n + 2 m , u n + 2 m + 2 l ) 3 + λ 1 s λ 2 s 2 λ n G 0 * .
In view of the all above subcases, we obtain that
G ( u n , u n + 2 m , u n + 2 m + 2 l ) 3 + λ 1 s λ 2 s 2 λ n G 0 * ,
for all n N . We reach Case1, thus { u n } is a G Cauchy sequence in E.
Case 2 Let λ [ 1 s , 1 ) ( s > 1 ) . Since lim n λ n = 0 , there exists N 0 N such that λ N 0 < 1 s . Thus, by Case 1, we claim that
( T N 0 ) n u 0 n = 0 : = u N 0 , u N 0 + 1 , , u N 0 + n ,
is G Cauchy sequence. Since
u n n = 0 = u 1 , u 2 , , u N 0 u N 0 + 1 , u N 0 + 2 , , u N 0 + n , ,
we conclude that the sequence u n is a G Cauchy sequence.
Case 3 Let s = 1 . Similar to the process of Case 1, the claim holds. □
Next, we will give some fixed point theorems. Firstly, we now state and prove the Banach contraction principle in R G b M S .
Theorem 1. 
Let ( E , G ) be a complete R G b M S with coefficient s 1 and the mapping T : E E satisfies the contractive condition:
G ( T u , T v , T o ) λ G ( u , v , o ) , f o r a l l u , v , o E ,
where λ [ 0 , 1 ) is a constant. Then T has a unique fixed point in E.
Proof. 
Let u 0 E and define a sequence { u n } in E by u n = T u n 1 for all n N . Using the inequality (3), we have
G ( u n , u n + 1 , u n + 2 ) = G ( T u n 1 , T u n , T u n + 1 ) λ G ( u n 1 , u n , u n + 1 ) .
If u n = u n + 1 then u n is fixed point of T and the proof is completed. So, suppose that u n u n + 1 for all n N . Also, we can assume that u n u n + p for all p 2 . Indeed, if u n = u n + p , then using the inequality (3), we get
G ( u n , u n + 1 , u n + 1 ) = G ( u n , T u n , T u n ) = G ( T u n + p 1 , T u n + p , T u n + p ) λ p 1 G ( u n , u n + 1 , u n + 1 ) ,
a contradiction. Therefore, in what follows, we assume that u n u m for all n m . Thus, similarly to the proof of Lemma 3, we conclude that u n is a G Cauchy sequence in E. Since ( E , G ) is a complete R G b M S , hence, for any ε > 0 , there exists n 0 N and u * E such that G ( u n , u m , u * ) < ε 3 s for all n , m n 0 . Moreover, it follows from Proposition 1 that G ( u * , u n , u n ) < ε 3 s , G ( u n , u n 1 , u n 1 ) < ε 3 s and G ( u n , u * , u * ) < ε 3 s , for all n n 0 . Then, we have
G ( u * , T u * , T u * ) s [ G ( u * , u n , u n ) + G ( u n , u n + 1 , u n + 1 ) + G ( u n + 1 , T u * , T u * ) ] s [ G ( u * , u n , u n ) + G ( u n , u n + 1 , u n + 1 ) + λ G ( u n , u * , u * ) ] < s [ ( ε 3 s ) + ( ε 3 s ) + λ ( ε 3 s ) ] < ε
which implies G ( u * , T u * , T u * ) = 0 . Therefore, T u * = u * and u * is a fixed point of T. Now we show that the fixed point u * is unique. If there is another fixed point v * u * , by the given condition (3), we have
G ( u * , v * , v * ) = G ( T u * , T v * , T v * ) λ G ( u * , v * , v * ) ,
which is a contradiction. Thus, u * is a unique fixed point of T. □
The following theorem is a Ćirić type fixed point result in a R G b M S .
Theorem 2. 
Let ( E , G ) be a complete R G b M S with coefficient s 1 and the mapping T : E E satisfies the contractive condition:
G ( T u , T v , T o ) λ M u , v , o
where
M u , v , o = max G ( u , v , o ) , G ( u , T u , T u ) , G ( v , T v , T v ) , G ( o , T o , T o ) , G ( u , T v , T v ) , G ( u , T o , T o ) , G ( v , T u , T u ) , G ( v , T o , T o ) , G ( o , T u , T u ) , G ( o , T v , T v ) }
for any u , v , o E , where 0 λ < 1 3 s 2 . Then T has a unique fixed point in E.
Proof. 
Let u 0 E and define a sequence { u n } in E by u n = T u n 1 for all n N . If u n = u n + 1 , then u n is a fixed point of T and the proof is completed. So, suppose that u n u n + 1 for all n N . It follows from the inequality (4) that
G ( u n , u n + 1 , u n + 2 ) = G ( T u n 1 , T u n , T u n + 1 ) λ M u n 1 , u n , u n + 1 .
Noting that
M u n 1 , u n , u n + 1 = max { G ( u n 1 , u n , u n + 1 ) , G ( u n 1 , T u n 1 , T u n 1 ) , G ( u n , T u n , T u n ) , G ( u n + 1 , T u n + 1 , T u n + 1 ) , G ( u n 1 , T u n , T u n ) , G ( u n 1 , T u n + 1 , T u n + 1 ) , G ( u n , T u n + 1 , T u n + 1 ) , G ( u n , T u n 1 , T u n 1 ) , G ( u n + 1 , T u n 1 , T u n 1 ) , G ( u n + 1 , T u n , T u n ) } = max { G ( u n 1 , u n , u n + 1 ) , G ( u n 1 , u n , u n ) , G ( u n , u n + 1 , u n + 1 ) , G ( u n + 1 , u n + 2 , u n + 2 ) , G ( u n 1 , u n + 1 , u n + 1 ) , G ( u n 1 , u n + 2 , u n + 2 ) , G ( u n , u n + 2 , u n + 2 ) , G ( u n + 1 , u n , u n ) } .
Using (RGb3) and (RGb5) in the above inequality, we obtain
M u n 1 , u n , u n + 1 = max { G ( u n 1 , u n , u n + 1 ) , G ( u n + 1 , u n + 2 , u n + 2 ) , G ( u n 1 , u n + 2 , u n + 2 ) , G ( u n , u n + 2 , u n + 2 ) } max { G ( u n 1 , u n , u n + 1 ) , G ( u n 1 , u n , u n ) , G ( u n + 1 , u n + 2 , u n + 2 ) , s [ G ( u n 1 , u n , u n ) + G ( u n , u n + 1 , u n + 1 ) + G ( u n + 1 , u n + 2 , u n + 2 ) ] , G ( u n , u n + 2 , u n + 2 ) } max { G ( u n 1 , u n , u n + 1 ) , G ( u n 1 , u n , u n ) , G ( u n + 1 , u n + 2 , u n + 2 ) , 2 s G ( u n 1 , u n , u n + 1 ) + s G ( u n , u n + 1 , u n + 2 ) , G ( u n , u n + 2 , u n + 2 ) } = 2 s G ( u n 1 , u n , u n + 1 ) + s G ( u n , u n + 1 , u n + 2 ) .
Therefore, we get
G ( u n , u n + 1 , u n + 2 ) 2 s λ G ( u n 1 , u n , u n + 1 ) + s λ G ( u n , u n + 1 , u n + 2 ) .
As λ [ 0 , 1 3 s 2 ) , it follows from the above inequality that
G ( u n , u n + 1 , u n + 2 ) 2 s λ 1 s λ G ( u n 1 , u n , u n + 1 ) .
Let k = 2 s λ 1 s λ , it is clear that k < 1 . We also can assume that u n u n + p for all n N and p 2 . Indeed, if u n = u n + p , using the inequality (5), we have
G ( u n , u n + 1 , u n + 2 ) = G ( u n + p , u n + 1 , u n + 2 ) k G ( u n + p 1 , u n , u n + 1 ) = k G ( u n + p 1 , u n + p , u n + 1 ) k 2 G ( u n + p 2 , u n + p 1 , u n ) k p G ( u n , u n + 1 , u n + 2 ) ,
a contradiction. Thus, similarly to the proof of Lemma 3, we conclude that u n is a G Cauchy sequence in E. Since ( E , d ) is a complete R G b M S , hence, for any ε > 0 , there exists n 0 N and u * E such that G ( u n , u m , u * ) < 1 s 2 λ 4 s ε for all n , m n 0 . Moreover, it follows from Proposition 1 that G ( u * , u n , u n ) < 1 s 2 λ 4 s ε , G ( u n , u * , u * ) < 1 s 2 λ 4 s ε , G ( u n , u n + 1 , u n + 1 ) < 1 s 2 λ 4 s ε and G ( u n + 1 , u n , u n ) < 1 s 2 λ 4 s ε for all n n 0 . For any n N , we have
G ( u * , T u * , T u * ) s [ G ( u * , u n + 1 , u n + 1 ) + G ( u n + 1 , u n + 2 , u n + 2 ) + G ( u n + 2 , T u * , T u * ) ] s G ( u * , u n + 1 , u n + 1 ) + s G ( u n + 1 , u n + 2 , u n + 2 ) + s λ M u n + 1 , u * , u *
and
M u n + 1 , u * , u * = max { G ( u n + 1 , u * , u * ) , G ( u n + 1 , T u n + 1 , T u n + 1 ) , G ( u * , T u * , T u * ) , G ( u n + 1 , T u * , T u * ) , G ( u * , T u n + 1 , T u n + 1 ) } = max { G ( u n + 1 , u * , u * ) , G ( u n + 1 , T u n + 1 , T u n + 1 ) , G ( u * , T u * , T u * ) , G ( u n + 1 , T u * , T u * ) , G ( u * , u n + 2 , u n + 2 ) } .
If M u n + 1 , u * , u * = G ( u * , T u * , T u * ) , then we have
G ( u * , T u * , T u * ) s G ( u * , u n + 1 , u n + 1 ) + s G ( u n + 1 , u n + 2 , u n + 2 ) + s λ G ( u * , T u * , T u * ) ,
since s λ < 1 , the above inequality yields
G ( u * , T u * , T u * ) s 1 s λ [ G ( u * , u n + 1 , u n + 1 ) + G ( u n + 1 , u n + 2 , u n + 2 ) ] < ε 4 + ε 4 < ε ;
If M u n + 1 , u * , u * = G ( u n + 1 , T u * , T u * ) , we have
G ( u * , T u * , T u * ) s G ( u * , u n + 1 , u n + 1 ) + s G ( u n + 1 , u n + 2 , u n + 2 ) + s λ G ( u n + 1 , T u * , T u * ) s G ( u * , u n + 1 , u n + 1 ) + s G ( u n + 1 , u n + 2 , u n + 2 ) + s 2 λ [ G ( u n + 1 , u n , u n ) + G ( u n , u * , u * ) + G ( u * , T u * , T u * ) ] ,
since s 2 λ < 1 , the above inequality yields
G ( u * , T u * , T u * ) 1 1 s 2 λ [ s G ( u * , u n + 1 , u n + 1 ) + s G ( u n + 1 , u n + 2 , u n + 2 ) + s 2 λ G ( u n + 1 , u n , u n ) + s 2 λ G ( u n , u * , u * ) ] < ε 4 + ε 4 + ε 4 + ε 4 = ε ;
If M u n + 1 , u * , u * = max { G ( u n + 1 , u * , u * ) , G ( u n + 1 , T u n + 1 , T u n + 1 ) , G ( u * , u n + 2 , u n + 2 ) } , which implies that M u n + 1 , u * , u * < 1 s 2 λ 4 s ε . Hence, we have
G ( u * , T u * , T u * ) < ε 4 + ε 4 + ε 4 < ε .
Consequently, we deduce that G ( u * , T u * , T u * ) = 0 , hence, T u * = u * and u * is a fixed point of T. To prove the uniqueness of the fixed point, suppose that v * is another fixed point of T. We have
G ( u * , v * , v * ) = G ( T u * , T v * , T v * ) λ max { G ( u * , v * , v * ) , G ( u * , T v * , T v * ) , G ( v * , T u * , T u * ) } λ G ( u * , v * , v * ) ,
a contradiction. Hence, u * = v * which completes the proof. □
As a similar consequence of Theorem 2, we obtain the following result.
Corollary 1. 
Let ( E , G ) be a complete R G b M S with coefficient s 1 and the mapping T : E E satisfies the contractive condition:
G ( T u , T v , T o ) λ M u , v , o
where
M u , v , o = max G ( u , v , o ) , G ( u , u , T u ) , G ( v , v , T v ) , G ( o , o , T o ) , G ( u , u , T v ) , G ( u , u , T o ) , G ( v , v , T u ) , G ( v , v , T o ) , G ( o , o , T u ) , G ( o , o , T v ) }
for any u , v , o E , where 0 λ < 1 3 s 2 . Then T has a unique fixed point in E.
The following theorem is a Reich type fixed point result in a R G b M S .
Theorem 3. 
Let ( E , G ) be a complete R G b M S with coefficient s 1 and the mapping T : E E satisfies the contractive condition:
G ( T u , T v , T o ) a 1 G ( u , v , o ) + a 2 G ( u , T u , T u ) + a 3 G ( v , T v , T v ) + a 4 G ( o , T o , T o )
for all u , v , o E , where a 1 + a 2 + a 3 + a 4 < 1 and s ( a 3 + a 4 ) < 1 . Then T has a unique fixed point in E.
Proof. 
Let u 0 E and define a sequence { u n } in E by u n = T u n 1 for all n N . If u n = u n + 1 then u n is fixed point of T and the proof is completed. So, suppose that u n u n + 1 for all n N . It follows from the inequality (6) that
G ( u n , u n + 1 , u n + 2 ) = G ( T u n 1 , T u n , T u n + 1 ) a 1 G ( u n 1 , u n , u n + 1 ) + a 2 G ( u n 1 , T u n 1 , T u n 1 ) + a 3 G ( u n , T u n , T u n ) + a 4 G ( u n + 1 , T u n + 1 , T u n + 1 ) = a 1 G ( u n 1 , u n , u n + 1 ) + a 2 G ( u n 1 , u n , u n ) + a 3 G ( u n , u n + 1 , u n + 1 ) + a 4 G ( u n + 1 , u n + 2 , u n + 2 ) a 1 G ( u n 1 , u n , u n + 1 ) + a 2 G ( u n 1 , u n , u n + 1 ) + a 3 G ( u n , u n + 1 , u n + 2 ) + a 4 G ( u n , u n + 1 , u n + 2 ) .
Hence, we get
G ( u n , u n + 1 , u n + 2 ) a 1 + a 2 1 a 3 a 4 G ( u n 1 , u n , u n + 1 ) .
Let k = a 1 + a 2 1 a 3 a 4 , where 0 k < 1 . Also, we can assume that u n u n + p for all p 2 . Indeed, if u n = u n + p , then using the inequality (6), we get
G ( u n , u n + 1 , u n + 1 ) = G ( u n , T u n , T u n ) = G ( T u n + p 1 , T u n + p , T u n + p ) k p 1 G ( u n , u n + 1 , u n + 1 ) ,
a contradiction. In what follows, we can assume that u n u m for all n m . Thus, similarly to the proof of Lemma 3, we conclude that u n is a G Cauchy sequence in E. Since ( E , G ) is a complete R G b M S , hence, for any ε > 0 , there exists n 0 N and u * E such that G ( u * , u n , u m ) < ε 3 ( 1 + a 1 + a 2 ) s for all n , m n 0 . Moreover, it follows from Proposition 1 that G ( u * , u n , u n ) < ε 3 s , G ( u n , u n + 1 , u n + 1 ) < ε 3 ( 1 + a 2 ) s and G ( u n , u * , u * ) < ε 3 a 1 s for all n n 0 . For any n N , we have
G ( u * , T u * , T u * ) s [ G ( u * , u n , u n ) + G ( u n , u n + 1 , u n + 1 ) + G ( u n + 1 , T u * , T u * ) ] s G ( u * , u n , u n ) + s G ( u n , u n + 1 , u n + 1 ) + s a 1 G ( u n , u * , u * ) + s a 2 G ( u n , T u n , T u n ) + s a 3 G ( u * , T u * , T u * ) + s a 4 G ( u * , T u * , T u * ) .
Since s ( a 3 + a 4 ) < 1 , the above inequality yields
G ( u * , T u * , T u * ) s 1 s ( a 3 + a 4 ) [ G ( u * , u n , u n ) + ( 1 + a 2 ) G ( u n , u n + 1 , u n + 1 ) + a 1 G ( u n , u * , u * ) ] ,
we obtain
G ( u * , T u * , T u * ) < s ( ε 3 + ε 3 + ε 3 ) ( 1 s ( a 3 + a 4 ) ) = s ε ( 1 s ( a 3 + a 4 ) ) .
We deduce that G ( u * , T u * , T u * ) = 0 , that is, T u * = u * . So u * is a fixed point of T. Now we show that the fixed point u * is unique. If there is another fixed point v * u * , by the given condition (6), we have
G ( u * , v * , v * ) = G ( T u * , T v * , T v * ) a 1 G ( u * , v * , v * ) + a 2 G ( u * , T u * , T u * ) + a 3 G ( v * , T v * , T v * ) + a 4 G ( v * , T v * , T v * ) = a 1 G ( u * , v * , v * ) ,
which is a contradiction. Hence, u * = v * which completes the proof. □
As a similar consequence of Theorem 3, we obtain the following result.
Corollary 2. 
Let ( E , G ) be a complete R G b M S with coefficient s 1 and the mapping T : E E satisfies the contractive condition:
G ( T u , T v , T o ) a 1 G ( u , v , o ) + a 2 G ( u , u , T u ) + a 3 G ( v , v , T v ) + a 4 G ( o , o , T o )
for all u , v , o E , where a 1 + a 2 + a 3 + a 4 < 1 and s ( a 3 + a 4 ) < 1 . Then T has a unique fixed point in E.

5. Convex Rectangular G b -Metric Spaces

In this section, we will give the notion of convex rectangular G b -metric space and prove several fixed point theorems for enriched type contractions in this space.
Definition 11. 
[19]. Let ( E , d ) be a metric space and I = [ 0 , 1 ] . A continuous function w : E × E × [ 0 , 1 ] E is said to be a convex structure on E if for each u , v , o E and α I ,
d ( o , w ( u , v ; α ) ) α d ( o , u ) + ( 1 α ) d ( o , v )
holds. A metric space ( E , d ) with a convex structure w is called a convex metric space.
Next, we introduce the notion of convex rectangular G b -metric space.
Definition 12. 
Let ( E , G ) be a complete R G b M S with coefficient s 1 . A mapping w : E × E × [ 0 , 1 ] E is said to be a convex structure on E if for each u , v , z , h E and α I ,
G ( u , v , w ( z , h ; α ) ) α G ( u , v , z ) + ( 1 α ) G ( u , v , h )
holds. Then the triplet ( E , G , w ) is called a convex rectangular G b -metric space ( C R G b M S ) with coefficient s 1 .
Let us present now a specific example of C R G b M S .
Example 8. 
Let E = R and for any u , v , o E , let us defined G by
G ( u , v , o ) = ( u v + v o + u o ) 2 ,
as well as the mapping w : E × E × [ 0 , 1 ] E by the formula
w ( u , v ; α ) = α u + ( 1 α ) v .
Then ( E , G , w ) is a C R G b M S with s = 3 . Indeed, Example 5 shows us that ( E , G ) is a R G b M S with s = 3 . We only need to verify that G satisfies inequality (7). For any u , v , z , h E , we get
G b ( u , v , w ( z , h ; α ) ) = u v + v α z ( 1 α ) h + u α z ( 1 α ) h 2 α u v + ( 1 α ) u v + α v z + ( 1 α ) v h + α u z + ( 1 α ) u h 2 = α u v + v z + u z + ( 1 α ) u v + v h + u h 2 = α 2 G ( u , v , z ) + 2 α ( 1 α ) u v + v z + u z u v + v h + u h + ( 1 α ) 2 G ( u , v , h ) α 2 G ( u , v , z ) + 2 α ( 1 α ) G ( u , v , z ) + G ( u , v , h ) 2 + ( 1 α ) 2 G ( u , v , h ) = α G ( u , v , z ) + ( 1 α ) G ( u , v , h )
Therefore, ( E , G , w ) is a C R G b M S with s = 3 .
In what follows, we denote the set of all fixed points of T by F ( T ) , that is,
F ( T ) = u E : T u = u .
The next Lemma is a partial extension of a result given in [27] from Banach spaces to rectangular G b -metric spaces.
Lemma 4. 
Let ( E , G , w ) be a C R G b M S and T : E E be a mapping. Define the mapping T α by
T α u = w ( u , T u ; α )
for all u E . Then, for any α [ 0 , 1 ) ,
F ( T ) = F ( T α ) .
Proof. 
If α = 0 , then
G ( T u , T u , T α u ) = G ( T u , T u , w ( u , T u ; 0 ) ) G ( T u , T u , T u ) = 0
which implies that T u = T α u . If α ( 0 , 1 ) , let u * F ( T ) , that is, u * = T u * and we get
G ( u * , u * , T α u * ) = G ( u * , u * , w ( u * , T u * ; α ) ) ( 1 α ) G ( u * , u * , T u * ) = 0
which means u * F ( T α u * ) . Conversely, let u * F ( T α ) , that is, u * = T α u * and we obtain
G ( T u * , T u * , u * ) = G ( T u * , T u * , w ( u * , T u * ; α ) ) α G ( T u * , T u * , u * ) = 0
which means u * F ( T u * ) . □
Let Θ be the set of non-decreasing function function φ : [ 0 , ) [ 0 , ) such that lim n φ n ( t ) = 0 for all t 0 . If φ Θ , it follows from Berinde [28] that
(1)
φ ( 0 ) = 0 ;
(2)
φ ( t ) < t for all t > 0 .
Now we give the notion of enriched φ contraction in a C R G b M S .
Definition 13. 
Let ( E , G , w ) be a C R G b M S with s 1 . A mapping T : E E is said to be an enriched φ contraction if there exists φ Θ and α [ 0 , 1 ) such that
G ( w ( u , T u ; α ) , w ( v , T v ; α ) , w ( o , T o ; α ) ) 1 s 2 φ G ( u , v , o )
for all u , v , o E .
Theorem 4. 
Let ( E , G , w ) be a C R G b M S with s 1 and let T : E E be an enriched φ contraction. Then
(1) 
F ( T ) = u * , for some u * E ;
(2) 
the sequence u n obtained from the iterative process
u n + 1 = w ( u n , T u n ; α n )
converges to u * , for any u 0 E .
Proof. 
Let us define the mapping T α : E E by T α u : = w ( u , T u ; α ) . Then the inequality (8) can be rewritten as
G ( T α u , T α v , T α o ) 1 s 2 φ G ( u , v , o ) .
Let u 0 E and u n = T α n 1 u n 1 where T α n u n = w ( u n , T u n ; α n ) for all n N . If u n = u n + 1 , then u n is a fixed point of T α . So, suppose that u n u n + 1 for all n N . Then, it follows from inequality (9) that
G ( u n , u n + 1 , u n + 2 ) 1 s 2 φ G ( u n 1 , u n , u n + 1 ) φ G ( u n 1 , u n , u n + 1 ) . . . φ n G ( u 0 , u 1 , u 2 ) ,
then we have
lim n G ( u n , u n + 1 , u n + 2 ) = 0 .
Also, we can assume u n u n + p for any p > 1 . Indeed, if u n = u n + p , then using the inequality (9), we have
G ( u n , u n , u n + 1 ) = G ( u n + p , u n + p , u n + 1 ) 1 s 2 φ G ( u n + p 1 , u n + p 1 , u n ) φ G ( u n + p 1 , u n + p 1 , u n + p ) φ 2 G ( u n + p 2 , u n + p 2 , u n + p 1 ) . . . φ p G ( u n , u n , u n + 1 ) < G ( u n , u n , u n + 1 ) ,
a contradiction. Notice that
G ( u n , u n + 2 , u n + 2 ) = G ( T α n 1 u n 1 , T α n + 1 u n + 1 , T α n + 1 u n + 1 ) 1 s 2 φ G ( u n 1 , u n + 1 , u n + 1 ) φ G ( u n 1 , u n + 1 , u n + 1 ) . . . φ n G ( u 0 , u 2 , u 2 ) .
It follows that
G ( u n , u n + 2 , u n + 2 ) φ n G ( u 0 , u 2 , u 2 ) .
Similary, we can conclude that
G ( u n , u n , u n + 2 ) φ n G ( u 0 , u 0 , u 2 ) .
Therefore, we obtain
lim n G ( u n , u n , u n + 2 ) = lim n G ( u n , u n + 2 , u n + 2 ) = 0 .
Next, we will show that u n is a G Cauchy sequence in E by contradiction. If u n is not a G Cauchy sequence, then there exists ε > 0 and the subsequences u n ( k ) , u m ( k ) and u l ( k ) of u n such for n ( k ) > m ( k ) > l ( k ) > k with G ( u n ( k ) , u m ( k ) , u l ( k ) ) ε and G ( u n ( k ) 1 , u m ( k ) , u l ( k ) ) < ε . On the one hand,
ε G ( u n ( k ) , u m ( k ) , u l ( k ) ) s [ G ( u m ( k ) , u m ( k ) + 2 , u m ( k ) + 2 ) + G ( u m ( k ) + 2 , u m ( k ) + 1 , u m ( k ) + 1 ) + G ( u m ( k ) + 1 , u n ( k ) , u l ( k ) ) ] s [ G ( u m ( k ) , u m ( k ) + 2 , u m ( k ) + 2 ) + G ( u m ( k ) + 2 , u m ( k ) + 1 , u m ( k ) + 1 ) ] + s 2 [ G ( u l ( k ) , u l ( k ) + 2 , u l ( k ) + 2 ) + G ( u l ( k ) + 2 , u l ( k ) + 1 , u l ( k ) + 1 ) + G ( u l ( k ) + 1 , u m ( k ) + 1 , u n ( k ) ) ] s [ G ( u m ( k ) , u m ( k ) + 2 , u m ( k ) + 3 ) + G ( u m ( k ) + 2 , u m ( k ) + 1 , u m ( k ) ) ] + s 2 [ G ( u l ( k ) , u l ( k ) + 1 , u l ( k ) + 2 ) + G ( u l ( k ) + 2 , u l ( k ) + 1 , u l ( k ) ) + G ( u l ( k ) + 1 , u m ( k ) + 1 , u n ( k ) ) ] ,
taking the limits as k in above inequality, we conclude
ε s 2 lim k G ( u l ( k ) + 1 , u m ( k ) + 1 , u n ( k ) ) .
On the other hand,
G ( u l ( k ) + 1 , u m ( k ) + 1 , u n ( k ) ) = G ( T α l ( k ) u l ( k ) , T α m ( k ) u m ( k ) , T α n ( k ) 1 u n ( k ) 1 ) 1 s 2 φ G ( u l ( k ) , u m ( k ) , u n ( k ) 1 ) ,
let k in above inequality , we obtain
ε s 2 1 s 2 φ ε < ε s 2 ,
a contradiction. Thus, u n is a G Cauchy sequence. By completeness of ( E , d , w ) , there exists u * E such that lim n u n = u * . Let us show that u * is a fixed point of T α . Applying the rectangular inequality, we obtain that
G ( u * , T α u * , T α u * ) s [ G ( u * , u n , u n ) + G ( u n , u n + 1 , u n + 1 ) + G ( u n + 1 , T α u * , T α u * ) ] = s [ G ( u * , u n , u n ) + G ( u n , u n + 1 , u n + 1 ) + G ( T α u n , T α u * , T α u * ) ] s [ G ( u * , u n , u n ) + G ( u n , u n + 1 , u n + 1 ) + 1 s 2 φ G ( u n , u * , u * ) ] ,
letting n , we deduce G ( u * , T α u * , T α u * ) = 0 which implies u * F ( T α ) . Suppose that u * , v * E are two distinct fixed points of T α . That is, G ( u * , u * , v * ) > 0 . Then
G ( u * , u * , v * ) = G ( T α u * , T α u * , T α v * ) 1 s 2 G ( u * , u * , v * ) < G ( u * , u * , v * ) ,
which is a contradiction. Therefore, we must have G ( u * , u * , v * ) = 0 , that is, u * = v * . Thus T α has a unique fixed point in E. To finish the proof, we apply Lemma 4. □
Taking φ ( t ) = λ t in Theorem 4, we obtain the following result.
Corollary 3. 
Let ( E , G , w ) be a C R G b M S with s 1 and let T : E E be an enriched contraction or ( α , λ ) enriched contraction, that is, there exists α [ 0 , 1 ) and λ [ 0 , 1 s 2 ) such that
G ( w ( u , T u ; α ) , w ( v , T v ; α ) , w ( o , T o ; α ) ) λ G ( u , v , o )
for all u , v , o E . Then,
(1) 
F ( T ) = u * , for some u * E ;
(2) 
the sequence u n obtained from the iterative process
u n + 1 = w ( u n , T u n ; α n )
converges to u * , for any u 0 E .
The result of the local variant of enriched contractions in C R G b M S as following.
Theorem 5. 
Let ( E , G , w ) be a C R G b M S with s 1 and B = B G ( u 0 , r ) , u 0 E , r > 0 . Assume that T : B E be an enriched contraction and 0 < α < 1 . If
max G ( u 0 , u 0 , T u 0 ) , G ( u 0 , T u 0 , T u 0 ) ( 1 2 s λ 2 ) ε ,
then T has a fixed point in E.
Proof. 
We can choose ε < r such that
max G ( u 0 , u 0 , T u 0 ) , G ( u 0 , T u 0 , T u 0 ) ( 1 2 s λ 2 ) ε < ( 1 2 s λ 2 ) r .
Since T is a enriched contraction, for all u , v , o E and any α [ 0 , 1 ) , we can apply the contractive condition (10) with T α u = w ( u , T u ; α ) , then we obtain
G ( T α u , T α v , T α o ) λ G ( u , v , o ) .
We shall prove that the closed ball
B ¯ G ( u 0 , ε ) = u E : G ( u 0 , u , u ) ε
is invariant with respect to T α . Suppose that u 0 is not a fixed point of T, that is, u 0 T u 0 and u 0 T α u 0 . Due to α > 0 , it is not difficult to see that T u 0 T α u 0 , indeed, if not,
G ( u 0 , u 0 , T u 0 ) = G ( u 0 , u 0 , T α u 0 ) = G ( u 0 , u 0 , w ( u 0 , T u 0 ; α ) ) ( 1 α ) ( u 0 , u 0 , T u 0 ) ,
a contradiction. For any u B ¯ G ( u 0 , ε ) , we will consider the following three cases:
Case 1: if T u 0 = T α u , we have
G ( u 0 , T α u , T α u ) = G ( u 0 , T u 0 , T u 0 ) G ( u 0 , T u 0 , T α u 0 ) = G ( u 0 , T u 0 , w ( u 0 , T u 0 ; α ) ) α G ( u 0 , u 0 , T u 0 ) + ( 1 α ) G ( u 0 , T u 0 , T u 0 ) ( 1 2 s λ 2 ) ε < ε ;
Case 2: if T α u 0 = T α u , we have
G ( u 0 , T α u , T α u ) = G ( u 0 , T α u 0 , T α u 0 ) G ( u 0 , T u 0 , T α u 0 ) = G ( u 0 , T u 0 , w ( u 0 , T u 0 ; α ) ) α G ( u 0 , u 0 , T u 0 ) + ( 1 α ) G ( u 0 , T u 0 , T u 0 ) ( 1 2 s λ 2 ) ε < ε ;
Case 3: if T u 0 T α u and T α u 0 T α u , we have
G ( u 0 , T α u , T α u ) s [ G ( u 0 , T u 0 , T u 0 ) + G ( T u 0 , T α u 0 , T α u 0 ) + G ( T α u 0 , T α u , T α u ) ] s [ G ( u 0 , T u 0 , T u 0 ) + G ( T u 0 , u 0 , T α u 0 ) + G ( T α u 0 , T α u , T α u ) ] = s [ G ( u 0 , T u 0 , T u 0 ) + G ( T u 0 , u 0 , w ( u 0 , T u 0 , α ) ) + G ( T α u 0 , T α u , T α u ) ] s [ G ( u 0 , T u 0 , T u 0 ) + α G ( T u 0 , u 0 , u 0 ) + ( 1 α ) G ( T u 0 , u 0 , T u 0 ) + λ G ( u 0 , u , u ) ] s [ ( 1 s λ ) ε + λ ε ] = ε .
Finally, by above cases, we prove that G ( u 0 , T α u , T α u ) ε , which implies T α u B ¯ G ( u 0 , ε ) . Since B ¯ G ( u 0 , ε ) is complete, the result follows from Corollary 3. □

Author Contributions

C.L. and Y.C. contributed equally and significantly in writing this article. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China under Grants 11871181.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

We would like to express our thanks to the anonymous referees and the editor for their constructive comments and suggestions, which greatly improved this article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
  2. Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  3. Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. 2000, 57, 31–37. [Google Scholar]
  4. George, R.; Radenovi, S.; Reshma, K.P.; Shukla, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
  5. Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex A 2006, 7, 289–297. [Google Scholar]
  6. Mustafa, Z. A New Structure for Generalized Metric Spaces: With Applications to Fixed Point Theory. Ph.D. Thesis, University of Newcastle, Newcastle, UK, 2005. [Google Scholar]
  7. Aghajani, A.; Abbas, M.; Roshan, J. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovaca 2014, 4, 941–960. [Google Scholar] [CrossRef]
  8. Aydi, H.; Rakić, D.; Aghajani, A.; Došenović, T.; Noorani, M.S.M.; Qawaqneh, H. On fixed point results in Gb-metric spaces. Mathematics 2019, 7, 617. [Google Scholar] [CrossRef] [Green Version]
  9. Agarwal, R.P.; Karapınar, E.; O’Regan, D.; Roldán-López-de-Hierro, A.F. Fixed Point Theory in Metric Type Spaces; Springer International Publishing: Gewerbestrasse, Switzerland, 2015. [Google Scholar]
  10. Roldán-López-de-Hierro, A.F.; Karapınar, E.; O’Regan, D.; Karapinar, E. Coincidence point theorems on quasi-metric spaces via simulation functions and applications to G-metric spaces. J. Fixed Point Theory Appl. 2018, 20, 1661–7738. [Google Scholar] [CrossRef]
  11. Reich, S. Fixed point theory in locally convex spaces. Math. Z. 1972, 125, 17–31. [Google Scholar] [CrossRef]
  12. Reich, S.; Shafrir, I. Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 1990, 19, 537–558. [Google Scholar] [CrossRef]
  13. Chen, L.; Gao, L.; Zhao, Y. A new iterative scheme for finding attractive points of (α, β)-generalized hybrid set-valued mappings. J. Nonlinear Sci. Appl. 2017, 10, 1228–1237. [Google Scholar] [CrossRef] [Green Version]
  14. Chen, L.; Gao, L.; Chen, D. Fixed point theorems of mean nonexpansive set-valued mappings in Banach spaces. J. Fixed Point Theory Appl. 2017, 19, 2129–2143. [Google Scholar] [CrossRef]
  15. Chen, L.; Yang, N.; Zhao, Y.; Ma, Z. Fixed point theorems for set-valued G-contractions in a graphical convex metric space with applications. Discret. Contin. Dyn. Syst. 2020, 22, 88. [Google Scholar] [CrossRef]
  16. Chen, L.; Huang, S.; Li, C.; Zhao, Y. Several fixed point theorems for F-contractions in complete Branciari b-metric spaces and applications. J. Funct. Space. 2020, 69, 1–10. [Google Scholar] [CrossRef]
  17. Karapınar, E.; Chifu, E. Results in wt-Distance over b-metric Spaces. Mathematics 2020, 8, 220. [Google Scholar] [CrossRef] [Green Version]
  18. Chifu, C.; Karapınar, E.; Petrusel, P. Fixed Point Results for Frum-Ketkov Type Contractions in b-metric Spaces. Axioms 2021, 10, 231. [Google Scholar] [CrossRef]
  19. Takahashi, W. A convexity in metric space and nonexpansive mappings I. Kodai Math J. 1970, 22, 142–149. [Google Scholar] [CrossRef]
  20. Chen, L.; Li, C.; Kaczmarek, R.; Zhao, Y. Several fixed point theorems in convex b-metric spaces and applications. Mathematics 2020, 8, 242. [Google Scholar] [CrossRef] [Green Version]
  21. Berinde, V.; Păcurar, M. Approximating fixed points of enriched contractions in Banach spaces. J. Fixed Point Theory Appl. 2020, 22, 1–10. [Google Scholar] [CrossRef] [Green Version]
  22. Berinde, V.; Păcurar, M. Kannan’s fixed point approximation for solving split feasibility and variational inequality problems. J. Comput. Appl. Math. 2021, 386, 113217. [Google Scholar] [CrossRef]
  23. Berinde, V.; Păcurar, M. Fixed points tTheorems for unsaturated and saturated classes of contractive mappings in Banach spaces. Symmetry 2021, 13, 713. [Google Scholar] [CrossRef]
  24. Abbas, M.; Anjum, R.; Berinde, V. Enriched multivalued contractions with applications to differential inclusions and dynamic programming. Symmetry 2021, 13, 1350. [Google Scholar] [CrossRef]
  25. Berinde, V.; Păcurar, M. Existence and approximation of fixed Points of enriched contractions and enriched φ-contractions. Symmetry 2021, 13, 498. [Google Scholar] [CrossRef]
  26. Mitrović, Z.D. On an open problem in rectangular b-metric space. J. Anal. 2017, 25, 135–137. [Google Scholar] [CrossRef]
  27. Browder, F.E.; Petryshyn, W.V. Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 1967, 20, 197–228. [Google Scholar] [CrossRef] [Green Version]
  28. Berinde, V. Generalized Contractions and Applications; Editura Cub Press: Baia Mare, Romania, 1997. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Li, C.; Cui, Y. Rectangular Gb-Metric Spaces and Some Fixed Point Theorems. Axioms 2022, 11, 108. https://doi.org/10.3390/axioms11030108

AMA Style

Li C, Cui Y. Rectangular Gb-Metric Spaces and Some Fixed Point Theorems. Axioms. 2022; 11(3):108. https://doi.org/10.3390/axioms11030108

Chicago/Turabian Style

Li, Chaobo, and Yunan Cui. 2022. "Rectangular Gb-Metric Spaces and Some Fixed Point Theorems" Axioms 11, no. 3: 108. https://doi.org/10.3390/axioms11030108

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop